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Abstract

We study a new family of ”classical” orthogonal polynomials which satisfy (apart from a 3-term recurrence

relation) an eigenvalue problem with differential operators of Dunkl-type. These polynomials can be obtained

from the big q-Jacobi polynomials in the limit q → −1. An explicit expression of these polynomials in terms

of Gauss’ hypergeometric functions is found. We also show that these polynomials provide a nontrivial

realization of the Askey-Wilson algebra for q → −1.
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1. Introduction

We constructed in [13] a system of ”classical“ orthogonal polynomials Pn(x) containing two real parameters

α, β and corresponding to the limit q → −1 of the little q-Jacobi polynomials. By ”classical” we mean that

these polynomials satisfy (apart from a 3-term recurrence relation) a nontrivial eigenvalue equation of the form

LPn(x) = λnPn(x). (1.1)

The novelty lies in the fact that L is a differential-difference operator of special type. Namely, L is a linear

operator which is of first order in the derivative operator ∂x and contains also the reflection operator R which

acts as Rf(x) = f(−x). Roughly speaking, one can say that L belongs to the class of Dunkl operators [4] which

contain both the operators ∂x and R. Nevertheless, the operator L differs from the standard Dunkl operators

in a fundamental way. Indeed, L preserves the linear space of polynomials of any given maximal degree. This

basic property allows to construct a complete system of polynomials Pn(x), n = 0, 1, 2, . . . as eigenfunctions of

the operator L.

Guided by the q → −1 limit of the little q-Jacobi polynomials, we derived in [13] an explicit expression of

the polynomials Pn(x) in terms of Gauss’ hypergeometric functions. We also found explicitly the recurrence

coefficients and showed that the polynomaials Pn(x) are orthogonal on the interval [−1, 1] with a weight function

related to the weight function of the generalized Jacobi polynomials [3]. We also proved that they admit the

Dunkl classical property [1] and further demonstrated that the operator L together with the multiplication

operator x form a special case of the Askey-Wilson algebra AW (3) [14] corresponding to the parameter q = −1.

In this paper we construct similarly, a new family of ”classical“ orthogonal polynomials which are obtained as

a nontrivial limit of the big q-Jacobi polynomials when q → −1. We will call them ”big -1 Jacobi polynomials“

In contast to the little -1 Jacobi polynomials, the big -1 Jacobi polynomials contain 3 real parameters α, β, c.

This leads to more complicated formulas for the recurrence coefficients as well as for the explicit expression in

terms of the Gauss hypergeometric function. Moreover, in contrast to the little -1 Jacobi polynomials the big

-1 Jacobi polynomials are orthogonal on the union of the two intervals [−1,−c] and [c, 1] (it is assumed that

0 < c < 1) When c = 0 these intervals connect into one interval [−1, 1]. This corresponds to the degeneration

of the big -1 Jacobi polynomials into the little -1 Jacobi polynomials

The fundamental ”classical“ property (1.1) holds for the big -1 Jacobi polynomials as well. The operator L

is again a first order differential operator of Dunkl type which preserves the space of polynomials. This means

that both little and big -1 Jacobi polynomials provide two ”missing” families of classical orthogonal polynomials

which should be included into the Askey table as special cases.

We also show that the big -1 Jacobi polynomials provide a convenient realization of the AW (3) algebra for

q = −1.
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2. Big q-Jacobi polynomials in the limit q = −1

The big q-Jacobi polynomials Pn(x; a, b, c) depend on 3 parameters and are defined by the following 3-term

recurrence relation (for brevity, we will sometimes omit the dependence on the parameters a, b, c):

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x), (2.1)

where

un = An−1Cn, bn = 1−An − Cn

with

An =
(1− aqn+1)(1 − abqn+1)(1− cqn+1)

(1− abq2n+1)(1 − abq2n+2)
, Cn = −acqn+1 (1− qn)(1 − abc−1qn)(1− bqn)

(1− abq2n+1)(1− abq2n)
(2.2)

In terms of basic hypergeometric functions [8], [9] they are given by

Pn(x; a, b, c) = κn3ϕ2

(

q−n, abqn+1, x

aq, cq

∣

∣

∣
q; q

)

(2.3)

where the coefficient κn ensures that Pn(x) is monic: Pn(x) = xn + O(xn−1). We shall not need the explicit

expression of < kappan in the following.

The big q-Jacobi polynomials satisfy the eigenvalue equation [8], [9]

LPn(x) = λnPn(x), λn = (q−n − 1)(1− abqn+1) (2.4)

where the operator L is

Lf(x) = B(x)(f(xq) − f(x)) +D(x)(f(xq−1)− f(x)) (2.5)

with

B(x) =
aq(x − 1)(bx− c)

x2
, D(x) =

(x− aq)(x − cq)

x2
(2.6)

The orthogonality relation is

∫ aq

cq

w(x)Pn(x)Pm(x)dqx = hnδnm, hn = u1u2 . . . un, (2.7)

with the q-integral defined as [8], [9]

∫ aq

cq

f(x)dqx = aq(1− q)

∞
∑

s=0

f(aqs+1)qs − cq(1− q)

∞
∑

s=0

f(cqs+1)qs

and the weight function

w(x) = g
(a−1x; q)∞(c−1x; q)∞
(x; q)∞(bc−1x; q)∞

, (2.8)

where

(a; q)s = (1− a)(1 − aq) . . . (1 − aqs−1)

is the shifted q-factorial [9] and (a; q)∞ = lims→∞(a; q)s (In (2.8), g is a normalization factor which is not

essential for our considerations).
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Consider the operator (q + 1)−1L, where the operator L is defined by (2.5). Put

q = − exp(ǫ), a = − exp(ǫα), b = − exp(ǫβ) (2.9)

and take the limit ǫ → 0 which corresponds to the limit q → −1. It is not difficult to verify that the limit does

exist and that we have

L0 = lim
q→−1

(q + 1)−1L = g0(x)(R − I) + g1(x)∂xR, (2.10)

where

g0(x) = α+ β + 1 + (cα− β)x−1 + cx−2, g1(x) =
2(x− 1)(x+ c)

x
. (2.11)

The operator I is the identity operator and R is the reflection operator Rf(x) = f(−x).

Equivalently, the operator L0 can be presented through its action on f(x):

L0f(x) = g0(x)(f(−x) − f(x)) − g1(x)f
′(−x) (2.12)

On monomials xn the operator L0 acts as follows.

For n even,

L0x
n = 4n(x− 1)(x+ c)xn−2. (2.13)

For n odd

L0x
n = −2(α+ β + n+ 1)xn + 2(β − cα+ n− c)xn−1 + 2(n− 1)cxn−2 (2.14)

In any case, the operator L0 is lower triangular, with 3 diagonals, in the basis xn:

Lxn = ξnx
n + ηnx

n−1 + ζnx
n−2 (2.15)

with the coefficients ξn, ηn, ζn straightforwardly obtained from (2.13), (2.14). It is easily seen that the operator

L0 preserves the linear space of polynomials of any fixed dimension. Hence for every n = 0, 1, 2, . . . there are

monic polynomials eigenfunctions P
(−1)
n (x) = xn +O(xn−1) of the operator L0

This eigenvalue equation is obtained as the q → −1 limit of the eigenvalue equation (2.4):

L0P
(−1)
n (x) = λn P (−1)

n (x), (2.16)

where

λn =

{

2n, n even

−2(α+ β + n+ 1), n odd
(2.17)

Consider the limit q → −1 for the recurrence coefficients. Assuming (2.9), we have

A(−1)
n = lim

ǫ→0
An =

{ (c+1)(α+n+1)
α+β+2n+2 , n even

(1−c)(α+β+n+1)
α+β+2n+2 , n odd

(2.18)

and

C(−1)
n = lim

ǫ→0
Cn =

{ (1−c)n
α+β+2n , n even

(1+c)(β+n)
α+β+2n , n odd

(2.19)
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Hence for the recurrence coefficients we have

u(−1)
n = lim

ǫ→0
An−1Cn =







(1−c)2n(α+β+n)
(α+β+2n)2 , n even

(1+c)2(α+n)(β+n)
(α+β+2n)2 , n odd

(2.20)

and

b(−1)
n = lim

ǫ→0
1−An − Cn =

{

−c+ (c−1)n
α+β+2n + (1+c)(β+n+1)

α+β+2n+2 , n even

c+ (1−c)(n+1)
α+β+2n+2 − (c+1)(β+n)

α+β+2n , n odd
(2.21)

The polynomials P
(−1)
n (x) satisfy the 3-term recurrence relation

P
(−1)
n+1 (x) + b(−1)

n P (−1)
n (x) + u(−1)

n P
(−1)
n−1 (x) = xP (−1)

n (x). (2.22)

For any real c 6= 1 and real α, β satisfying the restriction α > −1, β > −1, the recurrence coefficients b
(−1)
n

are real and the recurrence coeficients un are positive. This means that the polynomials P
(−1)
n (x) are positive

definite orthogonal polynomials.

Let us consider expression (2.3) in details,

Pn(x) = κn

n
∑

s=0

(q−n; q)s(abq
n+1; q)s(x; q)s

(q; q)s(aq; q)s(cq; q)s
qs, (2.23)

In the limit q → −1 it is easy to obtain that

(x; q)s
(cq; q)s

=















(

1−x2

1−c2

)s/2

, s even

1−x
1+c

(

1−x2

1−c2

)(s−1)/2

, s odd

Hence, in the limit q → −1 the sum (2.23) is divided in two parts. The first part is an even polynomial with

respect to x, i.e. p(x2), where p(x) is a polynomial. The second part will have the form (1 − x)q(x2) with

another polynomial q(x). Simple calculations lead to the following formulas.

If n is even

P (−1)
n (x) = κn

[

2F1

(

−n
2 ,

n+α+β+2
2

α+1
2

∣

∣

∣

∣

1− x2

1− c2

)

+
n(1− x)

(1 + c)(α+ 1)
2F1

(

1− n
2 ,

n+α+β+2
2

α+3
2

∣

∣

∣

∣

1− x2

1− c2

)

]

(2.24)

If n is odd

P (−1)
n (x) = κn

[

2F1

(

−n−1
2 , n+α+β+1

2
α+1
2

∣

∣

∣

∣

1− x2

1− c2

)

−
(α+ β + n+ 1)(1 − x)

(1 + c)(α + 1)
2F1

(

−n−1
2 , n+α+β+3

2
α+3
2

∣

∣

∣

∣

1− x2

1− c2

)

]

(2.25)

The normalization coefficient is given by

κn =











(1−c2)n/2((α+1)/2)n/2

((n+α+β+2)/2)n/2
, n even

(1 + c)
(1−c2)(n−1)/2((α+1)/2)(n+1)/2

((n+α+β+1)/2)(n+1)/2
, n odd

(2.26)

The remaining problem is to find the othogonality relation and the corresponding weight function w(x) for the

big -1 Jacobi polynomials. Of course, this could be done directly from the known orthogonality relation for

5



the big q-Jacobi polynomials by taking the limit q → −1. However it is more instructive to derive the weight

function using the method of polynomial mappings [6], [10]. This method will allow to find nontrivial relations

between the big -1 Jacobi polynomials and the ordinary Jacobi polynomials. This will explain the origin of the

rather “strange“ expressions (2.24) and (2.25).

3. Polynomial systems and the Christoffel transform

In this section we consider a scheme allowing to obtain a new family of orthogonal polynomial starting from two

sets of orthogonal polynomials related by the Christoffel transform. This scheme is a simple generalization of

the well known Chihara method for constructing symmetric orthogonal polynomials from a pair of orthogonal

polynomials and their kernel partner [2]. It is also very close to the scheme proposed by Marcellán and Petronilho

in [10].

Let Pn(x), n = 0, 1, 2, . . . be a set of monic orthogonal polynomials satisfying the recurrence relation

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x). (3.1)

Consider a partner family of orthogonal polynomials Qn(x) related to Pn(x) by the Christoffel transform [11]

Qn(x) =
Pn+1(x)−AnPn(x)

x− ν2
, (3.2)

where ν is a real parameter and An = Pn+1(ν
2)/Pn(ν

2).

If the polynomials Pn(x) are monic orthogonal with respect to the linear functional σ

〈σ, Pn(x)Pm(x)〉 = 0, n 6= m

then the polynomials Qn(x) are monic orthogonal with respect to the functional σ̃ = (x − ν2)σ, i.e. [11]

〈σ, (x − ν2)Qn(x)Qm(x)〉 = 0, n 6= m

The polynomials Pn(x) are expressed in terms of the polynomials Qn(x) via the Geronimus transform [15]

Pn(x) = Qn(x)−BnQn−1(x), (3.3)

where the coefficients Bn are related to An and the recurrence coefficients by the formulas

un = BnAn−1, bn = −An −Bn + ν2. (3.4)

Now, starting from a pair of polynomials Pn(x), Qn(x) we can construct another family of orthogonal polynomial

Rn(x) by proceeding as follows.

For even numbers n, let the polynomials Rn(x) be defined according to

R2n(x) = Pn(x
2) (3.5)
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and for odd numbers n, let

R2n+1(x) = (x− ν)Qn(x
2) (3.6)

It is obvious that for all n = 0, 1, 2, . . . the polynomials Rn(x) are monic polynomials in x of degree n.

What is more important is that the polynomialsRn(x) are orthogonal, since they satisfy the 3-term recurrence

relation

Rn+1(x) + (−1)nνRn(x) + vnRn−1(x) = xRn(x), (3.7)

where

v2n = −Bn, v2n+1 = −An (3.8)

This construction can also be carried out in the reverse.

Assume that the polynomials Rn(x) satisfy the recurrence relation (3.7) with some real parameter ν and

positive coefficients vn, it can easily be shown by induction that

R2n(x) = Pn(x
2), R2n+1(x) = (x− ν)Qn(x

2),

where Pn(x), Qn(x) are monic polynomials of degree n.

The polynomials Rn(x) are orthogonal with respect to a positive definite linear functional ρ:

〈ρ,Rn(x)Rm(x)〉 = 0, n 6= m (3.9)

Let

rn = 〈ρ, xn〉

be the corresponding moments. We use the standard normalization condition r0 = 1. It can then be proven,

again by induction, that

r2n+1 = νr2n, n = 0, 1, 2, . . . (3.10)

and that the even moment r2n is an even monic polynomial of degree 2n in the argument ν, i.e.

r2n = ν2n + nv1ν
2n−2 +

n(n− 1)

2
v1(v1 + v2)ν

2n−4 +O(ν2n−6).

It is directly verified that the polynomials Pn(x) and Qn(x) are orthogonal as they satisfy the recurrence

relations

Pn+1(x) + (v2n + v2n+1 + ν2)Pn(x) + v2nv2n−1Pn−1(x) = xPn(x)

and

Qn+1(x) + (v2n+2 + v2n+1 + ν2)Qn(x) + v2nv2n+1Qn−1(x) = xQn(x)

Moreover, the polynomials Qn(x) are Christoffel transforms of the polynomials Pn(x):

Qn(x) =
Pn+1(x) + v2n+1Pn(x)

x− ν2
.
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while the polynomials Pn(x) are Geronimus transforms of Qn(x):

Pn(x) = Qn(x) + v2nQn−1(x)

Assume that the polynomials Pn(x) have moments cn. Then one has a simple relation between the moments

r2n = cn, r2n+1 = νcn, n = 0, 1, 2, . . . (3.11)

The moments c̃n corresponding to the polynomials Qn(x) are given by

c̃n =
cn+1 − ν2cn

c1 − ν2
(3.12)

Expression (3.12) follows easily from the definition of the Christoffel transform [15].

Note that in the special case ν = 0 we recover the well known scheme relating symmetric and non-symmetric

polynomials that has been described in details by Chihara [2]. In this case the polynomials Rn(x) are symmetric

Rn(−x) = (−1)nRn(x) and their odd moments are zero r2n+1 = 0. All the above formulas remain valid if one

puts ν = 0. We have thus provided a generalization of the Chihara scheme with an additional parameter ν.

Note that the resulting polynomials Rn(x) are no longer symmetric; they satisfy however the simple recurrence

relation (3.7) and have properties very close to those of symmetric orthogonal polynomials.

In [10] a more general problem was studied with the orthogonal polynomials Rn(x) defined as R2n(x) =

Pn(φ(x)), where φ(x) is a polynomial of second degree and Pn(x) is a given system of orthogonal polynomials.

Our approach corresponds to the special case φ(x) = x2. Note that the general case of polynomial mapping has

the form RNn(x) = Pn(πN (x)), where πN (x) is a polynomial of degree N . Again it is assumed that both Pn(x)

and Rn(x) are nondegenerate orthogonal polynomials. The theory of such mappings was considered in [6].

Consider now the following concrete example connected with Jacobi polynomials. This example will allow

to establish the weight function of the big −1-Jacobi polynomials.

Let

P (ξ,η)
n (x) = Gn 2F1

(

−n, n+ ξ + η + 1

ξ + 1
;x

)

be Jacobi polynomials with orthogonality relation

∫ 1

0

xξ(1− x)ηP (ξ,η)
n (x)P (ξ,η)

m (x)dx = hnm δnm

on the interval [0, 1].

The normalization coefficient

Gn = (−1)n
(ξ + 1)n

(n+ ξ + η + 1)n

ensures that Pn(x) is monic P
(ξ,η)
n (x) = xn +O(xn−1).

Perform first an affine transformation of the argument and consider the new monic orthogonal polynomials

Pn(x) = (c2 − 1)n P (ξ,η)
n

(

1− x

1− c2

)

,
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where c is a real parameter with the restriction 0 < c < 1.

In terms of hypergeometric functions

Pn(x) = (1− c2)n
(ξ + 1)n

(n+ ξ + η + 1)n
2F1

(

−n, n+ ξ + η + 1

ξ + 1
;
1− x

1− c2

)

(3.13)

Clearly, these polynomials are orthogonal on the interval [c2, 1]

∫ 1

c2
(1− x)ξ(x − c2)ηPn(x)Pm(x)dx = 0, n 6= m

Introduce also the companion polynomials Qn(x) through the Christoffel transform

Qn(x) =
Pn+1(x)−AnPn(x)

x− 1
, An =

Pn+1(1)

Pn(1)
(3.14)

It is easily seen that the polynomials Qn(x) are again expressible in terms of Jacobi polynomials with ξ → ξ+1:

Qn(x) = (c2 − 1)n P (ξ+1,η)
n

(

1− x

1− c2

)

,

or, in terms of hypergeometric functions

Qn(x) = (1− c2)n
(ξ + 2)n

(n+ ξ + η + 2)n
2F1

(

−n, n+ ξ + η + 2

ξ + 2
;
1− x

1− c2

)

. (3.15)

The polynomials Pn(x) and Qn(x) are connected by the relations (3.2) and (3.3) with ν = 1. The coefficients

An and Bn can be found from the following observation. Putting x = 1, we find from (3.13) and (3.15)

Pn(1) = (1− c2)n
(ξ + 1)n

(n+ ξ + η + 1)n
, Qn(1) = (1− c2)n

(ξ + 2)n
(n+ ξ + η + 2)n

.

From these formulas we immediately get

An =
Pn+1(1)

Pn(1)
= (1− c2)

(ξ + n+ 1)(ξ + η + n+ 1)

(2n+ ξ + η + 1)(2n+ ξ + η + 2)
(3.16)

and

Bn =
Qn(1)− Pn(1)

Qn−1(1)
= (1− c2)

n(η + n)

(2n+ ξ + η)(2n+ ξ + η + 1)
. (3.17)

Note that An > 0, Bn > 0 for n = 1, 2, . . . due to the restriction 0 < c < 1.

Consider now the new monic orthogonal polynomials Rn(x) defined by the relations

R2n(x) = Pn(x
2), R2n+1(x) = (x− 1)Qn(x

2) (3.18)

According to the general theory of polynomial mappings [6], [10], it is not difficult to show that the polynomials

Rn(x) are orthogonal on a domain formed by the union of two intervals [−1,−c], [c, 1] of the real axis:

∫

−c

−1

Rn(x)Rm(x)W (x)dx +

∫ 1

c

Rn(x)Rm(x)W (x)dx = 0, n 6= m (3.19)

where the (non-normalized) weight function is:

W (x) = θ(x)(1 + x)(1 − x2)ξ(x2 − c2)η (3.20)
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and θ(x) = x/|x| is the sign function. Note that the weight function W (x) is not positive on the interval

[−1,−c].

In terms of Gauss’ hypergeometric functions we have the expressions

R2n(x) = Pn(x
2) = (1− c2)n

(ξ + 1)n
(n+ ξ + η + 1)n

2F1

(

−n, n+ ξ + η + 1

ξ + 1
;
1− x2

1− c2

)

(3.21)

and

R2n+1(x) = (x− 1)Qn(x
2) = (1− c2)n

(ξ + 2)n
(n+ ξ + η + 2)n

(x− 1)2F1

(

−n, n+ ξ + η + 2

ξ + 2
;
1− x2

1− c2

)

(3.22)

The polynomials Rn(x) satisfy the 3-term recurrence relation

Rn+1(x) + (−1)nRn(x) + vnRn−1(x) = xRn(x), (3.23)

where

v2n = −Bn = (c2−1)
n(η + n)

(2n+ ξ + η)(2n+ ξ + η + 1)
, v2n+1 = −An = (c2−1)

(ξ + n+ 1)(ξ + η + n+ 1)

(2n+ ξ + η + 1)(2n+ ξ + η + 2)
(3.24)

Note that all the coefficients vn are negative, vn < 0, which corresponds to the non-positivity of the weight

function W (x).

4. The weight function and the orthogonality of the big -1 Jacobi

polynomials

In order to determine the weight function and the orthogonality region for the big -1 Jacobi polynomials, we

notice that formulas (2.24) and (2.25) can be presented in the following equivalent form:

P (−1)
n (x) = Rn(x) −GnRn−1(x), (4.1)

where Rn(x) are the polynomials defined by (3.21), (3.22) that satisfy the recurrence relation (3.23). In these

formulas we should put ξ = (α− 1)/2, η = (β + 1)/2. The coefficients Gn have the expression

Gn =

{ (1−c)n
2n+α+β , n even

− (1+c)(n+α)
2n+α+β , n odd

(4.2)

It is well known that if two families of orthogonal polynomials are related by a formula such as (4.1), then

necessarily the polynomials P
(−1)
n (x) are obtained from the polynomials Rn(x) by the Geronimus transform

[15]. This is equivalent to the statement that the weight function w(−1)(x) of the polynomials P
(−1)
n (x) is

obtained from the weight function W (x) of the polynomials Rn(x) as follows:

w(−1)(x) =
W (x)

x− µ
+Mδ(x− µ), (4.3)

10



with two additional parameters µ and M . Formula (4.3) means that apart from the division of the weight

function W (x) by the linear factor x − µ there is an additional concentrated mass M that is inserted at the

point x = µ.

The parameter µ can be found from the recurrence relation for the coefficients Gn [15]

Gn+1 + (−1)n +
vn
Gn

= µ (4.4)

with the recurrence coefficients vn given by (3.24).

Substituting (4.2) into (4.4) we obtain µ = −c.

Thus the orthogonality relation for polynomials P
(−1)
n (x) takes the form

∫

Γ

P (−1)
n (x)P (−1)

m (x)W (x)(x + c)−1dx+MP (−1)
n (−c)P (−1)

m (−c) = 0, n 6= m (4.5)

where the contour Γ is the union of the two intervals [−1,−c] and [c, 1] of the real axis.

In order to find the value M of the concentrated mass it is sufficient to consider a special case of the

orthogonality relation (4.5) for n = 1,m = 0
∫

Γ

P
(−1)
1 (x)W (x)(x + c)−1dx+MP1(−c) = 0 (4.6)

Now, P
(−1)
1 (x) is given by

P
(−1)
1 (x) = x+ ζ

where ζ = c(α+1)−β−1
2+α+β . Substituting this expression into (4.6) and calculating the integral (through an elemen-

tary reduction to the Euler beta-integral) we find that M = 0.

Thus, the orthogonality relation for polynomials P
(−1)
n (x) reads

∫

Γ

P (−1)
n (x)P (−1)

m (x)w(−1)(x)dx = 0, n 6= m, (4.7)

where the weight function w(−1)(x) can be presented in the form

w(−1)(x) = θ(x)(x + 1)(x+ c)−1(1− x2)(α−1)/2(x2 − c2)(β+1)/2 (4.8)

or, equivalently

w(−1)(x) = θ(x)(x + 1)(x− c)(1 − x2)(α−1)/2(x2 − c2)(β−1)/2. (4.9)

Note that under the restrictions α > −1, β > −1, the weight function is positive on the two intervals of Γ and

all the moments

mn =

∫

Γ

w(−1)(x)xndx

are finite for n = 0, 1, 2, . . ..

When c → 0, the big q-Jacobi polynomials reduce to the little q-Jacobi polynomials [8]. In the limit case

q → −1 we see that when c → 0, the set of two intervals coalesces to the single interval [−1, 1] and the weight

function becomes

w(x) |c=0 = (1 + x)|x|β(1− x2)(α−1)/2
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which corresponds to the weight function of the little −1 Jacobi polynomials [13].

So far, we considered the case 0 < c < 0. The case c > 1 can be treated in an analogous way. This leads to

the following orthogonality relation

∫

−1

−c

P (−1)
n (x)P (−1)

m (x)w(−1)(x)dx +

∫ c

1

P (−1)
n (x)P (−1)

m (x)w(−1)(x)dx = 0, n 6= m, (4.10)

where the weight function is almost the same as in (4.9) with obvious modifications:

w(−1)(x) = θ(x)(x + 1)(c− x)(x2 − 1)(α−1)/2(c2 − x2)(β−1)/2 (4.11)

and where again we have the restrictions α > −1, β > −1.

The case c = 1 is degenerate: the recurrence coefficients un for even n become zero, u2n = 0, which means

that orthogonal polynomials P
(1)
n (x) are no more positive definite. The two intervals of orthogonality shrink

into two points x = ±1.

5. Anticommutator algebra describing big -1 Jacobi polynomials

The Askey-Wilson polynomials are described by the AW(3)-algebra [14], [12]. Among the different equivalent

forms of this algebra, we choose the following one:

XY − qY X = µ3Z + ω3, Y Z − qZY = µ1X + ω1, ZX − qXZ = µ2Y + ω2, (5.1)

which possesses an obvious symmetry with respect to all 3 operators (see, e.g. [7]).

Here q is a fixed parameter corresponding to the ”base” parameter in the q-hypergeometric functions defining

the Askey-Wilson polynomials [8]. The pairs of operators (X,Y ), (Y, Z) and (Z,X) play the role of ”Leonard

pairs” (see [12], [7]).

The Casimir operator

Q = (q2 − 1)XY Z + µ1X
2 + µ2q

2Y 2 + µ3Z
2 + (q + 1)(ω1X + ω2qY + ω3Z) (5.2)

commutes with all operators X,Y, Z.

The constants ωi, i = 1, 2, 2 (together with the value of the Casimir operator Q) define representations of

the AW (3) algebra (see [14] for details).

Consider now the case of the big −1 Jacobi polynomials and choose the following operators

X = L0 + α+ β + 1, Y = x, Z = −
2

x
(c+ (x− 1)(x+ c)R) , (5.3)

where L0 is the operator given by (2.10).

It is then easy to verify that these operators satisfy the linear anticommutation relations

XY + Y X = Z + ω3, Y Z + ZY = ω1, ZX +XZ = 4Y + ω2, (5.4)
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where

ω1 = −4c, ω2 = 4(α− βc), ω3 = 2(β − αc).

The Casimir operator of the algebra defined by (5.4) is

Q = Z2 + 4Y 2

In the realization (5.3) the Casimir operator takes the constant value Q = 4(c2 + 1).

In this realization the operator X (up to an additive constant) is the operator of which the polynomials

P
(−1)
n (x) are the eigenfunctions. The operator Y here corresponds to multiplication by x.

The “dual”realization of the algebra (5.4) is obtained if one takes an infinite discrete basis en, n = 0, 1, 2, . . .

on which the operators X,Y act as

Xen = (λn + α+ β + 1)en, Y en = u
(−1)
n+1 en+1 + b(−1)

n en + en−1, (5.5)

where λn is the eigenvalue (2.17) and where the recurrence coefficients u
(−1)
n , b

(−1)
n are given by (2.20), (2.21).

Thus in this representation the operator Y is a Jacobi (i.e. tri-diagonal) matrix and the eigenvalue equation

Y ~P = x~P

is equivalent to the recurrence relation (2.22) for the big −1 Jacobi polynomials. Indeed, we can present the

vector ~P in terms of its expansion coefficients over the basis en:

~P =

∞
∑

n=0

Cnen

Without loss of generality we can choose C0 = 1. The coefficients Cn in this expansion are then found to satisfy

the recurrence relation (2.22) and it is seen moreover that these Cn are monic polynomials in x of degree n.

Hence Cn = P
(−1)
n (x).

6. Two-diadonal basis for the operator L0 and a generalization of

Gauss’ hypergeometric functions

We already showed that the Dunkl-type operator L0 is tri-diagonal in the ordinary monomial basis xn (see

formula (2.15)). There exists, however, another polynomial basis in which the operator L0 is two-diagonal.

This basis can be constructed as follows

φ0 = 1, φ1(x) = x− 1, φ2(x) = (x2 − 1), . . . , φ2n(x) = (x2 − 1)n, φ2n+1(x) = (x− 1)(x2 − 1)n (6.1)

It is easily verified that

L0φn(x) = λnφn(x) + ηnφn−1(x), (6.2)
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where λn is the eigenvalue given by by (2.17), and

ηn =

{

2n(c− 1), if n even

−2(c+ 1)(α+ n) if n odd

Consider now the eigenvalue equation

L0Pn(x) = λnPn(x) (6.3)

and expand the polynomials Pn(x) over the basis φn(x):

Pn(x) =

n
∑

s=0

Ansφs(x).

For the expansion coefficients Ans we have from (6.3):

An,s+1 =
Ans(λn − λs)

ηs+1
(6.4)

From (6.4), the coefficients Ans can be found explicitly in terms of An0:

Ans = An0
(λn − λ0)(λn − λ1) . . . (λn − λs−1)

η1η2 . . . ηs
(6.5)

or in terms of the coefficient Ann:

Ans = Ann
ηnηn−1 . . . ηs+1

(λn − λn−1)(λn − λn−2) . . . (λn − λs)
(6.6)

We thus have the following explicit formula for the polynomials Pn(x)

Pn(x) = An0

n
∑

s=0

(λn − λ0)(λn − λ1) . . . (λn − λs−1)

η1η2 . . . ηs
φs(x) (6.7)

Expression (6.7) resembles Gauss’ hypergeometric function and can be considered as a nontrivial generalization

of it. Indeed, products in the numerator and denominator of (6.7) can easily be presented in terms of ordinary

Pochhammer symbols and we thus recover the explicit formulas (2.24) and (2.25). Note nevertheless, that the

form (6.7) looks much simpler.

Moreover, note also that in the basis φn(x) the operators X and Y of the algebra defined by (5.3) and (5.4),

become lower and upper triangular:

Xφn(x) = (L0 + α+ β + 1)φn(x) = (λn + α+ β + 1)φn(x) + ηnφn−1(x)

and

Y φn(x) = xφn(x) = φn+1(x) + (−1)nφn(x)
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AZ thanks CRM (U de Montréal) for its hospitality.

14



References

[1] Y. Ben Cheikh and M.Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials,

Appl. Math. and Comput. 187, (2007) 105–114.

[2] T. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, NY, 1978.

[3] L.M.Chihara,T.S.Chihara, A class of nonsymmetric orthogonal polynomials. J. Math. Anal. Appl. 126

(1987), 275–291.

[4] C.F.Dunkl, Integral kernels with reflection group invariance. Canadian Journal of Mathematics, 43 (1991)

1213–1227.

[5] Ya.L.Geronimus, On polynomials orthogonal with respect to to the given numerical sequence and on Hahn’s

theorem, Izv.Akad.Nauk, 4 (1940), 215–228 (in Russian).

[6] J.Geronimo and W. Van Assche, Orthogonal polynomials on several intervals via a polynomial mapping,

Trans. Amer. Math. Soc., 308(2) (1988), 559–581.

[7] T.Ito, P.Terwilliger, Double Affine Hecke Algebras of Rank 1 and the Z3-Symmetric Askey-Wilson Relations,

SIGMA 6 (2010), 065, 9 pages.

[8] R.Koekoek, R.Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue,

Report no. 98-17, Delft University of Technology, 1998.

[9] R. Koekoek,P. Lesky, R. Swarttouw, Hypergeometric Orthogonal Polynomials and Their Q-analogues,

Springer-Verlag, 2010.

[10] F.Marcellán and J.Petronilho, Eigenproblems for Tridiagonal 2-Toeplitz Matrices and Quadratic Polynomial

Mappings, Lin. Alg. Appl. 260 (1997) 169–208.
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