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Abstract

We consider positional numeration system with negative base −β, as introduced by Ito
and Sadahiro. In particular, we focus on arithmetical properties of such systems when β is
a quadratic Pisot number. We study a class of roots β > 1 of polynomials x2 − mx − n,
m ≥ n ≥ 1, and show that in this case the set Fin(−β) of finite (−β)-expansions is closed
under addition, although it is not closed under subtraction. A particular example is β =
τ = 1

2
(1 +

√
5), the golden ratio. For such β, we determine the exact bound on the number

of fractional digits appearing in arithmetical operations. We also show that the set of (−τ)-
integers coincides on the positive half-line with the set of (τ2)-integers.

1 Introduction

In practically all fields of applied sciences one meets problems requiring efficient computational
methods. An indispensable key for developing such methods is to have fast algorithms for
performing arithmetical operations with high precision. The first of the two aspects — speed —
can be reached for example using parallelization of algorithms for addition and multiplication.
However, it has been shown [15] that this can only be achieved allowing redundancy in number
representation. The second aspect — accuracy — calls for special treatment of different classes of
irrational numbers by using e.g. exact arithmetics in algebraic number fields. All this motivates
the study of non-standard number systems.

Usually, one represents numbers in the standard positional number system with base 10 or
base 2, (the so-called decimal or binary representation of numbers). Changing the base for
any integer b ≥ 2 does not bring much new. In 1957, Rényi [17] introduced the possibility of
representing numbers in a system with non-integer base β > 1. For every non-negative real
number x, we have the β-expansion of x of the form

x =
k∑

i=−∞

xiβ
i , xi ∈ {0, 1, . . . , ⌈β⌉ − 1} ,

where the digits xi are obtained by the greedy algorithm. In analogy with standard numeration
with integer base, we define the set Zβ of β-integers, which have vanishing digits at negative
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powers of β. We also define the set Fin(β) of numbers with finite β-expansion, i.e. numbers
whose β-expansion has only finitely many non-zero digits.

Many new interesting phenomena appear when considering β-expansions for non-integer
base β. For example, whereas in base b ∈ N, every finite string of non-negative integers < b
is admissible as the greedy expansion of some x, in base β /∈ N, this is no longer true. The
conditions for admissibility of digit strings for general base β has been given by Parry [16] using
the lexicographical ordering of digit strings.

But probably the most remarkable novelty is that Zβ is no longer equal to the set Z of
rational integers; its elements are not equidistant on the real line and Zβ is not a ring (i.e.
closed under addition and multiplication), as it is the case for Z. Even more strange, addition of
β-integers may result in an infinite β-expansion. Such properties were studied by many authors.
Among the most important results on arithmetics with β-expansions is Schmidt’s description of
bases β for which rational numbers have periodic β-expansions [18], or the necessary condition
on β, so that Fin(β) is a ring, given by Frougny and Solomyak [9]. Others have studied the
fractional part appearing in arithmetical operations with β-expansions, see e.g. [5, 11, 4]. On-line
computability of arithmetic operations was studied in [7, 10]. Let us note that many questions
about arithmetics in the numeration systems with positive real base β remain open.

Recently, Ito and Sadahiro [12] suggested to study positional systems with negative base −β,
where β > 1. Here one obtains a representation of every (both positive or negative) real number
in the form

x =

k∑

i=−∞

xi(−β)i , xi ∈ {0, 1, . . . , ⌊β⌋} .

Ito and Sadahiro have provided a condition for admissibility of digit strings as (−β)-expansions
and shown some properties of the dynamical system connected to (−β)-numeration. Their work
on dynamical aspects has been continued in [8]. The authors of [1] define the set Z−β of (−β)-
integers and focus on its geometrical features. Some arithmetical properties of (−β)-numeration
systems are studied in [14]. Among other, the validity of a conjecture of Ito and Sadahiro is
established, which states that if β > 1 is the root of x2−mx+n, m,n ∈ N, m ≥ n+2 ≥ 3, then
the set of Fin(−β) of finite (−β)-expansions is a ring. One also provides bounds on the length
of the fractional part arising by adding and multiplying (−β)-integers, this in case that β is a
root of x2 −mx− 1 for m ≥ 2, and that β is a root of x2 −mx+ 1 for m ≥ 3.

In the present paper we complete the arithmetical study for quadratic negative bases started
in [14]. In particular, we focus on roots β > 1 of polynomials x2−mx−n, m ≥ n ≥ 1, and show
that in this case the set Fin(−β) of finite (−β)-expansions is closed under addition, although it
is not closed under subtraction. We also provide exact bound on the number of fractional digits
appearing in arithmetical operations for the golden ratio τ = 1

2
(1+

√
5), which is a case missing

in the study [14]. We also prove a curious coincidence between (−τ)-integers and (τ2)-integers.
For that, we need to describe the distances between consecutive (−τ)-integers and morphism
under which the infinite word coding their ordering is invariant.

2 Positive base number system

Let β > 1. The Rényi β-expansion of a real number x ∈ [0, 1) can be found as a coding of
the orbit of the point x under the transformation Tβ : [0, 1) 7→ [0, 1), given by the prescription
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Tβ(x) := βx− ⌊βx⌋. Every x ∈ [0, 1) is a sum of the infinite series

x =

∞∑

i=1

xi
βi

, where xi = ⌊βT i−1

β (x)⌋ for i = 1, 2, 3, . . . (1)

Directly from the definition of the transformation Tβ we can derive that the digits xi take values
in the set {0, 1, 2, · · · , ⌈β⌉ − 1} for i = 1, 2, 3, · · · .

Definition 2.1. The expression of x in the form (1) is called the β-expansion of x ∈ [0, 1). The
number x is thus represented by the infinite word

dβ(x) = x1x2x3 · · · ∈ AN

over the alphabet A = {0, 1, 2, . . . , ⌈β⌉ − 1}.

From the definition of the transformation β we can derive another important property,
namely that the ordering on real numbers is carried over to the ordering of β-expansions. In
particular, we have for x, y ∈ [0, 1) that

x ≤ y ⇐⇒ dβ(x) � dβ(y) ,

where � is the lexicographical order on AN, (ordering on the alphabet A is usual, 0 < 1 < 2 <
· · · < ⌈β⌉ − 1).

In [16], Parry has provided a criterion which decides whether an infinite word in AN is or
is not the β-expansion of some real number x. The criterion is formulated using the so-called
infinite expansion of 1, denoted by d∗β(1), defined as a limit in the space AN equipped with the
product topology,

d∗β(1) := lim
ε→0+

dβ(1− ε) .

According to Parry, the string x1x2x3 · · · ∈ AN represents the β-expansion of a number x ∈ [0, 1)
if and only if

xixi+1xi+2 · · · ≺ d∗β(1) for every i = 1, 2, 3, · · · . (2)

The notion of β-expansion can be naturally extended to all non-negative real numbers:

Definition 2.2. Let β > 1 and x ≥ 0. The expression

x = xkβ
k + xk−1β

k−1 + xk−2β
k−2 + · · · , where k ∈ Z and xi ∈ Z for i ≤ k , (3)

is a β-representation of x. The β-expansion of x is the particular β-representation satisfying
xkxk−1xk−2 · · · = dβ(y) for some y ∈ [0, 1).

Note that Definition 2.2 of β-expansion is in accordance with Definition 2.1. The β-representation
of x is sometimes written as the digit string

xk · · · x0 • x−1x−2 · · · , for k ≥ 0, or

0 • 0−k−1xkxk−1 · · · , for k < 0,
(4)

with the notation 0j standing for j digits 0 repeated. If the β-representation is in the same time
the β-expansion of x, we denote the cooresponding digit string by 〈x〉β.
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When the digit string xkxk−1xk−2 · · · ends in infinitely many 0’s, we say that the β-expansion
is finite and omit the ending 0’s. Real numbers x having in their β-expansion vanishing digits
xi for all i < 0 are usually called β-integers and the set of β-integers is denoted by Zβ,

Zβ =
{
x ∈ R

∣
∣ 〈|x|〉β = xk · · · x0 •

}
.

The set of numbers with finite β-expansion is then

Fin(β) =
⋃

k∈Z

βkZβ .

The set Fin(β) is in general not closed under addition and multiplication. The description of
bases β, for which Fin(β) is a ring, is a very difficult open question. Only partial results are
known.

One can study the arithmetics on β-expansions in more detail: even though addition or
multiplication of two β-integers may result in an infinite β-expansion, one can define the following
quantities,

L⊕(β) = min{l ∈ N | ∀x, y ∈ Zβ, x+ y ∈ Fin(β) ⇒ x+ y ∈ β−lZβ} ,
L⊗(β) = min{l ∈ N | ∀x, y ∈ Zβ, x · y ∈ Fin(β) ⇒ x · y ∈ β−lZβ} .

(5)

describing the maximal length of finite fractional part possibly arising when summing, resp.
multiplying β-integers.

Example 2.3. Consider for the base of the numeration system the golden ratio τ = 1

2
(1 +

√
5),

root of the quadratic polynomial x2 − x− 1. Every x ≥ 0 has its τ -expansion of the form

x =
k∑

i=−∞

xiτ
i , xi ∈ {0, 1} .

where according to the Parry condition (2), the digit sequence xixi−1xi−2 · · · for every i ≤ k
satisfies

xixi−1xi−2 · · · ≺ (10)ω .

Here (10)ω denotes infinite repetition of the string 10. This condition can be reformulated in a
more comprehensible way: the digit sequence xkxk−1xk−2 · · · does not end in an infinite repetition
of 10 and does not contain two consecutive digits 1. The latter requirement is intuitively obvious,
since the greedy algorithm prefers replacing the digit string 011 by 100, in accordance with the
equation τ i+2 = τ i+1 + τ i.

The set Zτ of τ -integers can be expressed as

Zτ =

{

±
k∑

i=0

xiτ
i

∣
∣
∣
∣
xi ∈ {0, 1}, xi · xi+1 = 0

}

=

= ±
{
0, 1, τ, τ2, τ2 + 1, τ3, τ3 + 1, τ3 + τ, τ4, τ4 + 1, . . .

}
.

Drawn on the real line, we see that the distances between consecutive τ -integers take values 1
and τ−1, see Figure 1.
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1
︷ ︸︸ ︷

1/τ
︷︸︸︷

1
︷ ︸︸ ︷

1
︷ ︸︸ ︷

1/τ
︷︸︸︷

1
︷ ︸︸ ︷

1/τ
︷︸︸︷

1
︷ ︸︸ ︷

1
︷ ︸︸ ︷

0 1 τ τ2 τ2+1 τ3 τ3+1 τ3+τ τ4 τ4+1

Figure 1: Several smallest non-negative τ -integers drawn on the real line.

The τ -expansions of the smallest few non-negative τ -integers are given in the following table.
Note that they are increasing in the short-lex order.

〈0〉τ = 0• , 〈τ3〉τ = 1000• ,
〈1〉τ = 1• , 〈τ3 + 1〉τ = 1001• ,
〈τ〉τ = 10• , 〈τ3 + τ〉τ = 1010• ,
〈τ2〉τ = 100• , 〈τ4〉τ = 10000• ,

〈τ2 + 1〉τ = 101• , ...

It has been shown in [5] that the quantities L⊕(τ), L⊗(τ) defined by (5) take values L⊕(τ) =
L⊗(τ) = 2. As an example, we can consider

x = y = 1 ⇒ x+ y = 1 + 1 = 2 = τ + τ−2 = 10 • 01 .

For multiplication,

x = y = τ2 + 1 ⇒ xy = (τ2 + 1)2 = τ5 + τ + τ−2 = 100010 • 01 .

3 Negative base number system

In analogy to the Rényi expansion of numbers using the transformation of the interval [0, 1),
Ito and Sadahiro have defined the (−β)-expansion of numbers using the transformation T−β :
[lβ , rβ) 7→ [lβ , rβ), where

lβ = − β

β + 1
, rβ = 1 + lβ =

1

β + 1
.

The transformation T−β is defined by

T−β(x) := −βx− ⌊−βx− lβ⌋ . (6)

Every real x ∈ [lβ , rβ) can be written as

x =
∞∑

i=1

xi
(−β)i

, where xi = ⌊−βT i−1

−β (x)− lβ⌋ for i = 1, 2, 3, . . . (7)

Definition 3.1. We call the expression (7) the Ito-Sadahiro (−β)-expansion of x ∈ [lβ, rβ). We
denote the corresponding digit string by

d−β(x) = x1x2x3 · · · .
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One can easily show from (6) that the digits xi, i ≥ 1, take values in the setA = {0, 1, 2, . . . , ⌊β⌋}.
In this case, the ordering on the set of infinite words over the alphabet A which would correspond
to the ordering of real numbers is the so-called alternate ordering: We say that

x1x2x3 · · · ≺alt y1y2y3 · · ·

if for the minimal index j such that xj 6= yj it holds that xj(−1)j < yj(−1)j . In this notation,
we can write for arbitrary x, y ∈ [lβ , rβ) that

x ≤ y ⇐⇒ d−β(x) �alt d−β(y) .

In their paper, Ito and Sadahiro have provided a criterion to decide whether an infinite word
over AN is admissible as d−β(x) for some x ∈ [lβ , rβ). The criterion is given using two infinite
words, namely

d−β(lβ) and d∗−β(rβ) := lim
ε→0+

d−β(rβ − ε) .

These two infinite words have close relation: If d−β(lβ) is purely periodic with odd period length,
i.e. d−β(lβ) = (d1d2 · · · d2k+1)

ω, then d∗
−β(rβ) =

(
0d1d2 · · · (d2k+1−1)

)ω
. (As usual, the notation

vω stands for infinite repetition of the string v.) In all other cases one has d∗
−β(rβ) = 0d−β(lβ).

Ito and Sadahiro have shown that an infinite word x1x2x3 · · · represents d−β(x) for some
x ∈ [lβ , rβ) if and only if for every i ≥ 1 it holds that

d−β(lβ) �alt xixi+1xi+2 · · · ≺alt d
∗

−β(rβ) . (8)

We now provide the definition of (−β)-expansions of every real number x. (Note that in
the negative base number system we can represent negative numbers using non-negative digits
without need of sign.)

In [12] it is suggested to find the expansion of a number x /∈ [lβ , rβ) by dividing it by a suitable
power of (−β) so that y := (−β)−kx ∈ [lβ , rβ), finding the expansion of y and multiplying it
back by (−β)k. The expression for x provided by such procedure, however, depends on chosen
k, so the prescription must be modified, in order to give a unique (−β)-expansion for every real
x.

Definition 3.2. Let β > 1 and x ∈ R. The expression

x = xk(−β)k + xk−1(−β)k−1 + xk−2(−β)k−2 + · · · , where k ∈ Z and xi ∈ Z for i ≤ k , (9)

is a (−β)-representation of x. The (−β)-expansion of x is the particular (−β)-representation
satisfying xkxk−1xk−2 · · · = d−β(y) for some y ∈ (lβ , rβ).

Again, we write the (−β)-representations using the corresponding digit strings where the
symbol • stands for fractional point separating the digits at non-negative and negative powers
of the base,

xk · · · x0 • x−1x−2 · · · , for k ≥ 0, or

0 • 0−k−1xkxk−1 · · · , for k < 0.

If the digit string corresponds to the (−β)-expansion of x, we denote it by 〈x〉−β .

6



Note that for the sake of uniqueness, in Definition 3.2 we do not allow a (−β)-expansion
to be given by d−β(lβ). This is because of the following undesirable phenomena: Denoting
d−β(lβ) = d1d2d3 · · · , we have the equality

(−β) + d1(−β)0 +
d2

(−β)
+

d3
(−β)2

+
d4

(−β)3
+ · · · =

=
d1

(−β)
+

d2
(−β)2

+
d3

(−β)3
+

d4
(−β)4

+ · · ·

where both 1d1d2d3 · · · and d1d2d3 · · · are admissible digit strings. But whereas 01d1d2d3 · · · is
also admissible, 0d1d2d3 · · · is not, and so we prefer to define the (−β)-expansion of lβ as

〈lβ〉−β = 1d1 • d2d3 · · · .

Similarly as in the case of positive base numeration, we define the (−β)-integers, forming
the set

Z−β =
{
x ∈ R

∣
∣ 〈x〉−β = xk · · · x0 •

}
.

The set of numbers with finite (−β)-expansion is defined by

Fin(−β) =
⋃

k∈Z

(−β)kZ−β .

We also define the quantities describing maximal length of fractional part arising when
summing or multiplying (−β)-integers,

L⊕(−β) = min{l ∈ N | ∀x, y ∈ Z−β, x+ y ∈ Fin(−β) ⇒ x+ y ∈ (−β)−lZ−β} ,
L⊗(−β) = min{l ∈ N | ∀x, y ∈ Z−β, x · y ∈ Fin(−β) ⇒ x · y ∈ (−β)−lZ−β} .

(10)

4 Pisot numbers

Since the present study focuses on a special class of algebraic numbers, let us recall some
number-theoretical notions needed. A complex number β is called an algebraic number, if it is
a root of a monic polynomial f(x) = xn + an−1x

n−1 + · · · + a1x+ a0, with rational coefficients
a0, . . . , an−1 ∈ Q. If f has the minimal degree among all polynomials satisfying g ∈ Q[x],
g(β) = 0, then it is called the minimal polynomial of β and the degree of f is called the degree
of β. The other roots of the minimal polynomial are the algebraic conjugates of β.

If the minimal polynomial of β has integer coefficients, β is called an algebraic integer. An
algebraic integer β > 1 is called a Pisot number, if all its conjugates are in modulus strictly
smaller than 1.

Let β be an algebraic number of degree r. The minimal subfield of the field of complex
numbers containing β is denoted by Q(β) and is of the form

Q(β) = {c0 + c1β + · · ·+ cr−1β
r−1 | ci ∈ Q} .

If γ is a conjugate of an algebraic number β, then the fields Q(β) and Q(γ) are isomorphic. The
corresponding isomorphism σ : Q(β) 7→ Q(γ) is given by the prescription

σ : c0 + c1β + · · ·+ cr−1β
r−1 7→ c0 + c1γ + · · ·+ cr−1γ

r−1 . (11)
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In particular, it means that β is a root of some polynomial f with rational coefficients if and
only if γ is a root of the same polynomial f .

In the field of numeration systems with non-integer bases one often meets a special class of
algebraic numbers, namely Pisot numbers. A nice result (see [18]) is that Pisot numbers have
eventually periodic infinite β-expansion of 1 (cf. Parry condition (2)). Similarly, in [8] it is shown
that Pisot numbers have also eventually periodic d−β(lβ), which is useful in the admissibility
condition of (−β)-expansions (cf. (8)).

It is known [3] that among the quadratic numbers, the only ones with eventually periodic
infinite β-expansion of 1 are quadratic Pisot numbers. Similarly, quadratic Pisot numbers are
the only quadratic numbers with eventually periodic d−β(lβ), see [14]. It is easy to show that
quadratic Pisot numbers are precisely the larger roots of polynomials

x2 −mx− n , m, n ∈ N, m ≥ n ≥ 1,

x2 −mx+ n , m, n ∈ N, m ≥ n+ 2 ≥ 3.

The corresponding infinite β-expansions of 1 are

d∗β(1) =
(
m(n− 1)

)ω
, d∗β(1) = (m− 1)(m− n− 1)ω , respectively.

For the (−β)-expansion of lβ, one obtains

d−β(lβ) = m(m− n)ω, d−β(lβ) =
(
(m− 1)n

)ω
, respectively.

5 Arithmetics in systems with quadratic negative base

Let us now consider the arithmetical properties of the number system with base −β, where β
belongs to the class of quadratic Pisot numbers with minimal polynomial x2−mx−n,m ≥ n ≥ 1.
The condition (8) of admissibility of digit strings is now stated using

d−β(lβ) = m(m− n)ω and d∗−β(rβ) = 0m(m− n)ω . (12)

As mentioned already in [14], the set of finite (−β)-expansions is not a ring in this case, since
for x = 0, y = 1, we have x, y ∈ Fin(−β), but x− y = −1 /∈ Fin(−β). For, the (−β)-expansion
of the number −1 is equal to

〈−1〉−β = 1m • (m− n+ 1)ω .

Nevertheless, this fact does not prevent Fin(−β) to be closed under addition, as we shall prove
here (Theorem 5.3). For that, let us first describe the set of finite expansions using some
combinatorial property. The following statement can be easily derived from the admissibility
condition (8) using (12).

Lemma 5.1. Let β > 1 be root of x2 −mx− n, m ≥ n ≥ 1. Let xi ∈ {0, 1, . . . ,m}, for i ≤ N ,
where only finitely many xi are non-zero.

If m > n, then x =
∑N

i=−∞
xi(−β)i is the (−β)-expansion of x if and only if xNxN−1 · · ·

does not contain strings

m (m− n)2kC , C ≤ m− n− 1 , k ∈ N0 , (13)

m (m− n)2k+1D , D ≥ m− n+ 1 , k ∈ N0 . (14)
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If m = n, then x =
∑N

i=−∞
xi(−β)i is the (−β)-expansion of x if and only if xNxN−1 · · ·

does not contain the string

m 02k+1D , D ≥ 1 , k ∈ N0 , (15)

and it does not end with the string 0m 0ω.

The following lemma is crucial. It shows that although a finite (−β)-representation of a real
number x over the alphabet {0, 1, . . . ,m} contains forbidden strings listed in Lemma 5.1, the
(−β)-expansion of the represented number is also finite, and, in most cases does not contain
smaller powers of (−β).

Lemma 5.2. Let β > 1 be root of x2 −mx− n, m ≥ n ≥ 1. Then

x :=

N∑

i=0

ai(−β)i ∈ Fin(−β)

for arbitrary ai ∈ {0, 1, . . . ,m}. Moreover, x ∈ Z−β except when both m > n and a0 = m, in
which case x ∈ 1

−βZ−β.

Proof. Consider the (−β)-representation aNaN−1 · · · a0• of x. If it is not the (−β)-expansion of
x, then aNaN−1 · · · a00ω contains one of forbidden strings listed in Lemma 5.1. We shall rewrite
the left-most forbidden string in aNaN−1 · · · a00ω by adding a suitable (−β)-representation of 0.
The new (−β)-representation of x is ‘better’ than aNaN−1 · · · a00ω in the way that the left-most
forbidden string starts at a lower power of (−β). Such rewriting does not add non-zero digits
to the right, (unless we deal with the last occurring forbidden string). Therefore, by repeating
such rewriting rules, we finish in finitely many steps with a (−β)-representation which does not
contain any forbidden strings, i.e. it is the (−β)-expansion of x.

Since β is a root of x2 −mx− n, we have

1 m n • = 1 m n • = 0 . (16)

(Here for a digit d we write d instead of −d.)
We distinguish several cases, according to the type of the left-most forbidden string (cf.

Lemma 5.1).
Case 1. Consider first that m > n and take the forbidden string (13), together with two digits
A,B in the (−β)-representation of x at higher powers of (−β),

· · · A B m (m− n)2k C · · · k ∈ N0, C ≤ m− n− 1 . (17)

The way to rewrite the forbidden string depends on the digits A,B.
Subcase 1.1. Let B = 0, and consequently A ∈ {0, 1, . . . ,m − 1}. (Otherwise A0m is also
forbidden, which contradicts the fact that we take the left-most forbidden string.) We rewrite

· · · A 0 m (m− n)2k C · · ·
· · · A+ 1 m (m− n) (m− n)2k C · · ·

It is easy to verify that now no forbidden string occurs left from the digit C, which was our aim.
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Subcase 1.2. Let in (17) be B 6= 0 and k ≥ 1. Then

· · · A B m (m− n) (m− n)2k−1 C · · ·
· · · A B − 1 0 m (m− n)2k−1 C · · ·

Again, the latter may contain a forbidden string only starting from the digit C.
Subcase 1.3. Let B 6= 0 and k = 0. We write

· · · A B m C · · ·
· · · A B − 1 0 C + n · · ·

where the latter has no forbidden strings up to the digit C + n.
Case 2. Take the forbidden string (14) which occurs for both m > n and m = n,

· · · A B m (m− n)2k+1 D · · · k ∈ N0, D ≥ m− n+ 1 . (18)

The rewriting is analogous to subcases 1.1. and 1.2., subcase 1.3. now has no analogue.
Subcase 2.1. Let B = 0, and consequently A ∈ {0, 1, . . . ,m− 1}. We rewrite

· · · A 0 m (m− n)2k+1 D · · ·
· · · A+ 1 m (m− n) (m− n)2k+1 D · · ·

where the latter has no forbidden strings up to the digit D.
Subcase 2.2. Let in (18) be B 6= 0. Then

· · · A B m (m− n) (m− n)2k D · · ·
· · · A B − 1 0 m (m− n)2k D · · ·

where the latter has no forbidden strings up to the digit D.
Case 3. Consider m = n. According to Lemma 5.1 it remains to solve the case that the
only forbidden string in the (−β)-representation of x is 0m at the end. Necessarily, the (−β)-
representation ends with A0m, where A ≤ m− 1. We rewite

· · · A 0 m
· · · A+ 1 m 0

By that, we have shown that x ∈ Fin(−β). In order to show x ∈ Z−β, note that in all cases
except subcase 1.3, the rewriting of the forbidden string did not influence the digits starting
from C (resp. D) to the right. Thus, if the original (−β)-representation of x had vanishing
digits at negative powers of (−β), then the same is valid for the rewritten (−β)-representation
of x. The only case where new non-zero digits at negative powers of (−β) may arise, is 1.3 for
m > n, and that only if x = aNaN−1 · · · a0• = · · ·ABm•, i.e. a0 = m.

Theorem 5.3. Let β > 1 be root of x2 −mx − n, m ≥ n ≥ 1. Then Fin(−β) is closed under
addition, i.e. x+ y ∈ Fin(−β) for x, y ∈ Fin(−β).

Proof. Since addition of y ∈ Fin(−β) to an x ∈ Fin(−β) can be decomposed into addition to
x of several digits 1 at different positions, it is obvious that it suffices to verify the following
implication,

x ∈ Fin(−β) ⇒ x+ 1 ∈ Fin(−β) .
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In fact, in context of Lemma 5.2, we only need to obtain a finite (−β)-representation of x+1 over
the alphabet {0, 1, . . . ,m}. For that we only consider the case that the (−β)-expansion of x has
the digit m at position (−β)0, which leads to the digit m+1 in the (−β)-representation of x+1.
Again, for elimination of the forbidden digit m+ 1 we use addition of a suitable representation
of 0.
Case 1. If the (−β)-expansion of x is of the form · · ·A0m•· · · , then necessarily A ∈ {0, 1, . . . m−
1}, and we use

x+ 1 = · · · A 0 (m+ 1) • · · ·
0 = 1 m n •

x+ 1 = · · · A+ 1 m (m− n+ 1) • · · ·
The latter is over the alphabet {0, 1, . . . ,m}.
Case 2. Consider the (−β)-expansion of x of the form · · ·Bm • (m − n) · · · , with B ∈
{1, 2, . . . ,m}. Then

x+ 1 = · · · B (m+ 1) • (m− n) · · ·
0 = 1 m • n

x+ 1 = · · · B − 1 1 • m · · ·
The latter is over the alphabet {0, 1, . . . ,m}.
Case 3. According to Lemma 5.1, it remains to consider the (−β)-expansion of x of the
form · · ·Bm • X1 · · ·XkY · · · , where B ∈ {1, 2, . . . ,m}, k ≥ 1, Xi ∈ {m−n+1, . . . ,m} and
Y ∈ {0, 1, . . . ,m − n}. Here, we shall use a more complicated (−β)-representation of 0, which
we obtain by repeated use of (16), namely

0 = 1 (m+ 1) (m− n+ 1) · · · (m− n+ 1) (m− n) n .

Then
x+ 1 = · · · B (m+ 1) • X1 . . . Xk−1 Xk Y · · ·
0 = 1 m+ 1 • m−n+1 . . . m−n+1 m− n n

x+ 1 = · · · B − 1 0 • X̃1 . . . X̃k−1 X̃k Y +n · · ·

where X̃i = Xi−(m−n+1) for i = 1, . . . , k− 1 and X̃k = Xk−(m−n). The latter representation
of x+ 1 is over the alphabet {0, 1, . . . ,m} and therefore by Lemma 5.2, x+ 1 ∈ Fin(−β).

6 Bound on length of fractional part

In this section we focus on the quantities L⊕(−β), L⊗(−β). They have been studied for quadratic
Pisot units already in [14]. However, the method used there does not allow us to obtain exact
value for β equal to the golden ratio τ = 1

2
(1 +

√
5). We therefore determine the value L⊕(−τ),

L⊗(−τ) here, see Theorem 6.2. The proof uses a strong relation of τ - and (−τ)-representations.
In order to distinguish the two in notation, we shall write •τ , •−τ for the fractional point
separating digits at non-negative and negative powers of the base in the two numeration systems.

We first show a lemma putting into relation τ - and (−τ)-representations. Note that statement
in item 1. of Lemma 6.1 is known. We nevertheless include its proof in order to keep the paper
self-contained.

Lemma 6.1. Let ai ∈ {0, 1}, for i = 0, . . . , N . Then
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1. x =
∑N

i=0
aiτ

i ∈ Zτ ,

2. y =
∑N

i=0
ai(−τ)i ∈ Z−τ .

3. If ai · ai−1 = 0 for all i ∈ {1, . . . , N}, then y ∈ (−τ)Z−τ .

Proof. Item 1. is shown as follows: If an · · · a0•τ is not a τ -expansion, then it contains two
consecutive digits 1. If i is the greatest index ≤ N such that ai = ai−1 = 1, then ai+1 = 0 and
we can rewrite

ai+1τ
i+1 + aiτ

i + ai−1τ
i−1 = τ i+1 .

We obtain a new τ -representation of x, where the sequence 100 has been replaced by 011. The
digit sum has strictly decreased. It is obvious that we can continue to obtain, in finitely many
steps, the τ -expansion of x, i.e. a τ -representation of x not containing the forbidden string 11.

The proof of item 2. follows directly from Lemma 5.2. In item 3., if a0 = 0, the proof follows
from item 2. So consider a0 = 1. Since ai · ai−1 = 0, the string aN · · · a1a0 does not contain two
consecutive digits 1, i.e. there is a k ≥ 0 such that aN · · · a1a0 = · · · 00(10)k1. One can easily
verify that 11(01)k1•−τ is a (−τ)-representation of 0. Thus for the (−τ)-representation of y we
can rewrite

y = · · · 0 0 (1 0)k 1 •−τ

0 = 1 1 (0 1)k 1 •−τ

y = · · · 1 1 (1 1)k 0 •−τ

It suffices now to apply item 2.

In the proof of the following theorem we shall use the automorphism on the algebraic field
Q(τ). Recall that τ is an algebraic number with conjugate τ ′ = − 1

τ . (τ and τ ′ are roots of the
polynomial x2 − x − 1.) Since the algebraic fields Q(τ) and Q(τ ′) coincide, the isomorphism
σ defined by (11) is now an involutive automorphism of the field Q(τ), i.e. σ2(z) = z for all
z ∈ Q(τ). We also use the fact known from [9] that the set Fin(τ) of numbers with finite
τ -expansions is a ring.

Theorem 6.2. L⊕(−τ) = 2 = L⊗(−τ).

Proof. Consider x, y ∈ Z−τ , i.e.

x =

k∑

i=0

xi(−τ)i , y =

l∑

i=0

yi(−τ)i

with (−τ)-expansions
〈x〉−τ = xkxk−1 · · · x0•−τ ,
〈y〉−τ = ylyl−1 · · · y0 •−τ .

Applying the automorphism σ to x, y, we obtain — by using −τ ′ = τ−1 — that

σ(x) =

k∑

i=0

xi(−τ ′)i =

0∑

i=−k

x−iτ
i , σ(y) =

l∑

i=0

yi(−τ ′)i =

0∑

i=−l

y−iτ
i .

12



Digit strings x0 •τ x1 · · · xk, y0 •τ y1 · · · yl are τ -representations of numbers σ(x), σ(y). Since
xi, yi ∈ {0, 1}, we can use Lemma 6.1 to derive that σ(x), σ(y) belong to Fin(τ). As Fin(τ) is
closed under addition, we have σ(x) + σ(y) = z for some z ∈ Fin(τ). We have

σ(x), σ(y) <
0∑

i=−∞

τ i =
1

1− τ−1
= τ2 ,

and therefore z < 2τ2 < τ4. This implies that the τ -expansion of z is of the form

〈z〉τ = z3z2z1z0 •τ z−1 · · · z−N

for some integer N , i.e.

z =

3∑

i=−N

ziτ
i , zi ∈ {0, 1} , zi · zi−1 = 0 .

Applying the automorphism σ to z, we obtain

σ(z) =

3∑

i=−N

ziτ
′i =

N∑

i=−3

z−i(−τ)i .

The string z−N · · · z0•−τ z1z2z3 is a (−τ)-representation of σ(z). Since zi ∈ {0, 1} and zi·zi−1 = 0,
by item 3. of Lemma 6.1, we get

σ(z) = σ
(
σ(x) + σ(y)

)
= x+ y ∈ (−τ)−2Z−τ .

By that, we have shown L⊕(−τ) ≤ 2. The opposite inequality is verified by giving the example

1111 •−τ +1111•−τ = 110000 •−τ 11 .

The procedure for proving L⊗(−τ) ≤ 2 is analogous to the case of addition. Here σ(x)·σ(y) =
z where z < (τ2)2 = τ4, thus we obtain the same number of fractional digits. In order to prove
L⊗(−τ) ≥ 2, we take the example

1111 •−τ ×1111•−τ = 11100 •−τ 11 .

7 (−τ)-integers

In the previous section we have focused on the arithmetical properties of the base −τ . Here we
show that the set of non-negative (−τ)-integers coincides with non-negative β-integers where
β = τ2. We give the proof by first showing that the distances between (−τ)-integers take the
same values as the distances between (τ2)-integers. Then we show that the infinite word coding
(−τ)-integers is the fixed point of the same morphism as for (τ2)-integers.
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First recall the facts about (τ2)-integers. Realize that β = τ2 is the greater root of x2−3x+1.
The infinite Rényi expansion of 1 in the base τ2 is therefore equal to d∗τ2(1) = 21ω. Recall
(see [20]) that the distances between consecutive (τ2)-integers take values

∆0 = 1 and ∆1 =
1

τ
.

Writing the distances between the (τ2)-integers, as they are ordered, one obtains the bidirectional
infinite word

· · ·∆0∆1∆0∆0|∆0∆0∆1∆0 · · · , (19)

where the delimiter | marks the position of 0. Note that the word is symmetric with respect to
0, since Zτ2 is symmetric with respect to 0 by definition. It is therefore sufficient to study the
one-directional infinite word

uτ2 = ∆0∆0∆1∆0 · · ·
coding the distances between non-negative (τ2)-integers. It is known [6] that the infinite word
uτ2 is the fixed point of the following morphism over the alphabet {∆0,∆1},

ϕ(∆0) = ∆0∆0∆1 , ϕ(∆1) = ∆0∆1 . (20)

Repeated application of the morphism ϕ on the letter ∆0 leads to

∆0 7→ ∆0∆0∆1 7→ ∆0∆0∆1∆0∆0∆1∆0∆1 7→ · · ·

where every iteration has the previous iteration as its prefix. Infinite repetition leads to the
word u = limn→∞ ϕn(∆0), where the limit is taken with respect to the product topology. We
have u = uτ2 .

In what follows, we show that the distances between consecutive (−τ)-integers also take
values ∆0 = 1 and ∆1 = τ−1, and their ordering corresponds to an infinite word which is a
fixed point of the substitution (20). For that we use Lemma 5.1 which characterizes digit strings
admissible as (−τ)-expansions using forbidden strings. For m = n = 1, Lemma 5.1 states that
the digit string xNxN−1 . . . x1x0 •, xi ∈ {0, 1}, is the (−τ)-expansion of some (−τ)-integer if and
only if xNxN−1 . . . x1x00

ω does not contain the forbidden string 10j1 for any j odd, and it does
not end in 0 1 0ω .

Lemma 7.1. Let x, y be consecutive (−τ)-integers, x < y. If the (−τ)-expansion of x is of
the form 〈x〉−τ = xNxN−1 · · · x10 •, then y − x = ∆0 = 1. If 〈x〉−τ = xNxN−1 · · · x11 •, then
y − x = ∆1 =

1

τ .

Proof. We distinguish two cases according to the last digit of the (−τ)-expansion of x. We
provide the (−τ)-expansion of x+∆, where ∆ = 1 in Case 1. and ∆ = τ−1 in Case 2. It is then
easy to check that no digit string zlzl−1 · · · z1z0 • lies between 〈x〉−τ and 〈x+∆〉−τ in alternate
order, and thus no (−τ)-integer lies between x and x + ∆. Therefore x + ∆ = y is the right
neighbor of x.
Case 1. Let 〈x〉−τ = xNxN−1 · · · x10 •. We give the (−τ)-expansion of x+ 1.
Subcase 1.1. If x = 0, we add 1 = τ2 − τ to obtain

〈x〉−τ = 0 0 0 •
〈x+ 1〉−τ = 1 1 0 •
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Subcase 1.2. If 〈x〉−τ ends in exactly one 0, then we have for k ≥ 1

〈x〉−τ = · · · 1k 0 •
〈x+ 1〉−τ = · · · 1k 1 •

Subcase 1.3. If 〈x〉−τ ends in two 0s, then

〈x〉−τ = · · · 1 1 0 0 •
〈x+ 1〉−τ = · · · 0 0 1 1 •

Subcase 1.4. If 〈x〉−τ ends in an odd number of 0s, 2k + 3, k ≥ 0, then

〈x〉−τ = · · · 1 1 02k 0 0 0 •
〈x+ 1〉−τ = · · · 1 1 02k 1 1 0 •

Subcase 1.5. If 〈x〉−τ ends in an even number of 0s, 2k + 4, k ≥ 0, then

〈x〉−τ = · · · 1 1 0 02k 0 0 0 •
〈x+ 1〉−τ = · · · 0 0 1 02k 1 1 0 •

Case 2 Let 〈x〉−τ = xNxN−1 · · · x11 •. Note that x1 is necessarily equal to 1. We give the
(−τ)-expansion of x+ τ−1.
Subcase 2.1. If x = −τ−1, then

〈x〉−τ = 1 1 •
〈x+ τ−1〉−τ = 0 0 •

Subcase 2.2. k ≥ 0
〈x〉−τ = · · · 1 1 02k 1 1 •

〈x+ τ−1〉−τ = · · · 1 1 02k 0 0 •
Subcase 2.3. k ≥ 0

〈x〉−τ = · · · 0 0 1 02k 1 1 •
〈x+ τ−1〉−τ = · · · 1 1 0 02k 0 0 •

Lemma 7.2. Let x, y ∈ Z−τ be consecutive (−τ)-integers, x < y. If y − x = 1, then

[τ2x, τ2y] ∩ Z−τ = {τ2x, τ2x+ 1, τ2x+ 1 + 1, τ2x+ 1 + 1 + τ−1 = τ2y} .
If y − x = τ−1, then

[τ2x, τ2y] ∩ Z−τ = {τ2x, τ2x+ 1, τ2x+ 1 + τ−1 = τ2y} .
Proof. Let first y − x = 1. The (−τ)-expansion of −τy ends obviously in 0, and thus the right
neighbor of −τy among (−τ)-integers is −τy + 1. Since −τx = −τy + τ = (−τy + 1) + τ−1 is
also a (−τ)-integer, we have

[−τy,−τx] ∩ Z−τ = {−τy,−τy + 1,−τy + 1 + τ−1 = −τx} . (21)

Let now y − x = τ−1. The (−β)-expansion of −τy ends again in 0, and thus the right
neighbor of −τy among (−τ)-integers is −τy + 1 = −τx. Therefore

[−τy,−τx] ∩ Z−τ = {−τy,−τy + 1 = −τx} . (22)

Applying the rules (21) and (22) twice, we obtain the result.
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Writing the distances between consecutive (−τ)-integers by symbols ∆0,∆1, the above lemma
states that the infinite word

u−τ = · · ·∆1∆0∆1|∆0∆0∆1∆0 · · ·
coding (−τ)-integers is invariant under the morphism (20), i.e.

u−τ = · · ·∆0∆1|∆0∆0∆1 · · · = · · ·ϕ(∆0)ϕ(∆1)|ϕ(∆0)ϕ(∆0)ϕ(∆1) · · · (23)

We have thus shown the following theorem.

Theorem 7.3. Z−τ ∩ [0,+∞) = Zτ2 ∩ [0,+∞).

Note that the theorem connects only the non-negative part of (−τ)- and (τ2)-integers. This
is because whereas Zτ2 is in some sense ‘artificially’ defined on the negative half-line, negative
(−τ)-integers are defined naturally. The bidirectional infinite word u−τ of (23) can be seen by
the bidirectional limit limn→∞ ϕn(1)|ϕn(0). The same is not true for the bidirectional word (19)
coding the (τ2)-integers over all real line. Such phenomena could be, for example, used to solve
problems mentioned in [5].

8 Conclusions and open problems

The present paper answers several questions raised in [14] about arithmetics in numeration
systems with negative base −β where β is a quadratic Pisot number. Nevertheless, other prob-
lems about arithmetical properties of such systems remain unsolved, such as efficient algorithms
for performing addition and multiplication, description of numbers with purely periodic (−β)-
expansion, etc.

There are also other aspects of numeration in non-standard systems that deserve to be
explored. Properties, known for Rényi numeration with positive base, likely to hold also for the
case of negative base, are for example the description of the distribution of (−β)-integers, given
for positive base in [2], or the connection of (−β)-numeration to substitution dynamical systems
established for β-integers in [6]. Many such properties are studied in [13] for number systems
with positive base which are generalizations of the Rényi numeration.

It may, however, happen that the analogues for negative base will not be straightforward.
Although numerical experiments suggest that the analogues of certain properties are valid, the
classical methods for proofs fail. An example of such a situation is the study of existence of
morphisms generating the set of (−β)-integers performed by different methods in [1] and [19].

The relation of numeration with positive base and negative base should be further studied.
In here, we show a – in the general context rather surprising – coincidence between integers in
the numeration systems with base −τ , where τ is the golden ratio, and integers in the system
with positive base τ2. Such a simple relation, however, cannot be expected even in case of other
quadratic bases. For, as shown in [1], the distances between consecutive (−β)-integers need not
be smaller than 1, and it is even not obvious whether they are in general bounded.
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[14] Z. Masáková, E. Pelantová, T. Vávra, Arithmetics in number systems with negative base,
preprint 2010, 13pp. submitted. http://arxiv.org/abs/1002.1009

[15] C. Mazenc, On the redundancy of real number representation systems,
Laboratoire de l’informatique du paralllisme, Research Report No 93-16,
http://hdl.handle.net/2332/1183

17

http://arxiv.org/abs/0912.4597
http://arxiv.org/abs/1002.1009
http://hdl.handle.net/2332/1183


[16] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11 (1960),
401–416.
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