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ABSTRACT

Subiject of this paper is a careful and detailed analysissodPtNOCCHIO algorithm for study-
ing the relative velocity statistics of merging haloes irgtangian perturbation theory. Given
a cosmological background model, a power spectrum of flticlusas well as a Gaussian
linear density contrast fiel§ is generated on a cubic grid, which is then smoothed replyated
with Gaussian filters. For each Lagrangian particle at sl and each smoothing radius
R, the collapse time, the velocities and ellipsoidal truimcatre computed using Lagrangian
Perturbation Theory. The collapsed medium is then fragatkinto isolated objects by an al-
gorithm designed to mimic the accretion and merger everitgepérchical collapse. Directly
after the fragmentation process the mass function, meligaries of haloes and the stati-
stics of the relative velocities at merging are evaluated.réimplemented the algorithm in
C++ and optimised the construction of halo merging historiesn@aring our results with the
output of the Millennium simulation suggests that PINOCOH4 well suited for studying re-
lative velocities of merging haloes and is able to reprodbegairwise velocity distribution.
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1 INTRODUCTION

To account for structure formation one needs to developniech
ques for studying the nonlinear evolution of perturbatidnsthe
strongly nonlinear regime where the perturbation ampéitudx-
ceed unity || > 1), the linear approximation breaks down and
has to be replaced by other approaches. To accentuate tthéonee
this, one has to look at the interesting structures in thevéfag,
like galaxies or clusters of galaxies because they are yigbih-
linear. Since every theory of structure formation must heabée

of describing the formation and evolution of non-lineareatt§, the
major developments have been done in perturbation thearyan
merical simulations. It has been understood that this ainpliies
when formulated in terms of Lagrangian coordinates rathan t
the standard Eulerian ones, since the latter one relies psiqath
densities being small (Buchert & Weiss 1993; Buchert 199%).
one assumes that the dynamics of gravitational clustesidgscri-
bed more suitably in terms of the displacement fiBldwhich is

in the Lagrangian approach the only underlying fundamdietal.
The decisive dference to the Eulerian approach is that it is not ba-
sed on the smallness of the density of the inhomogeneitia she
one searches for solutions of perturbed trajectories aheuine-
ar initial displacemenb™ (Sahni & Cole's 1995; Bernardeau et al.
2002). The fundamental point is that a small perturbatiothef
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Lagrangian particle paths carries a large amount of natin-
formation about the corresponding Eulerian evolved olz®es,
since the Lagrangian picture is intrinsically non-lineathe den-
sity field (Buchert 1993). Lagrangian perturbation the@gahes
its limit of applicability when trajectories of particlesass and the
mapping from the initial conditions to the evolved densigldicea-
ses to be unique.

The cosmological model used is a spatially #fa€DM cos-
mology with Gaussian adiabatic initial perturbations ie #told
dark matter (CDM) density field with the following cosmologl
parameter setlo, Qa, h, og) = (0.25,0.75,0.73,0.9), identical to
that used in the Millennium simulation, to which we will coap
re our results. Our computational domain is a cubic box o siz
128 Mpg/h with periodic boundary conditions filled with® = 64°
particles.

2 COSMOLOGY

21 CDM power spectrum

The linear CDM power spectrur®(k) describes the fluctuation
amplitude of the Gaussian initial density fiedd (5(k)o(k’)) =
(27)35p(k + K")P(K), and is given by the ansatz

P(K) o< K*T2(K), @)
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with the transfer functionT(k) which is approximated by
(Bardeen et al. 1936),

In(1+ ag)
aq

1
3

T(o) = (1+bg+ (ca)® + (dg)® + (eg?) *. ©

with the fitting parametera = 2.34,b = 3.89,c = 16.1, d = 5.46,
e = 6.71. In the transfer function, the wave numlbes qI" enters
rescaled by the shape paramdigBugiyama 1995),

I'=Qyh exp[—Qb (1 + —
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The starting point is a pressureless, non-vortical, selfvgating
fluid with Newtonian gravity embedded in an expanding
Friedmann-Lemaitre Robertson-Walker univelise (Bucheg?).

In the Lagrangian framework of fluid dynamics the relation- be
ween the Eulerian positior of a mass particle and the initial La-
grangian positioryg is given by the displacement field (Zel’'Dovich
1970):

x(a,1) = a+ D(q.1),

In the Lagrangian space the trajectories of the mass elsnaeat
fully described by the dynamical mapping$q,t), starting from

(11)

For further treatment one introduces the smoothed density the initial positionsg.

field 6r, which is averaged on the scdke
00 = [ 'y s()Mi(x - y) (4)

with the window functionWg(r), satisfyingfdax Wk(Ix) = 1.
Working in the Fourier space, one obtains

Sr(K) = 5(K)Wk(K), ®)
and for the smoothed power spectrum
Pr(K) = Wr(KPP(K). (6)

There exist several choices for the window functitiip, apart from
the widely used Gaussian window function, a very common ene i
top-hat filtering, which is given by

@)

where® denotes the Heaviside step function. The Fourier trans-
form for this specific window function is

sin KR) — kRcos kR
59) : ®

Using the definitions introduced so far, it is now straightfard
to calculate the variance?(R) = (§2(x)) of the smoothed density
field as

Wr(IX) = %G(R— IX1),

Wi(K) = 3

d®k d3k
(2n)3 (2n)
Including the window functioWVg(k) and the power spectruf(k)
in this equation, together with

a?(R=8Mpc/h) = o3

o*(R) = Pr(k) = Wa(KIZP(K)- 9)

(10)

fixes the normalization.

3 LAGRANGIAN PERTURBATION THEORY

The formation of CDM haloes involves highly non-linear dymia
cal processes which can only be followed in numerical sitiarta
or by applying perturbative methods. As mentioned in theoghic-
tion, one important approach is Lagrangian Perturbaticeoiy In
order to describe the non-linear dynamical evolution ofgasicle
trajectories up to third order Lagrangian coordinates ttiewing
three steps have to be followed:

(i) Description of the mapping from the Eulerian to the Lagra
gian coordinates

(ii) Transformation of the Eulerian Fields to Lagrangiaric-
nates

(iif) Application of perturbation theory to the Lagrangiagua-
tions expressed by the displacement up to desired order

The above equation implies that there is a one-to-one qures
dence between the Langrangian coordirgga@d the Eulerian coor-
dinatex. This certainly is the case only for a cold non-collisional
fluid, at least until the stage of caustic formation. Expeelsma-
thematically, this corresponds to the statement that thetional
determinant) of the Jacobian of the mapping relatign— x(q, t)
is non-singular,

ox
J(g,t) = det(aq) 0, (12)
which means that the mappindq, t) is invertible toq(x,t). It is
evident that many particles coming from veryffdrent original
positions will tend to arrive at the same Eulerian positiamiray
the highly non-linear evolution. As a consequence of thiiie-
density regions (caustics) will form in Eulerian space. t&ethe
mapping from Lagrangian to Eulerian space becomes singualir
the density infinite ap o« J=X. Since the displacemei fully cha-
racterizes the map between the Eulerian and the Lagrangaadie
nates, the motion of the fluid elements are completely desarin
terms of it. One can now express the peculiar velocity, @ragbn
and density contrast by replacing the displacement fkidto the
Euler and the continuity equation (Catelan 1995)

vx@n = SD@Y 19
2

ox@0.0 = oD@y (1)

1+6[x(q,1),1] = det( +9)*. (15)

formulated in terms of the time variabte Here, | is the identity
matrix andSis a 3x 3 matrix called thedeformation tensowith
S.s = 0D, /dgs being its elements. If the displacemetis an
irrotional field in the Lagrangian space th8g; is symmetric. Si-
milarly the Eulerian irrotationality conditioN, x v = 0 and the
Poisson equatioly - g = —a(t) 6 may be written in terms of the
displacement after a mathematicéioet as [(Catelan 1995; Buchert
1993)

€opy |(1+ V- D) s — Spo + S5, | S0 = 0, (16)

|1+ V- D)6us — Sup + S5 S0 = a®[I(a.1) - 1] , (17)

The second equation is the Lagrangian Poisson equationhand t
first one is the irrotationality condition in Lagrangian spaBoth
equations dynamically constrain the field. The fundamental
guestion now is how to solve the dynamical equations for tke d
placementsD. The irrotationality condition and the Lagrangian
Poisson equation are exact equations in the Lagrangianijosa.

It is undoubtedly very dficult to solve them in a rigorous way. A
possible alternative is to seek for approximate solutidihg stan-
dard technique is to expand the traject@ryn a perturbative series,
the leading term being the linear displacement which cpoeds



to the Zel'dovich approximation (Buchert 1993; Zel'Dovitf70).
Approximating the Lagrangian Poisson equation implies tha
gravitational interaction among the particles of the flddiescri-
bed by the first few terms of a Taylor expansion.

D(,7) = gu(r) DY(0) + G2(r) DP(0) + gs(r) DV() +--- (18)

D™ (q) being thenth-order approximation. The dynamics of the
evolution constrains in general both the temporal deperelas de-
scribed by the functiong,, and the spatial displacemeri”(q).

At any order the solutions are separable in time and space. At

first and second orders, the solutions are irrotational graagian
space, i.e. the matrlceB(l) and DY) are symmetric. At the third
order it is possible to d|V|deD(3) into three diferent modes, all
separable in space and time. Below are the time functionsnsum
rized. They have been used to determine the collapse timeof t
ellipsoidal collapse (Monago 1997b):

g = -9 (19)
3 24-a

g = _ﬁgigm (20)
1, _

Oz, = —§9§me (21)
5 _

g3b = 4_Zgich (22)
1

Oz, = ﬂgf (23)

whereg(t) is given by

g(r):1+3(72-1)1+1|n,/%1]. (24)

In order to compute the formation of haloes in Lagrangiamyba-
tion theory one considers the potential of a homogeneoipseitl
in its principal axis frame, which is given by (Monaco et @02):

1
w(g) = E(/llcﬁ + 2205 + A305) (25)

where they; are the eigenvalues of the first-order deformation ten-
sor D)(q) = ¥.a(0). It is easy now to calculate the perturbative
terms from this potential yielding the following local coibutions
solving all Poisson equations,
wf? = Yalpo—Vatp
e = w‘;bwb

@ = —(l// RV

(26)
s bl//(z) Oy — lﬂ,(s)l//,ab)
y = (w o2 = P ab).

With these local contributions one can get the correspandis-
placements,

D2 = Yanc—Vacine

DSE) = lPaclpcbc (27)
DY = [D%m D@y e + 2D — D2

DY = o.

Within the Lagrangian perturbation framework the natuefirdti-
on of collapse is defined as:

J(6.9) =0 (28)

At this instant the density becomes infinite anéfatient trajecto-
ries intersect, forming multi-stream regions. If thg-dependence
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of the time functions[{19):(23) is neglected, it is easy titevthe
conditionJ(q, gc) = 0 as a third order algebraic equation (Monaco
1995),
1+ ligc -

/15.(5| )| g =0,

3 2 I3
00~ (2 o 29)
where it has been used that all the contributions to the deftion
tensor are diagonal in the same frame and that theo8tribution

vanishes:

i = A

p? = M2+ A3 (30)
v = s

p = Ddods + 116(A2 + 3)/2

wheres; = 1; + 1, + 13. One can already see in the above functi-

on how higher order cdicients become increasingly smaller. The
next step would be to find the solutions of the above equatidaro
by order.

3.0.1 First order collapse time

The first order solution for general ellipsoids is very siepf only
the first term in the Jacobian determinant is taken into au;dle
definition of collapse gets the simply form

1+6) 1+ 6o

(1+60) (1+gDA) (1 + gD) (1 + ghAs)

The expansion, the shear and the density diverge when

= |det) ™| = (31)

1+g%2; =0, (32)

where/; is the smallest of the;. Evidently, the first order collapse
time is simply given by

1
@ _
o o (33)
3.0.2 Second order collapse time

In the case of second order the Jacobian determinant is biven

3 2
1+ 2ig% - 77460 - ) [6?] =0, (34)

and the second order solution for the collapse time resaoltset
(Monaco 1997a)

@ _ 7/13 + V7/13(/13 + 66|)
¢ 313(—13 + 5|) ’

Itis evident that this solution is limited @& > —1,/6. Additionally
it should be mentioned that one cafffelientiate equatiof (85) with
respect tol; in order to verify that the 1-axis is the first to collapse.

(35)

3.0.3 Third order collapse time
For the third order the roots of equatién(29) have to be found

3
1+ 4ge = 7,40 - —A61(6 - 4)|g2=0 (36)

WG + (126 84
This function is a cubic function of the form

f(x) =ax +bxX +cx+d (37)
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and can be solved easily with the root-finding formula. Attefi-
ning new parameters such as

3ac - b? 9abc- 27a%d - 2b®
9= Tox = 543 (38)
p = 0 = arccosf/p) (39)
the solutions for? > ¢ are given by
b
Xo= stt-o, (40)
Xp = ——( +1) - b +£(s i, (41)
b V3 .
Xp = —§(s+t)—§—7(s—t)l (42)
wheres andt are defined as
s=(03,0/3)  t=(03,-0/3). (43)

Now this general solutions can be applied to the func{io @@th
the corresponding values fayb, c andd. Doing so the resulting so-
lution for the third order collapse time has to be chosen astimal-
lest non-negative one between the following functions (ktan
1997a)

g8 = —2+Gcos/3) - (5i/4i - 1)/14c, (44)
g9 = -2vgcos(f +21)/3) - (51/4 - 1)/14c, (45)
o = -2+Gcos(@ +4r)/3) - (6/4; — 1)/14c, (46)
where the following shortcuts have been used

c = 1313/126+56,/4i(61/4 — 1)/84, (47)
q = (3(/4 - 1) — 196c)/588°. (48)

3.1 Lagrangian structureformation

Having carried out the calculation of the collapse time & &t
lipsoidal collapse, an analytical expression for the maswti-
on is needed which uses information of the statistical frdba
ty distribution function of the initial conditions. This given by
(Doroshkevich 1970):

675V5 3, 15
- ( —I1+ = 2rz)A, (49)

P(A1, A2, A3) =

Wherel’l = A1+ Ao+ A3, = A3 do+ AoAdz+ A1 d3, A= (/ll - /12)(/12 -
A3)(11 — A3) ando? given as usual by:
k2dk

2 _
o =4x (27r)3 P(K). (50)
Evidently, the probability for two eigenvalues of the defation
tensor to be equal is zero. This means that the isotropiamss!
is excluded, implying anisotropical structure formatittris more
convenient to write the probability distribution functias a pro-
duct of two normalized distributions. For this purpose tiéfving
change of variables has to be performed (Monaco|1998)

5§ = —Ai—A— s (51)
X = /11 - /12, (52)
y = A—A3. (53)

The density contrast goes from-co to oo whereas the other two
variables obey the inequalities> 0 andy > 0, reflecting the ori-
ginal conditionsi; > 1, and A, > A3. Carrying out the substitution

the probability distribution function becomes

1 2255
- honfz5) 225
2
exp _5(X+—Xy+y2) Xy(x+ y) (54)
202
One can express the Zel'dovich first order approximatiorotiap-

se time in units of the new variables so that equafich (33sdke
form

3
1 . 55
C S+ Xx+ 2y (55)
Furthermore, one can define the density contrast needed ey a p
turbation to collapse af, = 1 as

6c(x%.y) = 3—(x+2y). (56)

In the case of spherical collapse this would reducé te 3. It can
be seen that the shear lowers the valuéothelping the collap-
se to occur more easily. With an adequate shear, even umderde
perturbations can collapse. As in the case of the Press=Bigte
approach, one assumes that a collapsing mass element, agsuse
ciated mass is a function of the mass variamd@rough the smoo-
thing scale RM = M(R(0)), becomes part of a structure whose
mass is greater than M. The mass function is simply the iategr
of the probability distribution function over all initialonditions
(Monaca 1997alb),

Fe M):f dxf dy [ do P, xy), (57)
0 0 Sc(xy)

giving the mass function as

_0 dMm _0F do dM
N(M)AM = <P Fe MY = P3G (58)

The termdF/do- contains the dynamical information.

3.2 PINOCCHIO

A compromise between simulations and analytical techrisidae
a perturbative approach describing the growth of haloes gt a
ven numerical realization of a linear density field, such laes t
truncated Zel'dovich approximation and the PINOCCHIO algo
rithm (Taffoni et al.| 2002). PINOCCHIO (acronym fd?INpoin-
ting Orbit-Crossing Collapsed Hlerarchical Objegts an algo-
rithm for studying the formation and evolution of dark matta-
loes in a given initial linear density field. It was first demgéd by
Monaco et al.|(2002). Local parameterisations to the dyoamie
used to give precise predictions of the hierarchical foromabf
dark matter haloes when the correlations in the initial deriield
are properly taken into account.

This modus operandi enables the automatic generation of a
large ensemble of accurate halo merging histories andiadality
delivers their spatial distribution. Likewise, the apmba&an be ef-
ficiently applied for generating the input for galaxy forioatmo-
dels since the properties of the halo population are of foneddaal
importance for understanding galaxy formation and evotuti

PINOCCHIO consists of two steps which determine the hier-
archical formation of haloes through accretion and merging

e The first step handels the definition of the collapse time- Her
eby, orbit-crossing will be identified as the instant when asm
element undergoes collapse, without the need to introdifceea
parameter. Orbit-crossing is numerically calculated byanseof



the ellipsoidal collapse approximation to the full Lagreamgper-
turbative expansion, as discussed in the previous sedondco
1995).

e The second step groups the collapsed particles into disjoin
haloes, applying an algorithm similar to that used to idgmtaloes
in n-body simulations.

As explained in the previous subsection, the density deegs the
Jacobian determinant vanishes, corresponding to the fammaf a
caustic, which states that the transformator q becomes multi-
valued, and particle trajectories undergo orbit crossBigce the
density becomes very high at orbit crossing, it will be idfeed as
the collapse time. In this manner, collapse is very easy nopte
using Lagrangian Perturbation Theory which remains vatida
that particular point but breaks down afterwards.

The hierarchical formation of objects is done due to the grou
ping of orhit-crossing particles into haloes by tracing therging
processes for each particle individually. Briefly, two manoces-
ses contribute to the hierarchical clustering: The firstisribe ac-
cretion of particles onto haloes and the second one the niedji
haloes. For this purpose, the particles of the realizatiersarted
in chronological order of collapse. Starting with the firstlapse
time the particles are assigned either to a halo or to filasnant
the corresponding collapse times. In order for a collapgiagic-
le to accrete on to a halo, it must fulfill a number of condision
One of them is that the candidate halo must already contarobn
its 6 nearest neighbours in the Lagrangian space of initate
tions. The fragmentation process contains fledént cases which
are stfficient for performing the identification and merging history
of haloes.

If none of the 6 Lagrangian neighbours have collapsed, then
the particle is a local maximum of the inverse collapse tifrtdas
particle is a seed for a new halo having the unit mass of thecfear
and is created at the particle’s position. Obviously, thtiest par-
ticle to collapse is the first halo.

In the case that the collapsing particle touches only one, iaén
the accretion condition, if the halo is close enough, is kbdc
When the accretion condition is satisfied, then the parixlad-
ded to the halo, otherwise it is marked as belonging to a filame
The particles that only touch filaments are marked as filasnaat
well. If the collapsing particle has more than one touchiatptas
Lagrangian neighbour, then the merging condition is chedke

all halo pairs. Pairs that satisfy the conditions are metggdther.
The accretion condition for the particle is checked for alldhing
haloes both before and after merging (when necessary)eloase
that the particle can accrete to both haloes, without thedsainer-
ging, it accretes onto that halo for which the distadda units of
halo sizeRy is smaller. It may happen that particles fail to accrete
even though the haloes merge.

If the collapsing particle does not accrete onto the carnelitia-
loes in the case they are too far, it becomes a filament. Bet lat
for this filament particle there is still the possibility toaete when
its neighbour particle accretes onto a halo. This is donederao
mimic the accretion of filaments onto the haloes. Notice tiato

5 filament particles can flow into a halo at each accretionteven

3.3 Veocity statistics

In the Eulerian specification of the flow field, the flow quaettare
depicted as a function of fixed positianand timet. Specifically,
the peculiar velocity is described as:

relative velocities with PINOCCHIO

particle particle
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Neighbour
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Neighbour
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/ noay

/

Halo

Particle becomes a filament

Figure 1. Cases of the fragmentation process: The top panel showsxthe s
Lagrangian neighbours of a given particle, the second plustrates how
this particle accretes onto a neighbouring halo, the thandep depicts the
merging of two haloes and successive accretion and, if taem@accretion,
the particle is marked as belonging to a filament in the botamel.
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Figure 2. Flow chart of the code: The main 3 blocks of the code are shBana given set of parameters (centre) we compute the celkapss (top left) and
for each collapsing particle we apply the fragmentatiorcpdure (bottom). Finally we analyse the statistical prigeiof the fragmented objects (top right).

v(g.1)
a)

The peculiar velocity expressed in terms of the displacérfield

D in the Lagrangian specification of the flow field would then be

S

d
@ = (59)

-
v(t) = X(t) = 9() D(q) (60) v
Now let us study the time evolution of two elements positibae
the Lagrangian coordinateg and g,. The Eulerian positions and
peculiar velocities at these two points are then given as v r
Xa = Xa(Ga: 1) = 0 + 9() D(Aa) = 0, + 9(1) Da, (61) Figure 3. the visualisation of the configuration
Xo = Xo(0p ) = Gy + 9() D(q},) = d, + 9(t) Do, (62)
a(t) = va(0a, 1) = 9(t) Da, (63)
p(t) = V(. £) = §(t) Dy (64) ponents ofv,; perpendicular to each othérdenotes quantities at
_ _ R some initial time.
The relative velocity of the two particles is given by Putting the Eulerian positions and peculiar velocitiesha t
Vab = U(t) - valt) = GO(Ds — Da) = vy (1) + v, (), (65) ~ apove PDFgives:
wher!avH(t) andv  (t) stands for the components parallel and per- P, s1) fw ——— 67)
pendicular taran(t) = Xp(t) — Xa(t). We can now compute the proba- r*

bility distribution function (PDF) of the pairwise peculieelicity v wherev* andv*. stand for
11

with separatiorsfrom the initial PDF as (Seto & Yokoyamma 1998): I

1 . o_ (S _sg
P(v, St) = R f471'r2dr dU”idUJ_XidUJ_yi p(U”i, Uixi> Ulyis r) Vi = g ( r r'gv r (68)
xo(s— ran(®)ow v (®) (66) . _ G s(l . r§2 . % e 2 U), (©9)
where p(vyi, vixi, v1yi; 1) i the initial PDF which depends only on 9 g 9
vy andwy = fv? + 02, wherev,,; andu,y are the two com- r~ = ‘S— Sy (70)




We have to specify the initial PDE(UH*i, vl 1) in order to be able
to compute the desired PDv, s t). As we were dealing with
the longitudinal mode, the peculiar velocity in the lineagime is

related to the(x, t) and accordingly to its Fourier transfordg(t)

.G k i APk
U(X,t) = |afﬁ6k(t|)é XW.
It is important to emphasize that the initial pairwise péauvelo-
cities are Gaussian distributed like the initial densitycfliations.

From the velocity correlation tenséviuJ) one obtains the projec-
tions:

(yy)) = Z (ri”r‘j‘ - %6ij)<vivj>, (72)

ij

(viv,) = Z (rﬁrj* - %6ij)<viv1> . (73)

ih]

(71)

Thus, the two-point correlation functions are given by (§kor
1988):

) = o (2] [ aknmo(1-sint +62ED) (ra
) = g(3) [rre (1) 75)

Finally, the initial probability distribution function igiven by

_ W ey

T2y 2Y.(n)

e—T
 VERY(NYA

where(yiv;i) = Y, (r) and{v,jv,;) = Y.(r). Therefore, we can now
obtain the desired PD(v, s, t) through the integratioR(v, s, t) «
f: rdr p(vy. vy;;1). We relate the distanaein the analytical mo-
del to the distance of two haloes at the time of merging. Feurntio-

(76)

p(vyi, vlisr)

re we substitute for the power spectrum a filtered spectruspsm
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analytical velocity difference distribution (z=0)
0.16 T
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Figure 4. The analytical pair velocity probability density for thrieéervals
in mass ratio: low mass ratia@< log(M;/Mz) < 0.7 (red line), medium
mass ratio & < log(M1/M>) < 1.3 (green line) and high mass ratid1

log(M1/M3) < 2.0 (blue line).

to recover the quantities with minimum noise. For each pgiof
the Lagrangian initial coordinates and each smoothingusaRj
the collapse time, determined by the time at which the darisc
predicted to enter a high-density multi-stream region, éhpsoi-
dal truncation were then computed using Lagrangian peatiap
theory. Determining the eigenvalues of the Zel'dovich teni is
straightforward to calculate the collapse times evalggatie ex-
pressions of the individual orderls{46). For each particly the
earliest collapse time is recorded with the correspondingaghing
radius and velocity. The third order Lagrangian presasiptmpro-
ves the collapse times. The particles collapse earlier ansl the
merging process starts sooner. The first axis to collapseistie
corresponding to the smalle eigenvalue indicating the conver-

thed at a wavelength which corresponds to the halo mass. Gomp gence and the fact that the Zel'dovich approximation makes t

ting the velocity distribution at a distancecorresponding to the
merging condition yields distributions very similar to tbees ob-
tained by PINOCCHIO. In particular we confirm the trend ofeste
per distributions at lower mass ratio.

As expected the velocity distribution for the analytical P»
shallower than the distribution from PINOCCHIO data. Thés r

largest contribution to collapse dynamics. The collapsediom
is then fragmented into isolated objects using the algaritvhich

we described above to mimic the accretion and merger evénts o

hierarchical collapse. We distinguish between collapsadigles
belonging to relaxed haloes or to lower-density filamenisgithe
accretion and merging conditions. Directly after the fraguati-

flects the fact that merging processes in PINOCCHIO conserve on process was completed we studied the relative velodifigse

momentum but not energy since merging is an inelastic ¢ollis
on. At each merging the velocity of the final halo is given by
vr = vimy + voMp/(My + M) since the momentum is conserved.

Because of the energy loss high velocities do not appeaeifth
NOCCHIO velocity distribution and therefore the curve deses
faster. But the loss of energy does not occur in the analytimafi-
guration and therefore the curve is shallower.

4 RESULTS

In the following we present the results from a simulation 64#
particles in a box of side length 128 Mfit carried out in the fra-
mework of Lagrangian perturbation theory with our-€reimple-

mentation of the PINOCCHIO code for following the merging ac

tivity of the large-scale structure.

The first step was to create a realisation of a Gaussian densi-
ty field for a specified\CDM spectrum. From the density contrast

the gravitational potential and Zel'dovich tensor were\gst. Dif-
ferentiations were performed again in Fourier space atigwis

haloes by merging.

Figs.[B and[b illustrate structure formation dynamics in the

Lagrangian picture: Matter is transported out of initiallyderden-
se regions and is accumulated in superstructures, wheginges
prominent due to the high particle density. In fact, the moas-
sive objects are found in regions of converging velocitesice

example of which can be found in the upper right front corrfer o
the simulation cube. One sees coherent flow patterns on #he sc

of the correlation length of the density field. In the vicin@f mas-
sive structures one can observe larger relative velogitespared
to underdense regions. This can be traced back to the fadheha
velocity field of an overdense region has a larger varianoepes
red to the cosmological average. The statistics of the itgléield

is translated to that of the haloes by imposing momentumerens

vation in the merging process. Therefore, the figure confitms

expectation of high pairwise velocities in overdense negio
In order to compare our results with the milliMillennium Si-
mulation (Springel et al. 2005) we have applied the same imgrg
conditions to the milliMillennium data. In Figuré$ 7-112 wena-
pare the probability distribution of the relative velocay the ti-
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Figure 5. Density field, smoothed with a Gaussian kernel of 8 Mpavith contours at-20- and—3c-, superimposed on the velocity field visualised by arrows
and the halo distribution, where the size of the spheredisative of the logarithmic halo mass. The side length ofdhlee corresponds to 128 Mfit

Figure 6. Similar to Fig[% only without isodensity contours for magithe velocity field more visible. Logarithmic halo mass idigated by colour and size,
and the arrow length is proportional to the halo velocity.
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Figure 7. probability distribution of velocities conditional on thalo mass

Figure 10. probability distribution of velocities conditional on thealo
ratio for redshiftz = 0 from our simulation

mass ratio for redshift = 0 from the milliMillennium simulation
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Figure 8. probability distribution of velocities conditional on thalo mass

Figure 11. probability distribution of velocities conditional on thelo
ratio for redshiftz = 1 from our simulation

mass ratio for redshift = 1 from the milliMillennium simulation
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ratio for redshiftz = 2 from our simulation
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me of merging, for three ffierent mass ratio intervals: approxi-
mately equal masses ldg¢{/M,) < 0.7, intermediate values for
the mass ratio @ < log(M;/M;) < 1.3 and high mass ratios
log(M1/M;) > 1.3. The data is further split into three redshifts:
z=0, 1,2, where ak = 2 the numbers of massive haloes is not suf-
ficient for deriving the probability density as statistieator bars
are too large to draw conclusions. We subdivide the velaeitge
between the smallest and largest velocity into 10 bins waildws
us to investigate the features of the velocity distributidrile obtai-
ning reasonable statistical error bars, and normalisestthgrams
to unity. The statistics of milliMillennium-data are sligy worse
due to a smaller volume/(= (625 Mpc/h), N = 270°) compared
to the PINOCCHIO runs\( = (128 Mpch)?, N = 64%).

Quite generally, the figures reproduce the basic behaviour e
pected from analytical arguments as outlined in $ect. :8.dis-
tributions are steeper at lower mass ratio in both the Miliem da-
ta set as well as in PINOCCHIO. The shape of the distributits
ween PINOCCHIO and the Millennium simulation is very simila
in particular at low redshifts, with the curves for the imediate
and the high mass ratio peaking at almost identical valugbéare-
lative velocity. All curves terminate at velocities ©f700kys un-
derlining the sparcity of high-velocity mergings (Haya&hiVhite
2006) and the small simulational volumes. Naturally we exjlge
distributions of the milliMillennium simulation to drop $&er than
corresponding distributions from PINOCCHIO because tlieda
treats merging processes as an inelastic collision and rmesl-
low the dissipative dynamics inside haloes.

5 SUMMARY

The aim of this paper is an investigation of merging processe
the cosmic large-scale structure in the framework of Lagjiamn
perturbation theory and to compare the results for the [sérwe-
locity distribution obtained with an adaptation of the PIBCHIO
algorithm ton-body data.

e |tis comparatively simple in PINOCCHIO to construct merger
trees as it is not necessary to identify haloes in the partigtribu-
tion and as one can directly follow the merging processesedssi
haloes, such that the haloes in PINOCCHIO correspond todsie
of-friends particle groups in-body simulations.

e Halo properties, such as the distribution of masses, spids a
now also merger trees and pairwise velocities can be rglicd
rived from a Lagrangian code, with theffidirences in the distri-
bution being smaller than the statistical error bars. Hereke
have investigated the derivation of the mass function from P
NOCCHIO, optimised the parameter choices for providing & be
ter agreement with analytical functions compared to the benn
quoted by Monaco et al. (2002) and used these parametersifor o
studies of the velocity distributions. We have also ingsged that
the velocities show the correct scaling with cosmologicabme-
ters, and the correct scaling with halo mass ratio in corsparto
an analytical calculation.

e In comparison to an analytical pairwise velocity distribat
PINOCCHIO is able to reproduce the trend of shallower distri
tions with increasing halo mass ratio. At high velocitieswiver,
PINOCCHIO exhibits a steeper behaviour compared to thalipre
ted by the analytical calculation at fixed mass ratio, whiokiplai-
ned by the fact that merging processes in PINOCCHIO arectieat
as inelastic collisions with conserved momentum but noseored
energy. Because of this energy loss, high velocities ar@msent
in PINOCCHIO data and the distribution is steeper.

L. Heisenberg, B.M. Schafer and M. Bartelmann

e We find a general agreement between the velocity distributi-
ons of PINOCCHIO and the milliMillennium simulation, both i
terms of relative numbers and values for the absolute uglo&d-
ditionally, the scaling with redshift and mass ratio betweeerging
haloes behaves very similarly. The peaks of the distribstat low
redshifts coincide with each other, and although distring from
the milliMillennium simulation terminate earlier, thisefure is not
unexpected as PINOCCHIO does not treat the dissipativendipsa
of merging haloes. Again, the correct dependence of paérweto-
city with halo mass ratio is recovered.

e PINOCCHIO, relying on a phenomenological description of
the merging process of two haloes and combining the indalidu
momenta in an inelastic collision is very fast compared-tmody
codes, which allows sweeps in the parameter space relevaet t
culiar velocities, i.eQn, og and the dark energy parameters, for
which we have verified the basic relations expected by lisrac-
ture formation.

Further questions include the environment-dependencelotity
statistics, which is comparatively easy to do in Lagrangiartur-
bation theory. A very useful discriminant for this purposetlie
number of positive eigenvalues of the shear tensor. Onedwvoul
expect smaller velocities inside voids and larger velesitn su-
percluster regions. In fact, this dependence can alreacgbe in
Fig.[3. Other extensions include the investigation of tvainpstati-
stics of the velocity field, and to answer questions reladecktoci-

ty statistics|(Regos & Szalay 1995). Anaglyphic versionsigs[5
and® are available on request from the authors.
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