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SIMPLE EXAMPLES OF DISTINCT

LIOUVILLE-TYPE SYMPLECTIC STRUCTURES

PAUL SEIDEL

A symplectic form ω on an open manifold M is said to be of Liouville type if the following
holds. One can write ω = dθ, and the dual Liouville vector field Z, defined by iZω = θ, can
be integrated for all times. Moreover, M should admit an exhausting function h such that
dh(Z) > 0 outside a compact subset. (Strictly speaking, this should be called a complete
finite type Liouville structure, but we omit the adjectives for the sake of brevity.)

It is by now well-known that a given differentiable manifold can support several such symplec-
tic structures which are distinct, but not distinguished by classical homotopical invariants.
For constructions in dimensions greater than four, including the case of Euclidean space, see
[12, 8, 5, 6, 3, 2]. Four-dimensional instances can be obtained by attaching handles along
Chekanov’s examples of distinct Legendrian knots, as proved in [3]. The aim of this note
is to provide some rather basic examples of the same phenomenon. Of course, the proofs
that their symplectic structures are different still rely on general properties of Floer coho-
mology, hence can’t be considered elementary, but the computations involved are at least
conceptually simple. The originality of the examples is somewhat limited. Those in Section
1 are closely related to a special case of Honda’s classification of contact structures on circle
bundles [4]. Those in Section 2 are slight modifications of a construction from [7]. Finally,
those in Section 3 were inspired by [8, 12]. I still hope that a concise exposition may be
useful.

This work was partially supported by NSF grant DMS-1005288. I am indebted to Mohammed
Abouzaid, Mark McLean, and Ivan Smith for useful conversations.

1. A four-dimensional example

Let S1 be a once-punctured oriented surface of genus g > 0, and S2 a 2j + 1-punctured
oriented surface of genus g − j, for some choice of 1 ≤ j ≤ g. Choose Liouville type
symplectic structures on both Sk. Then, equip Mk = Sk ×R×S1 with the product of those
structures and the standard one on R× S1 = T ∗S1.

Lemma. M1 is diffeomorphic to M2, in a way which is compatible with the homotopy classes

of almost complex structures associated to the symplectic forms.

Proof. It is well-known [15] that S1×R is diffeomorphic to S2×R (both are interiors of a genus
2g handlebody), hence M1 is diffeomorphic to M2. The tangent bundle of Mk is trivial as a
real oriented vector bundle. Almost complex structures on that bundle correspond to maps
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Mk → SO(4)/U(2) ∼= S2. Since Mk is homotopy equivalent to a 2-dimensional cell complex,
the only obstruction to constructing a nullhomotopy for such a map lies in H2(Mk;π2(S

2)),
and is detected by the first Chern class. In our case, bothMk carry almost complex structures
with zero first Chern class. �

We denote by SH∗(·) the symplectic cohomology [14] of a Liouville type symplectic manifold.
This takes the form of a Z/2-graded vector space over some fixed coefficient field K. For
simplicity, we will take K = Z/2 throughout. Also, denote by SH∗(·)0 the direct summand
corresponding to nullhomologous loops.

Lemma. SH∗(M1)0 is infinite-dimensional over K, while SH∗(M2)0 is finite-dimensional.

Proof. SH∗(Sk) ∼= H∗(Sk;K)⊕
⊕

∞

i=1
H∗(∂Sk;K) where, in a slight abuse of notation, ∂Sk

is the boundary at infinity [11, Example 3.3]. By decomposing into direct summands, one
finds that SH∗(S1)0 ∼= SH∗(S1), whereas SH∗(S2)0 = H∗(S2;K). Similarly, SH∗(R ×
S1)0 = H∗(R×S1;K). Oancea’s Künneth formula [9] applies to SH∗(·)0, and completes the
argument. �

SH∗(·) and SH∗(·)0 are invariant under symplectomorphisms that are exact with respect
to the chosen Liouville one-forms. They are therefore also invariant under general symplec-
tomorphisms M1

∼= M2, provided that at least one of the two manifolds involved has the
following property: every class in H1(Mk;R) can be realized as the flux of a symplectic
isotopy (compare the discussion in [2, Section 2]). In our case, it is easy to find the required
isotopies on either Mk. As a consequence, M1 and M2 are not symplectically isomorphic.

2. A six-dimensional example

Let S be a closed oriented surface of genus ≥ 2, and C → S its tangent circle bundle. McDuff
[7] showed that T ∗S \ S ∼= C × R carries a symplectic structure of Liouville type. Consider
the product M1 = (C × R) × R2, where R2 carries the standard symplectic structure. On
the other hand, let M2 = T ∗C be the cotangent bundle, again with the standard symplectic
structure.

Lemma. M1 and M2 are diffeomorphic, and the diffeomorphism can be chosen to be compat-

ible with the homotopy classes of almost complex structures associated to the given symplectic

forms.

Proof. The first statement is clear since C is an oriented three-manifold, hence has trivial
tangent bundle. For the same reason, the tangent bundle of Mk is trivial, hence almost
complex structures on it correspond to maps Mk → SO(6)/U(3) = CP 3. Since Mk is
homotopy equivalent to a 3-dimensional cell complex, the only obstructions to constructing
a nullhomotopy for such a map lie in H2(Mk;π2(CP

3)), and are again detected by the first
Chern class. In McDuff’s example, the first Chern class is the same as for the restriction of
the standard symplectic form on T ∗S, hence zero. The same is true for T ∗C since C is an
oriented manifold. �
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Note that M2 contains a non-displaceable closed Lagrangian submanifold, the zero-section,
whereas M1 doesn’t. Hence, the two manifolds are not symplectically isomorphic.

3. An eight-dimensional example

Take a nontrivial fibered knot K ⊂ S3. The product E = R× (S3 \K) carries a symplectic
structure of Liouville type. In fact, there is a symplectic fibration E → R× S1 whose fibre
is the interior of the Seifert surface of K.

Lemma. SH∗(E) 6= 0.

Proof. Let T ⊂ (S3 \K) be the boundary of a tubular neighbourhood of K. Since our knot
is nontrivial, the map π1(T ) → π1(S

3 \K) is injective. One can arrange easily that {0}× T
is a Lagrangian torus in E. There can be no pseudo-holomorphic discs with boundary on
that torus, for any almost complex structure compatible with the given symplectic form. By
an argument outlined in [11, Section 5], the existence of such a torus implies that the image
of the identity under the canonical map H∗(E;K) → SH∗(E) is nonzero. �

Take a meridian ofK. We can think of it as lying inside the boundary at infinity ∂E. Choose
a Legendrian knot in the same free homotopy class, which always exists by the h-principle,
and attach a Weinstein handle [16] to it. This yields another symplectic manifold of Liouville
type, denoted by X . Finally, set M = X ×X .

Lemma. M is diffeomorphic to R8.

Proof. Since the meridian normally generates π1(S
3 \ K), X is simply-connected. On the

other hand, it is homotopy equivalent to a two-dimensional cell complex, and has Euler
characteristic 1. Hence, X is contractible, and so is M . Moreover, M is simply-connected
at infinity, so the h-cobordism theorem concludes the argument. �

Lemma. SH∗(M) 6= 0.

Proof. We have the Viterbo functoriality [14] map, which fits into a commutative diagram

H∗(X ;K)

��

// SH∗(X)

��

H∗(E;K) // SH∗(E).

Since the restriction map in the left hand column maps the identity to the identity, our
previous observation implies that SH∗(X) 6= 0. Again, the Künneth formula [9] allows us
to carry over the result to M . �

Therefore, M is not symplectically isomorphic to standard R
8.
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