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ABSTRACT
Subject of this paper is a careful and detailed analysis of the PINOCCHIO algorithm for study-
ing the relative velocity statistics of merging haloes in Lagrangian perturbation theory. Given
a cosmological background model, a power spectrum of fluctuations as well as a Gaussian
linear density contrast fieldδl is generated on a cubic grid, which is then smoothed repeatedly
with Gaussian filters. For each Lagrangian particle at position q and each smoothing radius
R, the collapse time, the velocities and ellipsoidal truncation are computed using Lagrangian
Perturbation Theory. The collapsed medium is then fragmented into isolated objects by an al-
gorithm designed to mimic the accretion and merger events ofhierarchical collapse. Directly
after the fragmentation process the mass function, merger histories of haloes and the stati-
stics of the relative velocities at merging are evaluated. We reimplemented the algorithm in
C++ and optimised the construction of halo merging histories. Comparing our results with the
output of the Millennium simulation suggests that PINOCCHIO is well suited for studying re-
lative velocities of merging haloes and is able to reproducethe pairwise velocity distribution.
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1 INTRODUCTION

To account for structure formation one needs to develop techni-
ques for studying the nonlinear evolution of perturbations. In the
strongly nonlinear regime where the perturbation amplitudes ex-
ceed unity (|δ| ≫ 1), the linear approximation breaks down and
has to be replaced by other approaches. To accentuate the need for
this, one has to look at the interesting structures in the Universe,
like galaxies or clusters of galaxies because they are highly non-
linear. Since every theory of structure formation must be capable
of describing the formation and evolution of non-linear objects, the
major developments have been done in perturbation theory and nu-
merical simulations. It has been understood that this aim simplifies
when formulated in terms of Lagrangian coordinates rather than
the standard Eulerian ones, since the latter one relies on physical
densities being small (Buchert & Weiss 1993; Buchert 1996).So
one assumes that the dynamics of gravitational clustering is descri-
bed more suitably in terms of the displacement fieldD, which is
in the Lagrangian approach the only underlying fundamentalfield.
The decisive difference to the Eulerian approach is that it is not ba-
sed on the smallness of the density of the inhomogeneities and that
one searches for solutions of perturbed trajectories aboutthe line-
ar initial displacementD(1) (Sahni & Coles 1995; Bernardeau et al.
2002). The fundamental point is that a small perturbation ofthe
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Lagrangian particle paths carries a large amount of non-linear in-
formation about the corresponding Eulerian evolved observables,
since the Lagrangian picture is intrinsically non-linear in the den-
sity field (Buchert 1993). Lagrangian perturbation theory reaches
its limit of applicability when trajectories of particles cross and the
mapping from the initial conditions to the evolved density field cea-
ses to be unique.

The cosmological model used is a spatially flatΛCDM cos-
mology with Gaussian adiabatic initial perturbations in the cold
dark matter (CDM) density field with the following cosmological
parameter set (Ωm0,ΩΛ,h, σ8) = (0.25, 0.75, 0.73,0.9), identical to
that used in the Millennium simulation, to which we will compa-
re our results. Our computational domain is a cubic box of size
128 Mpc/h with periodic boundary conditions filled withN3 = 643

particles.

2 COSMOLOGY

2.1 CDM power spectrum

The linear CDM power spectrumP(k) describes the fluctuation
amplitude of the Gaussian initial density fieldδ, 〈δ(k)δ(k′)〉 =
(2π)3δD(k + k′)P(k), and is given by the ansatz

P(k) ∝ knsT2(k), (1)

http://arxiv.org/abs/1011.1559v1
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with the transfer functionT(k) which is approximated by
(Bardeen et al. 1986),

T(q) =
ln(1+ aq)

aq

(

1+ bq+ (cq)2 + (dq)3 + (eq)4
)− 1

4
, (2)

with the fitting parametersa = 2.34, b = 3.89, c = 16.1, d = 5.46,
e = 6.71. In the transfer function, the wave numberk = qΓ enters
rescaled by the shape parameterΓ (Sugiyama 1995),

Γ = Ωmhexp
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. (3)

For further treatment one introduces the smoothed density
field δR, which is averaged on the scaleR,

δR(x) =
∫

d3y δ(y)WR(|x − y|) (4)

with the window functionWR(r), satisfying
∫

d3x WR(|x|) = 1.
Working in the Fourier space, one obtains

δ̃R(k) = δ̃(k)W̃R(k), (5)

and for the smoothed power spectrum

PR(k) = |W̃R(k)|2P(k). (6)

There exist several choices for the window functionWR, apart from
the widely used Gaussian window function, a very common one is
top-hat filtering, which is given by

WR(|x|) =
3

4πR3
Θ(R− |x|), (7)

whereΘ denotes the Heaviside step function. The Fourier trans-
form for this specific window function is

W̃R(k) = 3
sin (kR) − kRcos (kR)

(kR3)
. (8)

Using the definitions introduced so far, it is now straightforward
to calculate the varianceσ2(R) = 〈δ2

r (x)〉 of the smoothed density
field as

σ2(R) =
∫

d3k
(2π)3

PR(k) =
∫

d3k
(2π)3

|W̃R(k)|2P(k). (9)

Including the window functioñWR(k) and the power spectrumP(k)
in this equation, together with

σ2(R= 8 Mpc/h) ≡ σ2
8 (10)

fixes the normalization.

3 LAGRANGIAN PERTURBATION THEORY

The formation of CDM haloes involves highly non-linear dynami-
cal processes which can only be followed in numerical simulations
or by applying perturbative methods. As mentioned in the introduc-
tion, one important approach is Lagrangian Perturbation Theory. In
order to describe the non-linear dynamical evolution of theparticle
trajectories up to third order Lagrangian coordinates the following
three steps have to be followed:

(i) Description of the mapping from the Eulerian to the Lagran-
gian coordinates

(ii) Transformation of the Eulerian Fields to Lagrangian coordi-
nates

(iii) Application of perturbation theory to the Lagrangianequa-
tions expressed by the displacement up to desired order

The starting point is a pressureless, non-vortical, self-gravitating
fluid with Newtonian gravity embedded in an expanding
Friedmann-Lemaı̂tre Robertson-Walker universe (Buchert1992).
In the Lagrangian framework of fluid dynamics the relation bet-
ween the Eulerian positionx of a mass particle and the initial La-
grangian positionq is given by the displacement field (Zel’Dovich
1970):

x(q, t) = q + D(q, t), (11)

In the Lagrangian space the trajectories of the mass elements are
fully described by the dynamical mappingsx(q, t), starting from
the initial positionsq.
The above equation implies that there is a one-to-one correspon-
dence between the Langrangian coordinateq and the Eulerian coor-
dinatex. This certainly is the case only for a cold non-collisional
fluid, at least until the stage of caustic formation. Expressed ma-
thematically, this corresponds to the statement that the functional
determinantJ of the Jacobian of the mapping relationq → x(q, t)
is non-singular,

J(q, t) ≡ det

(

∂x
∂q

)

, 0 , (12)

which means that the mappingx(q, t) is invertible toq(x, t). It is
evident that many particles coming from very different original
positions will tend to arrive at the same Eulerian position during
the highly non-linear evolution. As a consequence of that infinite-
density regions (caustics) will form in Eulerian space. Hence the
mapping from Lagrangian to Eulerian space becomes singularand
the density infinite asρ ∝ J−1. Since the displacementD fully cha-
racterizes the map between the Eulerian and the Lagrangian coordi-
nates, the motion of the fluid elements are completely described in
terms of it. One can now express the peculiar velocity, acceleration
and density contrast by replacing the displacement fieldD into the
Euler and the continuity equation (Catelan 1995)

υ[x(q, t), t] =
d
dt

D(q, t) (13)

g[x(q, t), t] =
d2

dt2
D(q, t) (14)

1+ δ[x(q, t), t] = det(I + S)−1 . (15)

formulated in terms of the time variablet. Here,I is the identity
matrix andS is a 3× 3 matrix called thedeformation tensorwith
Sαβ ≡ ∂Dα/∂qβ being its elements. If the displacementD is an
irrotional field in the Lagrangian space thenSαβ is symmetric. Si-
milarly the Eulerian irrotationality condition∇x × υ = 0 and the
Poisson equation∇x · g = −α(t) δ may be written in terms of the
displacement after a mathematical effort as (Catelan 1995; Buchert
1993)

ǫαβγ
[

(1+ ∇ · D) δβσ − Sβσ + SC
βσ

]

Ṡγσ = 0 , (16)
[

(1+ ∇ · D) δαβ − Sαβ + SC
αβ

]

S̈βα = α(t)[J(q, t) − 1] , (17)

The second equation is the Lagrangian Poisson equation and the
first one is the irrotationality condition in Lagrangian space. Both
equations dynamically constrain the fieldD. The fundamental
question now is how to solve the dynamical equations for the dis-
placementsD. The irrotationality condition and the Lagrangian
Poisson equation are exact equations in the Lagrangian description.
It is undoubtedly very difficult to solve them in a rigorous way. A
possible alternative is to seek for approximate solutions.The stan-
dard technique is to expand the trajectoryD in a perturbative series,
the leading term being the linear displacement which corresponds
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to the Zel’dovich approximation (Buchert 1993; Zel’Dovich1970).
Approximating the Lagrangian Poisson equation implies that the
gravitational interaction among the particles of the fluid is descri-
bed by the first few terms of a Taylor expansion.

D(q, τ) = g1(τ) D(1)(q) + g2(τ) D(2)(q) + g3(τ) D(3)(q) + · · · (18)

D(n)(q) being thenth-order approximation. The dynamics of the
evolution constrains in general both the temporal dependence as de-
scribed by the functionsgn, and the spatial displacementsD(n)(q).
At any order the solutions are separable in time and space. At
first and second orders, the solutions are irrotational in Lagrangian
space, i.e. the matricesD(1)

a,b and D(2)
a,b are symmetric. At the third

order it is possible to divideD(3) into three different modes, all
separable in space and time. Below are the time functions summa-
rized. They have been used to determine the collapse time of the
ellipsoidal collapse (Monaco 1997b):

g1 = −g(τ) (19)

g2 = − 3
14

g2
1Ω
−a
m (20)

g3a = −1
9

g3
1Ω
−b
m (21)

g3b =
5
42

g3
1Ω
−c
m (22)

g3c =
1
14

g3
1Ω
−d
m (23)

whereg(τ) is given by

g(τ) = 1+ 3 (τ2 − 1)















1+ τ ln

√

τ − 1
τ + 1















. (24)

In order to compute the formation of haloes in Lagrangian perturba-
tion theory one considers the potential of a homogeneous ellipsoid
in its principal axis frame, which is given by (Monaco et al. 2002):

ψ(q) =
1
2

(λ1q
2
1 + λ2q

2
2 + λ3q

2
3) (25)

where theλi are the eigenvalues of the first-order deformation ten-
sor D(1)

a,b(q) ≡ ψ,ab(q). It is easy now to calculate the perturbative
terms from this potential yielding the following local contributions
solving all Poisson equations,

ψ(2)
,a = ψ,aψ,bb − ψ,abψ,b

ψ(3a)
,a = ψC

,abψ,b (26)

ψ(3b)
,a =

1
2

(ψ,aψ
(2)
,bb − ψ,bψ

(2)
,ab + ψ

(2)
,a ψ,bb − ψ(2)

,b ψ,ab)

ψ(3c)
,a =

1
2

(ψ,bψ
(2)
,ab − ψ

(2)
,b ψ,ab).

With these local contributions one can get the corresponding dis-
placements,

D(2)
a,b = ψ,abψ,cc − ψ,acψ,bc

D(3a)
a,b = ψ,acψ

C
,bc (27)

D(3b)
a,b =

1
2

[D(2)
abψ,cc − D(2)

bcψ,ac + ψ,abD
(2)
c,c − ψ,bcD

(2)
a,c]

D(3c)
a,b = 0.

Within the Lagrangian perturbation framework the natural definiti-
on of collapse is defined as:

J(q,gc) = 0. (28)

At this instant the density becomes infinite and different trajecto-
ries intersect, forming multi-stream regions. If theΩm-dependence

of the time functions (19)-(23) is neglected, it is easy to write the
conditionJ(q,gc) = 0 as a third order algebraic equation (Monaco
1995),

1+ λigc −
3
14
λi(δl − λi)g

2
c −

(

I3

126
+

5
84
λiδl(δl − λi)

)

g3
c = 0, (29)

where it has been used that all the contributions to the deformation
tensor are diagonal in the same frame and that the 3c contribution
vanishes:

ψ,11 = λ1

ψ
(2)
,11 = λ1(λ2 + λ3) (30)

ψ
(3a)
,11 = λ1λ2λ3

ψ
(3b)
,11 = λ1λ2λ3 + λ1δl(λ2 + λ3)/2

whereδl = λ1 + λ2 + λ3. One can already see in the above functi-
on how higher order coefficients become increasingly smaller. The
next step would be to find the solutions of the above equation order
by order.

3.0.1 First order collapse time

The first order solution for general ellipsoids is very simple. If only
the first term in the Jacobian determinant is taken into account, the
definition of collapse gets the simply form

(1+ δc)
(1+ δ0)

= |detJ−1| =
1+ δ0

(1+ g(1)λ1)(1+ g(1)λ2)(1+ g(1)λ3)
(31)

The expansion, the shear and the density diverge when

1+ g(1)λ3 = 0, (32)

whereλ3 is the smallest of theλi. Evidently, the first order collapse
time is simply given by

g(1)
c = −

1
λ3
. (33)

3.0.2 Second order collapse time

In the case of second order the Jacobian determinant is givenby

1+ λig
(2)
c −

3
14
λi(δl − λi)

[

g(2)
c

]2
= 0, (34)

and the second order solution for the collapse time results to be
(Monaco 1997a)

g(2)
c =

7λ3 +
√

7λ3(λ3 + 6δl)
3λ3(−λ3 + δl)

. (35)

It is evident that this solution is limited toδl > −λ1/6. Additionally
it should be mentioned that one can differentiate equation (35) with
respect toλi in order to verify that the 1-axis is the first to collapse.

3.0.3 Third order collapse time

For the third order the roots of equation (29) have to be found.

1+ λigc −
3
14
λi(δl − λi)g

2
c +

(

I3

126
+

5
84
λiδl(δl − λi)

)

g3
c = 0 (36)

This function is a cubic function of the form

f (x) = ax3 + bx2 + cx+ d (37)
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and can be solved easily with the root-finding formula. Afterdefi-
ning new parameters such as

q =
3ac− b2

9a2
r =

9abc− 27a2d − 2b3

54a3
(38)

ρ =
√

−q3 θ = arccos(r/ρ) (39)

the solutions forr2 > q3 are given by

x1 = s+ t − b
3a

, (40)

x2 = −
1
2

(s+ t) −
b
3a
+

√
3

2
(s− t)i , (41)

x2 = −
1
2

(s+ t) −
b
3a
−
√

3
2

(s− t)i (42)

wheres andt are defined as

s= (ρ
1
3 , θ/3) t = (ρ

1
3 ,−θ/3) . (43)

Now this general solutions can be applied to the function (29) with
the corresponding values fora, b, c andd. Doing so the resulting so-
lution for the third order collapse time has to be chosen as the smal-
lest non-negative one between the following functions (Monaco
1997a)

g(3)
c1
= −2

√
qcos(θ/3)− (δl/λi − 1)/14c, (44)

g(3)
c2
= −2

√
qcos((θ + 2π)/3)− (δl/λi − 1)/14c, (45)

g(3)
c3
= −2

√
qcos((θ + 4π)/3)− (δl/λi − 1)/14c, (46)

where the following shortcuts have been used

c = I3λ
3
i /126+ 5δl/λi(δl/λi − 1)/84, (47)

q = (3(δl/λi − 1)2 − 196c)/588c2. (48)

3.1 Lagrangian structure formation

Having carried out the calculation of the collapse time of the el-
lipsoidal collapse, an analytical expression for the mass functi-
on is needed which uses information of the statistical probabili-
ty distribution function of the initial conditions. This isgiven by
(Doroshkevich 1970):

P(λ1, λ2, λ3) =
675
√

5
8πσ6

exp

(

− 3
σ2

r2
1 +

15
2σ2

r2

)

A, (49)

wherer1 = λ1+λ2+λ3, r2 = λ1λ2+λ2λ3+λ1λ3, A = (λ1−λ2)(λ2−
λ3)(λ1 − λ3) andσ2 given as usual by:

σ2 = 4π
∫

k2dk
(2π)3

P(k). (50)

Evidently, the probability for two eigenvalues of the deformation
tensor to be equal is zero. This means that the isotropic collapse
is excluded, implying anisotropical structure formation.It is more
convenient to write the probability distribution functionas a pro-
duct of two normalized distributions. For this purpose the following
change of variables has to be performed (Monaco 1998)

δ = −λ1 − λ2 − λ3, (51)

x = λ1 − λ2, (52)

y = λ2 − λ3. (53)

The density contrastδ goes from−∞ to∞ whereas the other two
variables obey the inequalitiesx > 0 andy > 0, reflecting the ori-
ginal conditionsλ1 > λ2 andλ2 > λ3. Carrying out the substitution

the probability distribution function becomes

P(δ, x, y) =
1
√

2πσ
exp

(

−δ2

2σ2

)

225
√

5

4
√

2πσ5
×

exp

(

−5(x2 + xy+ y2)
2σ2

)

xy(x+ y) (54)

One can express the Zel’dovich first order approximation of collap-
se time in units of the new variables so that equation (33) takes the
form

g(1)
c =

3
δ + x+ 2y

. (55)

Furthermore, one can define the density contrast needed by a per-
turbation to collapse atgc = 1 as

δc(x, y) = 3− (x+ 2y). (56)

In the case of spherical collapse this would reduce toδc = 3. It can
be seen that the shear lowers the value ofδc, helping the collap-
se to occur more easily. With an adequate shear, even underdense
perturbations can collapse. As in the case of the Press-Schechter
approach, one assumes that a collapsing mass element, whoseasso-
ciated mass is a function of the mass varianceσ through the smoo-
thing scale R,M = M(R(σ)), becomes part of a structure whose
mass is greater than M. The mass function is simply the integral
of the probability distribution function over all initial conditions
(Monaco 1997a,b),

F(> M) =
∫ ∞

0
dx

∫ ∞

0
dy

∫ ∞

δc(x,y)
dδ P(δ, x, y), (57)

giving the mass function as

N(M)dM = −ρ̄ ∂

∂M
F(> M)

dM
M
= −ρ̄ ∂F

∂σ

dσ
dM

dM
M

. (58)

The term∂F/∂σ contains the dynamical information.

3.2 PINOCCHIO

A compromise between simulations and analytical techniques is
a perturbative approach describing the growth of haloes in agi-
ven numerical realization of a linear density field, such as the
truncated Zel’dovich approximation and the PINOCCHIO algo-
rithm (Taffoni et al. 2002). PINOCCHIO (acronym forPINpoin-
ting Orbit-Crossing Collapsed HIerarchical Objects) is an algo-
rithm for studying the formation and evolution of dark matter ha-
loes in a given initial linear density field. It was first developed by
Monaco et al. (2002). Local parameterisations to the dynamics are
used to give precise predictions of the hierarchical formation of
dark matter haloes when the correlations in the initial density field
are properly taken into account.

This modus operandi enables the automatic generation of a
large ensemble of accurate halo merging histories and additionally
delivers their spatial distribution. Likewise, the approach can be ef-
ficiently applied for generating the input for galaxy formation mo-
dels since the properties of the halo population are of fundamental
importance for understanding galaxy formation and evolution.

PINOCCHIO consists of two steps which determine the hier-
archical formation of haloes through accretion and merging:

• The first step handels the definition of the collapse time. Her-
eby, orbit-crossing will be identified as the instant when a mass
element undergoes collapse, without the need to introduce afree
parameter. Orbit-crossing is numerically calculated by means of
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the ellipsoidal collapse approximation to the full Lagrangian per-
turbative expansion, as discussed in the previous section (Monaco
1995).
• The second step groups the collapsed particles into disjoint

haloes, applying an algorithm similar to that used to identify haloes
in n-body simulations.

As explained in the previous subsection, the density diverges as the
Jacobian determinant vanishes, corresponding to the formation of a
caustic, which states that the transformationx→ q becomes multi-
valued, and particle trajectories undergo orbit crossing.Since the
density becomes very high at orbit crossing, it will be identified as
the collapse time. In this manner, collapse is very easy to compute
using Lagrangian Perturbation Theory which remains valid up to
that particular point but breaks down afterwards.

The hierarchical formation of objects is done due to the grou-
ping of orbit-crossing particles into haloes by tracing themerging
processes for each particle individually. Briefly, two mainproces-
ses contribute to the hierarchical clustering: The first oneis the ac-
cretion of particles onto haloes and the second one the merging of
haloes. For this purpose, the particles of the realization are sorted
in chronological order of collapse. Starting with the first collapse
time the particles are assigned either to a halo or to filaments at
the corresponding collapse times. In order for a collapsingpartic-
le to accrete on to a halo, it must fulfill a number of conditions.
One of them is that the candidate halo must already contain one of
its 6 nearest neighbours in the Lagrangian space of initial condi-
tions. The fragmentation process contains 4 different cases which
are sufficient for performing the identification and merging history
of haloes.

If none of the 6 Lagrangian neighbours have collapsed, then
the particle is a local maximum of the inverse collapse time.This
particle is a seed for a new halo having the unit mass of the particle
and is created at the particle’s position. Obviously, the earliest par-
ticle to collapse is the first halo.
In the case that the collapsing particle touches only one halo, then
the accretion condition, if the halo is close enough, is checked.
When the accretion condition is satisfied, then the particleis ad-
ded to the halo, otherwise it is marked as belonging to a filament.
The particles that only touch filaments are marked as filaments as
well. If the collapsing particle has more than one touching halo as
Lagrangian neighbour, then the merging condition is checked for
all halo pairs. Pairs that satisfy the conditions are mergedtogether.
The accretion condition for the particle is checked for all touching
haloes both before and after merging (when necessary). In the case
that the particle can accrete to both haloes, without the haloes mer-
ging, it accretes onto that halo for which the distanced in units of
halo sizeRN is smaller. It may happen that particles fail to accrete
even though the haloes merge.
If the collapsing particle does not accrete onto the candidate ha-
loes in the case they are too far, it becomes a filament. But later
for this filament particle there is still the possibility to accrete when
its neighbour particle accretes onto a halo. This is done in order to
mimic the accretion of filaments onto the haloes. Notice thatup to
5 filament particles can flow into a halo at each accretion event.

3.3 Velocity statistics

In the Eulerian specification of the flow field, the flow quantities are
depicted as a function of fixed positionq and timet. Specifically,
the peculiar velocity is described as:

Figure 1. Cases of the fragmentation process: The top panel shows the six
Lagrangian neighbours of a given particle, the second panelillustrates how
this particle accretes onto a neighbouring halo, the third panel depicts the
merging of two haloes and successive accretion and, if thereis no accretion,
the particle is marked as belonging to a filament in the bottompanel.
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Figure 2. Flow chart of the code: The main 3 blocks of the code are shown.For a given set of parameters (centre) we compute the collapse times (top left) and
for each collapsing particle we apply the fragmentation procedure (bottom). Finally we analyse the statistical properties of the fragmented objects (top right).

d
dt

x(q, t) =
υ(q, t)
a(t)

. (59)

The peculiar velocity expressed in terms of the displacement field
D in the Lagrangian specification of the flow field would then be

υ(t) = ẋ(t) = ġ(t)D(q) (60)

Now let us study the time evolution of two elements positioned at
the Lagrangian coordinatesqa and qb. The Eulerian positions and
peculiar velocities at these two points are then given as

xa ≡ xa(qa, t) = qa + g(t)D(qa) ≡ qa + g(t)Da, (61)

xb ≡ xb(qb, t) = qb + g(t)D(qb) ≡ qb + g(t)Db, (62)

υa(t) ≡ υa(qa, t) = ġ(t)Da, (63)

υb(t) ≡ υb(qb, t) = ġ(t)Db, (64)

The relative velocity of the two particles is given by

υab = υb(t) − υa(t) = ġ(t)(Db − Da) ≡ υ‖(t) + υ⊥(t), (65)

whereυ‖(t) andυ⊥(t) stands for the components parallel and per-
pendicular torab(t) ≡ xb(t)− xa(t). We can now compute the proba-
bility distribution function (PDF) of the pairwise peculiar velicity υ
with separations from the initial PDF as (Seto & Yokoyama 1998):

P(υ, s, t) =
1

4πs2

∫

4πr2dr dυ‖idυ⊥xidυ⊥yi p(υ‖i , υ⊥xi, υ⊥yi; r)

×δ(s− rab(t))δ(υ − υ‖i(t)) (66)

wherep(υ‖i , υ⊥xi , υ⊥yi; r) is the initial PDF which depends only on

υ‖i andυ⊥i ≡
√

υ2
⊥xi + υ

2
⊥yi whereυ⊥xi andυ⊥yi are the two com-

Figure 3. the visualisation of the configuration

ponents ofυ⊥i perpendicular to each other.i denotes quantities at
some initial time.

Putting the Eulerian positions and peculiar velocities in the
above PDF gives:

P(υ, s, t) ∝
∫ ∞

r⋆
rdr p(υ⋆‖i , υ

⋆
⊥i ; r), (67)

whereυ⋆‖i andυ⋆⊥i stand for

υ⋆‖i ≡ ġi

g

(

s2

r
− sg

rġ
υ − r

)

, (68)

υ⋆⊥i ≡
ġi

g
s

(

1−
s2

r2
−

g2

r2ġ2
υ2 +

sg
r2ġ

υ

)

, (69)

r⋆ ≡
∣

∣

∣

∣

∣

s− g
ġ
υ

∣

∣

∣

∣

∣

. (70)
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We have to specify the initial PDFp(υ⋆‖i , υ
⋆
⊥i ; r) in order to be able

to compute the desired PDFP(υ, s, t). As we were dealing with
the longitudinal mode, the peculiar velocity in the linear regime is
related to theδ(x, t) and accordingly to its Fourier transformδk(t)

υ(x, t) = i
ġi

gi

∫

k
k2
δk(ti)e

i kx d3k
(2π)3

. (71)

It is important to emphasize that the initial pairwise peculiar velo-
cities are Gaussian distributed like the initial density fluctuations.
From the velocity correlation tensor

〈

υiυ j

〉

one obtains the projec-
tions:

〈

υ‖υ‖
〉

=
∑

i, j

(

r ‖i r
‖
j −

1
3
δi j

)

〈

υiυ j

〉

, (72)

〈υ⊥υ⊥〉 =
∑

i, j

(

r⊥i r⊥j −
1
3
δi j

)

〈

υiυ j

〉

. (73)

Thus, the two-point correlation functions are given by (Gorski
1988):

〈

υ‖iυ‖i
〉

=
1

6π2

(

ġi

gi

)2 ∫

dkPi(k)

(

1− 3 j0(kr) + 6
j1(kr)

kr

)

(74)

〈υ⊥iυ⊥i〉 =
1

6π2

(

ġi

gi

)2 ∫

dkPi(k)

(

1− 3
j1(kr)

kr

)

(75)

Finally, the initial probability distribution function isgiven by

p(υ⋆‖i , υ
⋆
⊥i ; r) =

e−T

√

(2π)3Y‖(r)Y2
⊥(r)

, T ≡
(υ⋆‖i)

2

2Y‖(r)
+

(υ⋆⊥i )
2

2Y⊥(r)
(76)

where
〈

υ‖iυ‖i
〉

≡ Y‖(r) and〈υ⊥iυ⊥i〉 ≡ Y⊥(r). Therefore, we can now
obtain the desired PDFP(υ, s, t) through the integrationP(υ, s, t) ∝
∫ ∞

r⋆
rdr p(υ⋆‖i , υ

⋆
⊥i ; r). We relate the distancer in the analytical mo-

del to the distance of two haloes at the time of merging. Furthermo-
re we substitute for the power spectrum a filtered spectrum smoo-
thed at a wavelength which corresponds to the halo mass. Compu-
ting the velocity distribution at a distances corresponding to the
merging condition yields distributions very similar to theones ob-
tained by PINOCCHIO. In particular we confirm the trend of stee-
per distributions at lower mass ratio.
As expected the velocity distribution for the analytical PDF is
shallower than the distribution from PINOCCHIO data. This re-
flects the fact that merging processes in PINOCCHIO conserve
momentum but not energy since merging is an inelastic collisi-
on. At each merging the velocity of the final halo is given by
υ f = υ1m1 + υ2m2/(m1 + m2) since the momentum is conserved.
Because of the energy loss high velocities do not appear in the PI-
NOCCHIO velocity distribution and therefore the curve decreases
faster. But the loss of energy does not occur in the analytical confi-
guration and therefore the curve is shallower.

4 RESULTS

In the following we present the results from a simulation for643

particles in a box of side length 128 Mpc/h, carried out in the fra-
mework of Lagrangian perturbation theory with our C++ reimple-
mentation of the PINOCCHIO code for following the merging ac-
tivity of the large-scale structure.

The first step was to create a realisation of a Gaussian densi-
ty field for a specifiedΛCDM spectrum. From the density contrast
the gravitational potential and Zel’dovich tensor were derived. Dif-
ferentiations were performed again in Fourier space allowing us
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Figure 4. The analytical pair velocity probability density for threeintervals
in mass ratio: low mass ratio 0.0 < log(M1/M2) < 0.7 (red line), medium
mass ratio 0.7 < log(M1/M2) < 1.3 (green line) and high mass ratio 1.3 <
log(M1/M2) < 2.0 (blue line).

to recover the quantities with minimum noise. For each pointq of
the Lagrangian initial coordinates and each smoothing radius R,
the collapse time, determined by the time at which the particle is
predicted to enter a high-density multi-stream region, andellipsoi-
dal truncation were then computed using Lagrangian perturbation
theory. Determining the eigenvalues of the Zel’dovich tensor, it is
straightforward to calculate the collapse times evaluating the ex-
pressions of the individual orders (46). For each particle only the
earliest collapse time is recorded with the corresponding smoothing
radius and velocity. The third order Lagrangian prescription impro-
ves the collapse times. The particles collapse earlier and thus the
merging process starts sooner. The first axis to collapse is the one
corresponding to the smallestλ3 eigenvalue indicating the conver-
gence and the fact that the Zel’dovich approximation makes the
largest contribution to collapse dynamics. The collapsed medium
is then fragmented into isolated objects using the algorithm which
we described above to mimic the accretion and merger events of
hierarchical collapse. We distinguish between collapsed particles
belonging to relaxed haloes or to lower-density filaments using the
accretion and merging conditions. Directly after the fragmentati-
on process was completed we studied the relative velocitiesof the
haloes by merging.

Figs. 5 and 6 illustrate structure formation dynamics in the
Lagrangian picture: Matter is transported out of initiallyunderden-
se regions and is accumulated in superstructures, where merging is
prominent due to the high particle density. In fact, the mostmas-
sive objects are found in regions of converging velocities,a nice
example of which can be found in the upper right front corner of
the simulation cube. One sees coherent flow patterns on the scale
of the correlation length of the density field. In the vicinity of mas-
sive structures one can observe larger relative velocitiescompared
to underdense regions. This can be traced back to the fact that the
velocity field of an overdense region has a larger variance compa-
red to the cosmological average. The statistics of the velocity field
is translated to that of the haloes by imposing momentum conser-
vation in the merging process. Therefore, the figure confirmsthe
expectation of high pairwise velocities in overdense regions.

In order to compare our results with the milliMillennium Si-
mulation (Springel et al. 2005) we have applied the same merging
conditions to the milliMillennium data. In Figures 7 - 12 we com-
pare the probability distribution of the relative velocityat the ti-



8 L. Heisenberg, B.M. Schäfer and M. Bartelmann

Figure 5. Density field, smoothed with a Gaussian kernel of 8 Mpc/h, with contours at−2σ and−3σ, superimposed on the velocity field visualised by arrows
and the halo distribution, where the size of the spheres is indicative of the logarithmic halo mass. The side length of thecube corresponds to 128 Mpc/h.

Figure 6. Similar to Fig. 5 only without isodensity contours for making the velocity field more visible. Logarithmic halo mass is indicated by colour and size,
and the arrow length is proportional to the halo velocity.
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Figure 7. probability distribution of velocities conditional on thehalo mass
ratio for redshiftz= 0 from our simulation
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Figure 8. probability distribution of velocities conditional on thehalo mass
ratio for redshiftz= 1 from our simulation
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Figure 9. probability distribution of velocities conditional on thehalo mass
ratio for redshiftz= 2 from our simulation
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Figure 10. probability distribution of velocities conditional on thehalo
mass ratio for redshiftz= 0 from the milliMillennium simulation
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Figure 11. probability distribution of velocities conditional on thehalo
mass ratio for redshiftz= 1 from the milliMillennium simulation
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mass ratio for redshiftz= 2 from the milliMillennium simulation
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me of merging, for three different mass ratio intervals: approxi-
mately equal masses log(M1/M2) < 0.7, intermediate values for
the mass ratio 0.7 < log(M1/M2) < 1.3 and high mass ratios
log(M1/M2) > 1.3. The data is further split into three redshifts:
z= 0, 1,2, where atz= 2 the numbers of massive haloes is not suf-
ficient for deriving the probability density as statisticalerror bars
are too large to draw conclusions. We subdivide the velocityrange
between the smallest and largest velocity into 10 bins whichallows
us to investigate the features of the velocity distributionwhile obtai-
ning reasonable statistical error bars, and normalise all histograms
to unity. The statistics of milliMillennium-data are slightly worse
due to a smaller volume (V = (62.5 Mpc/h)3, N = 2703) compared
to the PINOCCHIO runs (V = (128 Mpc/h)3, N = 643).

Quite generally, the figures reproduce the basic behaviour ex-
pected from analytical arguments as outlined in Sect. 3.3. The dis-
tributions are steeper at lower mass ratio in both the Millennium da-
ta set as well as in PINOCCHIO. The shape of the distributionsbet-
ween PINOCCHIO and the Millennium simulation is very similar,
in particular at low redshifts, with the curves for the intermediate
and the high mass ratio peaking at almost identical values for the re-
lative velocity. All curves terminate at velocities of≃ 700km/s un-
derlining the sparcity of high-velocity mergings (Hayashi& White
2006) and the small simulational volumes. Naturally we expect the
distributions of the milliMillennium simulation to drop faster than
corresponding distributions from PINOCCHIO because the latter
treats merging processes as an inelastic collision and doesnot fol-
low the dissipative dynamics inside haloes.

5 SUMMARY

The aim of this paper is an investigation of merging processes in
the cosmic large-scale structure in the framework of Lagrangian
perturbation theory and to compare the results for the pairwise ve-
locity distribution obtained with an adaptation of the PINOCCHIO
algorithm ton-body data.

• It is comparatively simple in PINOCCHIO to construct merger
trees as it is not necessary to identify haloes in the particle distribu-
tion and as one can directly follow the merging processes between
haloes, such that the haloes in PINOCCHIO correspond to friends-
of-friends particle groups inn-body simulations.
• Halo properties, such as the distribution of masses, spins and

now also merger trees and pairwise velocities can be reliably de-
rived from a Lagrangian code, with the differences in the distri-
bution being smaller than the statistical error bars. Hereby, we
have investigated the derivation of the mass function from PI-
NOCCHIO, optimised the parameter choices for providing a bet-
ter agreement with analytical functions compared to the numbers
quoted by Monaco et al. (2002) and used these parameters for our
studies of the velocity distributions. We have also investigated that
the velocities show the correct scaling with cosmological parame-
ters, and the correct scaling with halo mass ratio in comparison to
an analytical calculation.
• In comparison to an analytical pairwise velocity distribution,

PINOCCHIO is able to reproduce the trend of shallower distribu-
tions with increasing halo mass ratio. At high velocities, however,
PINOCCHIO exhibits a steeper behaviour compared to that predic-
ted by the analytical calculation at fixed mass ratio, which is explai-
ned by the fact that merging processes in PINOCCHIO are treated
as inelastic collisions with conserved momentum but not conserved
energy. Because of this energy loss, high velocities are notpresent
in PINOCCHIO data and the distribution is steeper.

• We find a general agreement between the velocity distributi-
ons of PINOCCHIO and the milliMillennium simulation, both in
terms of relative numbers and values for the absolute velocity. Ad-
ditionally, the scaling with redshift and mass ratio between merging
haloes behaves very similarly. The peaks of the distributions at low
redshifts coincide with each other, and although distributions from
the milliMillennium simulation terminate earlier, this feature is not
unexpected as PINOCCHIO does not treat the dissipative dynamics
of merging haloes. Again, the correct dependence of pairwise velo-
city with halo mass ratio is recovered.
• PINOCCHIO, relying on a phenomenological description of

the merging process of two haloes and combining the individual
momenta in an inelastic collision is very fast compared ton-body
codes, which allows sweeps in the parameter space relevant to pe-
culiar velocities, i.e.Ωm, σ8 and the dark energy parameters, for
which we have verified the basic relations expected by linearstruc-
ture formation.

Further questions include the environment-dependence of velocity
statistics, which is comparatively easy to do in Lagrangianpertur-
bation theory. A very useful discriminant for this purpose is the
number of positive eigenvalues of the shear tensor. One would
expect smaller velocities inside voids and larger velocities in su-
percluster regions. In fact, this dependence can already beseen in
Fig. 5. Other extensions include the investigation of two-point stati-
stics of the velocity field, and to answer questions related to veloci-
ty statistics (Regos & Szalay 1995). Anaglyphic versions ofFigs. 5
and 6 are available on request from the authors.
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