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Absolute continuity of the spectrum of the periodic

Schrödinger operator in a layer and in a smooth cylinder

N. Filonov I. Kachkovskiy∗

Abstract

We consider the Schrödinger operator H = −∆ + V in a layer or in a d-dimensional
cylinder. The potential V is assumed to be periodic with respect to some lattice. We
establish the absolute continuity of H, assuming V ∈ Lp,loc, where p is a real number
greater than d/2 in the case of a layer, and p > max(d/2, d − 2) for the cylinder. 1

1 Introduction

Let M be a smooth k-dimensional compact Riemannian manifold, let also

Ξ = M × R
m, d := dimΞ = k +m.

We are interested in the type of the spectrum of the Schrödinger operator H = −∆ + V in
a cylinder Ξ. The function V is supposed to be periodic. If M is a manifold with boundary,
we study the operator H with various boundary conditions at ∂Ξ = ∂M × Rm. We are going
to prove that, under some assumptions on V , the spectrum of H is absolutely continuous (see
Theorems 2.1 and 2.2 below).

The points of Ξ are denoted by (x, y), x ∈ M , y ∈ Rm. Let Γ be a lattice in Rm,

Γ =

{
l =

m∑

j=1

ljbj , lj ∈ Z

}
, (1.1)

where {bj}mj=1 is a basis of Rm. Assume that V is periodic over the ”longitudinal” variables:

V (x, y + l) = V (x, y), x ∈ M, y ∈ R
m, l ∈ Γ. (1.2)

Thanks to V being periodic, it is enough to know V on M × Ω, where

Ω =

{
y =

m∑

j=1

yjbj , yj ∈ [0, 1)

}
(1.3)

is an elementary cell of Γ.
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Let us introduce the reader to the main results regarding absolute continuity of H . Usually,
in the sufficient conditions it is assumed that the potential V belongs to Lp(M × Ω) or to a
Lorentz space L0

p,∞(M × Ω). We recall that if N is a set of finite measure, then Lp(N) ⊂
L0
p,∞(N) ⊂ Lp−ε(N) for all ε > 0.
The two-dimensional case, d = 2 (Ξ is a whole plane or a strip), has been studied in much

detail. In [1, 10, 7], the absolute continuity of H is proved for V ∈ Lp, p > 1. From now on,
we consider only d > 3.

The case of k = 0, corresponding to the operator in the whole space, is also well studied. In
[8], the absolute continuity is established in the ”critical” case V ∈ L0

d/2,∞(Ω) for all d > 3 (see

also [3]). In [13], the case k = 1 (M is a line segment, Ξ is a plane-parallel layer) is studied,
and for V ∈ L0

p,∞(M ×Ω), where p = max(d/2, d−2), the absolute continuity of H is obtained.
The author also considers the third type boundary condition. Finally, the case k > 2 is studied
in [4], and it is established that H is absolutely continuous if V ∈ Ld−1(M × Ω).

In the present paper, we prove (see Theorem 2.1 below) the absolute continuity of H with
V ∈ Lp(M × Ω) for all p > d/2 in the following cases: 1) ∂M = ∅; 2) M is a line segment,
k = 1; 3) d = 3 or 4. If M is a manifold with boundary, k > 1, and d > 4, we obtain only
V ∈ Ld−2(M × Ω) as a sufficient condition. In the case k = 1 we also consider the third type
boundary condition (see Theorem 2.2).

All mentioned results are obtained using the Thomas scheme [14], its key point is to study
the operator family

H(ξ) = −∆x + (−i∇y + ξ)∗(−i∇y + ξ) + V (x, y),

where ξ is called quasimomentum. To obtain the resolvent estimates for the free operatorH0(ξ),
corresponding to V = 0, we use the spectral cluster estimates from [12] (the idea of using these
estimates arose in [8]).

2 Formulation of the result

Let M be a compact smooth Riemannian manifold with or without boundary, dimM = k.
Consider a d-dimensional cylinder

Ξ = M × R
m, d = k +m > 3.

Let Γ be a lattice (1.1), let Ω be a cell (1.3), and let V (x, y) be a real-valued function, satisfying
(1.2). Assume that

V ∈ Ld/2(M × Ω). (2.1)

Consider the following quadratic form in L2(Ξ):

h[u, u] =

∫

Ξ

(
|∇u(x, y)|2 + V (x, y)|u(x, y)|2

)
dx dy, Domh = H1(Ξ). (2.2)

If M has a boundary, ∂M 6= ∅, then we denote (2.2) by hN . In this case we are also going to
study a form hD = hN |H1

0
(Ξ).
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It is well known that, assuming (2.1), the form h (resp. hN , hD) is closed and semi-bounded
from below. In L2(Ξ), it corresponds to a semi-bounded operator H (resp. HN , HD), which is
called the Schrödinger operator in Ξ (resp. the Schrödinger operator with Dirichlet or Neumann
boundary conditions).

Theorem 2.1. Let M be a compact smooth Riemannian manifold with or without boundary,

dimM = k, Ξ = M × Rm, d = k + m > 3. Let Γ be a lattice (1.1), let V be a real-valued

Γ-periodic function in Ξ. Assume that V ∈ Lp(M × Ω), where

• p > d/2, if ∂M = ∅;

• p > d/2, if ∂M 6= ∅ and k = 1 (M is a line segment);

• p > d/2, if ∂M 6= ∅ and d = 3 or d = 4;

• p > d− 2, if ∂M 6= ∅ and d > 5.

Then the spectra of H (∂M = ∅), HN and HD (∂M 6= ∅) are absolutely continuous.

In the case of a layer (M is a line segment), Suslina’s result [13] (see Theorem 4.5 below)
allows us to consider the case of the third type boundary condition. Let k = 1, Ξ = [0, a]×R

m,
let also σ be a real Γ-periodic function on ∂Ξ = {0; a} × Rm. Consider a quadratic form

hσ[u, u] =

∫

Ξ

(
|∇u(x, y)|2 + V (x, y)|u(x, y)|2

)
dx dy

+

∫

Rm

(
σ(a, y)|u(a, y)|2 − σ(0, y)|u(0, y)|2

)
dy, Domhσ = H1(Ξ). (2.3)

If σ ∈ Lm({0, a} ×Ω), then the form (2.3) is closed and semi-bounded from below (see [9]). In
the case σ = 0 the form hσ coincides with hN .

Theorem 2.2. Let Ξ = [0, a] × R
m, d = m + 1 > 3, let Γ be a lattice (1.1). Let V be a

Γ-periodic function on Ξ, V ∈ Lp([0, a] × Ω) with p > d/2. Let σ be a Γ-periodic function on

∂Ξ, satisfying

σ ∈ Lq({0, a} × Ω), where q = 2 for d = 3, q = 2d− 2 for d > 4. (2.4)

Then the spectrum of the Schrödinger operator Hσ, corresponding to the form (2.3), is absolutely
continuous.

Remark 2.3. Theorem 2.1 can be reformulated in the matrix case. Let V be an (n × n)-
matrix-valued function on Ξ such that V (x, y)∗ = V (x, y), (1.2) holds, and V ∈ Lp(M × Ω),
p > d/2. The quadratic form

h[u, u] =

∫

Ξ

(
|∇u(x, y)|2 + 〈V (x, y)u(x, y) , u(x, y)〉

)
dx dy

is closed and semi-bounded on the domains H1(Ξ,Cn) and H1
0 (Ξ,C

n). These forms correspond
to the self-adjoint operators H , HN , HD in L2(Ξ,C

n). In the cases of a manifold without
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boundary, a layer, and 3- and 4-dimensional cylinders, the spectra of such operators are abso-
lutely continuous. In the case of a d-dimensional cylinder, d > 4, the spectra of HN and HD are
absolutely continuous whenever V ∈ Lp(M ×Ω), p > d− 2. The proof of Theorem 2.1 is valid
for the matrix case without changes. A matrix analog of Theorem 2.2 can also be obtained.

It is convenient for us to interpret Ω as an m-dimensional torus T = Rm/Γ. Let us introduce
an additional parameter ξ ∈ Cm, and consider the following quadratic forms. In the case of a
manifold without boundary let

h(ξ)[v, v] =

∫

M×Ω

(|∇xv|2 + 〈(∇y + iξ)v, (∇y + iξ)v〉+ V |v|2) dx dy, (2.5)

Domh(ξ) = H1(M × T).

If ∂M 6= ∅, then the form (2.5) will be denoted by hN (ξ), and let also

hD(ξ) = hN (ξ) |H1

0
(M×T) .

In the case of a layer, Ξ = [0, a]× Rm, consider also a form

hσ(ξ)[v, v] = hN (ξ)[v, v] +

∫

Ω

(
σ(a, y)|v(a, y)|2 − σ(0, y)|v(0, y)|2

)
dy,

Domhσ(ξ) = H1([0, a]× T).

These forms are sectorial (the definition and main properties of sectoriality can be found in
[5, Ch. VI, VII]), and they correspond to analytic operator families H(ξ), HN(ξ), HD(ξ), and
Hσ(ξ) respectively. For real ξ, these operators are self-adjoint.

Let b1 be the first vector in the basis of Γ. The conditions on the potential are dilatation-
invariant, so we can assume |b1| = 1.

Theorem 2.4. Suppose the conditions of Theorem 2.1 or Theorem 2.2 are satisfied. Then,

for every λ ∈ C and ξ ∈ R
m, ξ ⊥ b1, there exists τ0 such that for |τ | > τ0 the operator

(H((π + iτ)b1 + ξ)− λI) is invertible and
∥∥(H((π + iτ)b1 + ξ)− λI)−1

∥∥ 6 C|τ |−1. (2.6)

We prove this Theorem in §4. In a standard way (see, for example, [2] or [6]) Theorem 2.4
implies Theorems 2.1 and 2.2.

3 Spectral cluster estimates

For a self-adjoint operator P , we denote by Ek(P ) = EP ([(k − 1)2; k2)) its spectral projector
onto a subspace, corresponding to an interval [(k − 1)2; k2). The following Theorem is proved
in [12].

Theorem 3.1. Let N be a compact C∞-smooth d-dimensional Riemannian manifold without

boundary, let P be an elliptic second-order differential operator on N with positive-definite

symbol. Then

‖Ek(P )f‖L2(N) 6 Ckd(1/p−1/2)−1/2‖f‖Lp(N), f ∈ Lp(N), 1 6 p 6
2(d+ 1)

d+ 3
.
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By duality, this yields

Corollary 3.2. Under the assumptions of Theorem 3.1, the following inequality holds:

‖Ek(P )f‖Lq(N) 6 Ckd(1/2−1/q)−1/2‖f‖L2(N), f ∈ L2(N),
2(d+ 1)

d− 1
6 q 6 +∞. (3.1)

Theorem 3.3. Let N0 be a compact smooth Riemannian manifold without boundary, dimN0 =
d−1. Let P0 be a second-order elliptic differential operator on N0 with positive-definite symbol.

Consider an elliptic operator P = 1 ⊗ P0 − d2

dx2 ⊗ 1 on a manifold N = [0, a] × N0 (x denotes

a local coordinate on [0, a]). Then, for P on N with either Dirichlet or Neumann boundary

conditions, the estimate (3.1) holds.

Proof. We shal give proof for the Dirichlet problem, the Neumann case is analogous. The
statement of Theorem is invariant with respect to dilatations over x, so we can assume a = π.
In this case, the spectral projector Ek of P is an integral operator with kernel

K(x, x′, y, y′) =
∑

j2+λn∈[(k−1)2;k2)

2

π
sin(jx) sin(jx′)ϕn(y)ϕn(y

′), (3.2)

where {λn}, {ϕn} are eigenvalues and eigenfunctions of P0. We introduce three operators: an

operator Ẽk, acting on functions from L2([0, 2π] × N0) as an integral operator with the same
kernel (3.2), an operator of zero extension T : L2(N) → L2([0, 2π] × N0), and a restriction

operator S : Lq([0, 2π]× N0) → Lq(N). Obviously, Ek = SẼkT . Furthermore, Ẽk = 1
2π
(Ẽ

(1)
k −

Ẽ
(2)
k ), where Ẽ

(1)
k and Ẽ

(2)
k are integral operators with kernels

K(1)(x, x′, y, y′) =
∑

j2+λn∈[(k−1)2;k2)

(eij(x−x′) + e−ij(x−x′))ϕn(y)ϕn(y
′),

K(2)(x, x′, y, y′) =
∑

j2+λn∈[(k−1)2;k2)

(eij(x+x′) + e−ij(x+x′))ϕn(y)ϕn(y
′).

The operator Ẽ
(1)
k is a spectral projector of − d2

dx2 ⊗ 1 + 1 ⊗ P0 on [0, 2π] × N0 with periodic
boundary conditions over x. The last operator is an elliptic operator on a manifold S1 × N0

without boundary, and it satisfies (3.1). Similarly, (3.1) holds for Ẽ
(2)
k , and so for Ẽk and Ek.

The proof for the Neumann case can be obtained by replacing sin(jx) with cos(jx), in this

case Ẽk = 1
2π
(Ẽ

(1)
k + Ẽ

(2)
k ).

In [11], the following result is proved.

Theorem 3.4. Let N be a compact smooth Riemannian manifold with boundary, dimN = d >

3. Let P be an elliptic second-order differential operator on N with positive-definite symbol and

with Dirichlet or Neumann boundary conditions. Then, for

5 6 q 6 ∞, if d = 3; 4 6 q 6 ∞, if d > 4, (3.3)

the estimate (3.1) holds. For
2 6 q 6 4, d > 4,

the estimate is replaced with

‖Ekf‖Lq(N) 6 Ckd(1/2−1/q)+2/q−1‖f‖L2(N). (3.4)
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4 Proof of Theorem 2.4

For simplicity, denote H((π + iτ)b1 + ξ) by H(τ). Let

H0(τ) = H(τ)|V=0, σ=0 , H0 = H0(0).

The operator H0 is a self-adjoint second-order elliptic differential operator on a manifold M×T.
Let Ek denote its spectral projector onto [(k − 1)2; k2). For a manifold M , we introduce

Condition A(q). M satisfies the property that for every ξ ∈ Rm, 〈ξ, b1〉 = 0, there exist ε > 0
and C > 0 such that

‖Ekf‖Lq(M×T) 6 Ck1/2−ε‖f‖L2(M×T), ∀f ∈ L2(M × T).

It is easy to see that A(q) implies A(q̃) if q̃ < q.
Let {µj} and {ϕj(x)} be eigenvalues and eigenfunctions of the Laplace operator −∆x on M

with the corresponding (Dirichlet or Neumann) boundary conditions. Then the eigenvalues of
H0(τ) are of the form

hj,n(τ) = |n+ πb1 + ξ|2 + µj − τ 2 + 2iτ〈n+ πb1, b1〉,

and the normalized eigenfunctions are

ϕj,n(x, y) = |Ω|−1/2ϕj(x)e
i〈n,y〉, j ∈ N, n ∈ Γ̃,

where Γ̃ is the dual lattice,

Γ̃ =

{
n =

m∑

j=1

nj b̃j , nj ∈ Z

}
, 〈bk, b̃j〉 = 2πδkj.

Notice that 〈n, b1〉 ∈ 2πZ. This gives

|hj,n(τ)| > | Imhj,n(τ)| = 2|〈n+ πb1, b1〉||τ | > 2π|τ |.

Then, for |τ | > 0, the operator H0(τ) is invertible and

‖H0(τ)
−1‖ 6 (2π|τ |)−1, τ 6= 0. (4.1)

Consider also an operator |H0(τ)|−1/2 such that

|H0(τ)|−1/2ϕj,n = |hj,n(τ)|−1/2ϕj,n.

The following Lemma is elementary.

Lemma 4.1. Let 0 < ε < 1/2. Then the sums

∞∑

k=1

k1−2ε

|k2 − τ 2|+ |τ | ,
∞∑

k=1

k1−2ε

|(k − 1)2 − τ 2|+ |τ | (4.2)

are finite and uniformly bounded with respect to τ for |τ | > 1.
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Proof. For certainty, consider the first sum. Without loss of generality, we can assume τ > 0.
If k2 > 2τ 2, then the denominator can be replaced with 1

2
k2, and this implies that the ”tail” of

the sum converges uniformly. Therefore, we may consider only k2 < 2τ 2. In this case,

∑

k<2τ

k1−2ε

|k2 − τ 2|+ |τ | 6 2|τ |1−2ε
∑

k<2τ

1

|k2 − τ 2|+ |τ | 6 2τ−2ε
∑

k<2τ

1

|k − τ |+ 1
.

The last sum is bounded, because

τ−2ε

2τ∫

0

dk

|k − τ |+ 1
= 2τ−2ε

2τ∫

τ

dk

k − τ + 1
= 2τ−2ε ln(τ + 1).

Theorem 4.2. Assume that Condition A(q) holds. Then, for some τ0 > 0,
∥∥|H0(τ)|−1/2f

∥∥
Lq(M×T)

6 C‖f‖L2(M×T), ∀ |τ | > τ0, f ∈ L2(M × T). (4.3)

Proof. Let Ek be a spectral projector of H0 onto [(k − 1)2; k2). Then

∥∥|H0(τ)|−1/2f
∥∥
Lq(M×T)

6

∞∑

k=1

∥∥Ek|H0(τ)|−1/2f
∥∥
Lq(M×T)

6 C

∞∑

k=1

k1/2−ε
∥∥Ek|H0(τ)|−1/2f

∥∥
L2(M×T)

6 C

∞∑

k=1

k1/2−ε
∥∥Ek|H0(τ)|−1/2

∥∥ · ‖Ekf‖L2(M×T),

from which, using Cauchy-Bunyakovsky-Schwarz inequality, we obtain

∥∥|H0(τ)|−1/2f
∥∥2

Lq(M×T)
6 C‖f‖2L2(M×T)

∞∑

k=1

k1−2ε‖Ek|H0(τ)|−1/2‖2.

The eigenvalues of H0 are |n + πb1 + ξ|2 + µj, n ∈ Γ̃, j ∈ N. The range of Ek corresponds to
the pairs (j, n) such that (k − 1)2 6 |n+ πb1 + ξ|2 + µj < k2. So,

∥∥Ek|H0(τ)|−1/2
∥∥2

= max
|n+πb1+ξ|2+µj∈[(k−1)2;k2)

1

|hj,n(τ)|

6 max
|n+πb1+ξ|2+µj∈[(k−1)2;k2)

√
2

||n+ πb1 + ξ|2 + µj − τ 2|+ |τ | .

Finally, we need to show that the sum

∞∑

k=1

max
|n+πb1+ξ|2+µj∈[(k−1)2;k2)

k1−2ε

||n+ πb1 + ξ|2 + µj − τ 2|+ |τ | (4.4)

is finite and uniformly bounded for |τ | > τ0.
To do this, we notice that in all the terms (maybe, all but one) we can replace |n+πb1+ξ|2+

µj with (k−1)2 or k2, and the term will not decrease, because, if |τ | /∈ [k−1; k), then, after one
of these substitutions, the denominator may only decrease. The term, for which |τ | ∈ [k−1; k),
can be estimated by Ck−2ε and does not affect the convergence. So, it is enough to consider
two sums (4.4): we replace |n+ πb1 + ξ|2 + µj with (k− 1)2 in the first one, and with k2 in the
second one. Their boundness follows from Lemma 4.1.
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We need the following fact to prove Theorem 2.4:

Lemma 4.3. Let (M,µ) be a measurable space with σ-finite measure, let V ∈ Lp(M), 1 6 p <
∞. Then for every δ > 0 there exists c(δ) such that

∫

M

|V fg|dµ 6 δ‖f‖L
2p′ (M)‖g‖L

2p′(M) + c(δ)‖f‖L2(M)‖g‖L2(M), f, g ∈ L2p′(M),

where p′ is the conjugate index to p.

Proof. The function V can be expressed in the form

V = V1 + V2, where ‖V1‖Lp(M) 6 δ, V2 ∈ L∞(M).

By Hölder inequality,
∫

M

|V fg|dµ 6 δ‖f‖L
2p′(M)‖g‖L

2p′(M) + ‖V2‖L∞(M)‖f‖L2(M)‖g‖L2(M).

Theorem 4.4. Let M satisfy A(q) for some q ∈ (2, 2d/(d − 2)). Let V ∈ Lp(M × T), where
p = q/(q−2). Then the operator (H(τ)− λI) is invertible for |τ | > τ0, and

∥∥(H(τ)− λI)−1
∥∥ 6

C|τ |−1.

Proof. The condition on V is invariant with respect to adding a constant. So, without loss
of generality, we can assume λ = 0. It is enough to prove the following statement: for any
u ∈ Dom(H(τ)), ‖u‖L2(M×T) = 1, there exists v ∈ Dom(H(τ)), ‖v‖L2(M×T) = 1, such that

|(H(τ)u, v)| > C|τ |, |τ | > τ0.

Let H0(τ) = Φ0(τ)|H0(τ)| be the polar decomposition of H0(τ). We set

v = Φ0(τ)u. (4.5)

Then,
(H0(τ)u, v) = (|H0(τ)|u, u) > 2π|τ | (4.6)

by (4.1), and

(H0(τ)u, v) = ‖|H0(τ)|1/2u‖2L2(M×T) = ‖|H0(τ)|1/2v‖2L2(M×T).

Let us estimate the term (V u, v) using Lemma 4.3 and Theorem 4.2:

|(V u, v)| 6 δ‖u‖Lq(M×T)‖v‖Lq(M×T) + c(δ) 6

6 Cδ‖|H0(τ)|1/2v‖L2(M×T)‖|H0(τ)|1/2u‖L2(M×T) + c(δ) = Cδ(H0(τ)u, v) + c(δ). (4.7)

This implies

|(H(τ)u, v)| > (1−Cδ)(H0(τ)u, v)−c(δ) > 2π(1−Cδ)|τ |−c(δ) > C1|τ | for |τ | > τ0, δ < 1/C.
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Proof of Theorem 2.4, the case of a manifold without boundary.

If ∂M = ∅, then Corollary 3.2 implies A(q) for all q < 2d/(d − 2). From Theorem 4.4, we
get (2.6) for any p > d/2.
Proof of Theorem 2.4, the case of Dirichlet or Neumann boundary conditions.

If k = 1 (M is a line segment), then Theorem 3.3 again yields A(q) for all q < 2d/(d− 2).
And all p > d/2 are suitable.

If d = 3, then Theorem 3.4 gives A(q) only if q < 6, so we need p > 3/2.
If d > 4, then, again by Theorem 3.4, Condition A(q) holds for q < (2d − 4)/(d − 3), and

the corresponding condition on V is V ∈ Lp(M × Ω), where p > d− 2.
To study the third type boundary condition, we use the following result from [13].

Theorem 4.5. Let k = 1, M = [0, a], and assume that σ satisfies (2.4). Then

∫

Ω

|σ(0, y)|
∣∣(|H0(τ)|−1/2u

)
(0, y)

∣∣2 dy

+

∫

Ω

|σ(a, y)|
∣∣(|H0(τ)|−1/2u

)
(a, y)

∣∣2 dy 6 c̃(τ)‖u‖2L2([0,a]×Ω),

where lim
|τ |→∞

c̃(τ) = 0 uniformly over ξ′ and u ∈ L2([0, a]× Ω).

Proof of Theorem 2.4, the case of the third type boundary condition.

Let p > d/2, q = 2p′ < 2d/(d− 2). Theorem 3.3 guaranties A(q). Let V ∈ Lp([0, a]× Ω).
For an arbitrary u ∈ Dom(Hσ), ‖u‖L2([0,a]×Ω) = 1, let v be defined by (4.5). Then

(Hσ(τ)u, v) = (H0(τ)u, v) + (V u, v) +

∫

Ω

σ(a, y)u(a, y)v(a, y) dy −
∫

Ω

σ(0, y)u(0, y)v(0, y) dy.

The first two terms are estimated in (4.7) and (4.6). Let us estimate the last one (the same
can be done for the remaining term). Theorem 4.5 gives

∣∣∣∣∣∣

∫

Ω

σ(0, y)u(0, y)v(0, y) dy

∣∣∣∣∣∣
6

1

2

∫

Ω

|σ(0, y)|
(
|u(0, y)|2 + |v(0, y)|2

)
dy

6
c̃(τ)

2

(∥∥|H0(τ)|1/2u
∥∥2

L2([0,a]×Ω)
+
∥∥|H0(τ)|1/2v

∥∥2

L2([0,a]×Ω)

)
= c̃(τ) (H0(τ)u, v) .

Hence,

|(Hσ(τ)u, v)| > (H0(τ)u, v) (1− Cδ − 2c̃(τ))− c(δ) > 2π (1− Cδ − 2c̃(τ)) |τ | − c(δ), |τ | > τ0,

where δ and τ0 are chosen in such a way that Cδ + 2c̃(τ) < 1, |τ | > τ0. The last estimate
implies (2.6).
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