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Abstract

We present a micro-macro strategy able to describe the dynamics of
crowds in heterogeneous media. Herein we focus on the example of pedes-
trian counterflow. The main working tools include the use of mass and
porosity measures together with their transport as well as suitable ap-
plication of a version of Radon-Nikodym Theorem formulated for finite
measures. Finally, we illustrate numerically our microscopic model and
emphasize the effects produced by an implicitly defined social velocity.
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1 Introduction

One of the most annoying examples of collective behavior1 is pedestrian jams
– people get clogged up together and cannot reach within the desired time the
target destination. Such jams are the immediate consequence of the simple ex-
clusion process [18, 24], which basically says that two individuals cannot occupy
the same position x ∈ Ω ⊂ Rd at the same time t ∈ S :=]0, T [, where T ∈]0,∞[
is the final moment at which we are still observing our social network.

Observational data (cf. e.g. [19]) clearly indicates that such jams typically
take place in certain neighborhoods of bottlenecks2 (narrow corridors, exits,
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1See the question of scale of Vicsek [26].
2Bottlenecks are places where people have a reduced capacity to accommodate locally [24].
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Figure 1: Schematic representation of the heterogeneous medium Ω. The little
black discs represent the pedestrians, while the dark gray zones are the parts
where the pedestrians cannot penetrate (i.e. subsets of Ωs). The pedestrians are
considered here to be the microscopic entities, while the grayish shadow indicates
a macroscopic crowd; see Section 2.1 for the precise distinction between micro
and macro made in terms of supports of micro and macro measures.

corners, inner obstacles/pillars, ...). The effect of heterogeneities3 on the overall
dynamics of the crowd is what motivates our work.

In this paper we start off with the assumption that inside a given room (e.g.
a shopping mall), which we denote by Ω, there are a priori known zones with
restricted access for pedestrians (e.g. closed rooms, prohibited access areas,
inner concrete structures)4, whose union we call Ωs. Let us also assume that
the remaining region, say Ωp, which is defined by Ωp := Ω − Ωs, is connected.
Consequently, Ωp is accessible to pedestrians. The exits of Ω – target that each
pedestrian wants to reach – are assumed to belong to the boundary of Ωp. The
way we imagine the heterogeneity of Ω is sketched in Figure 1.

In this framework, we choose for the following working plan: Firstly, we
extend the multiscale approach developed by Piccoli et al. [10] (see also the
context described in [21] and [22]) to the case of counterflow5 of pedestrians; then
we allow the pedestrian dynamics to take place in the heterogeneous domain Ω,
and finally, we include an implicit velocity law for the pedestrians motion. The
main reason why we choose the counterflow scenario [also called bidirectional

3Note that, for instance, Campanella et al. [8] give a different meaning to heterogeneity:
they mainly refer to lack of homogeneity in the speed distributions of pedestrians. In [7] the
geometric heterogeneities - obstacles - are introduced in the microscopic model.

4Note that some neighborhoods of these places can host, with a rather high probability,
congestions!

5Two groups of people are moving in opposite directions.
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flow [7]] out of the many other well-studied crowd dynamics scenarios is at least
threefold:

(i) Pedestrians counterflow is often encountered in the everyday life: at pedes-
trian traffic lights, or just observe next week-end, when you go shopping,
the dynamics of people coming against your walking direction [especially
if you are positioned inside narrow corridors].

(ii) The walkers trying to move faster by avoiding local interactions with
the oncoming pedestrians facilitate the occurrence of a well-known self-
organized macroscopic pattern – lane formation; see, for instance [15].

(iii) We expect the solution to microscopic models posed in narrow corridors
to be computationally cheap. Consequently, extensive sensitivity analy-
ses can be performed and the corresponding simulation results can be in
principle tested against existing experimental observations [19, 8].

The presence of heterogeneities is quite natural. Pedestrians typically follow
existing streets, walking paths, they trust building maps, etc. They take into
account the local environment of the place where they are located. If the number
of pedestrians is relatively high compared to the available walking space, then
the crowd-structure interaction becomes of vital importance; see e.g. [6] for
preliminary results in this direction.

As long term plan, we wish to understand what are the microscopic mech-
anisms behind the formation of lanes in heterogeneous environments. In other
words, we aim at identifying links between social force-type microscopic models
(see [14, 20], e.g.) and macroscopic models for lanes (see [15, 3], e.g.) in the
presence of heterogeneities. Here we follow a measure-theoretical approach to
describe the dynamics of crowds6. Our working strategy is very much inspired
by the works by M. Böhm [4] and Piccoli et al. [10].

The paper is organized as follows: In Section 2 we introduce basic model-
ing concepts defining the mass and porosity measures needed here, as well as
a coupled system of transport equations for measures. In Section 3 we present
our concept of social velocity. Section 4 contains the main result of our paper
– the weak formulation of a micro-macro system for pedestrians moving in het-
erogeneous domains. We close the paper with a numerical illustration of our
microscopic model (Section 5) exhibiting effects induced by an implicitly defined
velocity.

2 Modeling with mass measures. The porosity
measure

For basic concepts of measure theory and their interplay with modeling in ma-
terials and life science, we refer the reader, for instance, to [12] and respectively
to [4, 21, 25].

6The pedestrians are not exposed here to panic situations.

3



2.1 Mass measure

Let Ω ⊂ Rd be a domain (read: object, body) with mass. Since we have in
mind physically relevant situations only, we consider d ∈ {1, 2, 3}. However,
most of the considerations reported here do not depend on the choice of the
space dimension d. Let µm(Ω′) be defined as the mass in Ω′ ⊂ Ω. Note that
whenever we write Ω′ ⊂ Ω, we actually mean that Ω′ is such that Ω′ ∈ B(Ω),
where B(Ω) the σ-algebra of the Borel subsets of Ω. As a rule, we assume µm
to be defined on all elements of B(Ω).

In Sections 2.1.1 and 2.1.2, we consider two specific interpretations of this
mass measure that we need to describe the behavior of pedestrians at two sep-
arated spatial scales.

2.1.1 Microscopic mass measure

Suppose that Ω contains a collection of N point masses (each of them of mass
scaled to 1), and denote their positions by {pk}Nk=1 ⊂ Ω, for N ∈ N. We want
µm to be a counting measure (see Sect. 1.2.4 in [1], e.g.) with respect to these
point masses, i.e. for all Ω′ ∈ B(Ω):

µm(Ω′) = #{pk ∈ Ω′}. (1)

This can be achieved by representing µm as the sum of Dirac measures, with
their singularities located at the pk, k ∈ {1, 2, . . . , N}, namely:

µm =

N∑
k=1

δpk . (2)

We refer to the measure µm defined by (2) as microscopic mass measure.

2.1.2 Macroscopic mass measure

Let us now consider another example of mass measure µm. To do this, we
assume that the following postulate applies to µm:

Postulate 2.1 (Assumptions on µm). (i) µm > 0.

(ii) µm is σ-additive.

(iii) µm � λd, where λd is the Lebesgue-measure in Rd.

By Postulate 2.1 (i) and (ii), we have that µm is a positive measure on Ω,
whereas (iii) implies that there is no mass present in a set that has no volume
(w.r.t. λd). A mass measure satisfying Postulate 2.1 is in this context referred to
as a macroscopic mass measure. Radon-Nikodym Theorem7 (see [12] for more

7See [5] for a variant of this Theorem formulated for finite measures which is applied here.
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details on this subject) guarantees the existence of a real, non-negative density
ρ̂ ∈ L1

λd(Ω) such that:

µm(Ω′) =

∫
Ω′
ρ̂(x)dλd(x) for all Ω′ ∈ B(Ω). (3)

Similarly, we introduce time-dependent mass measures µt, where the time
slice t ∈ S enters as a parameter.

2.2 Porosity measure

Let Ω ⊂ Rd be a heterogeneous domain composed of two distinct regions: free
space for pedestrian motion and a matrix (obstacles) such that Ω = Ωs ∪ Ωp
(disjoint union), where Ωs is the matrix (solid part) of Ω and Ωp is the free
space (pores). This notation is very much inspired by the modeling of transport
and chemical reactions in porous media; see [2], e.g.

Let µp(Ω
′) be the volume of pores in Ω′ ⊂ Ω.

Postulate 2.2 (Assumptions on µp). (i) µp > 0.

(ii) µp is σ-additive.

(iii) µp � λd.

By Postulate 2.2 (i) and (ii), we have that µp is a measure on Ω. We refer
to µp as a porosity measure (cf. [4]). The absolute continuity statement in
(iii) formulates mathematically that there cannot be a non-zero volume of pores
included in a set that has zero volume (w.r.t. λd). Assume that Ω is such that
λd(Ω) < ∞. Then the Radon-Nikodym Theorem ensures the existence of a
function φ ∈ L1

+(Ω) such that:

µp(Ω
′) =

∫
Ω′
φdλd for all Ω′ ∈ B(Ω). (4)

Note that µp(Ω
′) measures the volume of a subset of Ω′ (namely of Ω′ ∩ Ωp).

So, we get that

µp(Ω
′) = λd(Ω′ ∩ Ωp) 6 λd(Ω′) for all Ω′ ∈ B(Ω). (5)

We thus have
∫

Ω′ φdλ
d 6

∫
Ω′ dλ

d, or
∫

Ω′(1 − φ)dλd > 0. Since the latter
inequality holds for any choice of Ω′, it follows that φ 6 1 almost everywhere in
Ω.

2.3 Transport of a measure

For the sequel, we wish to restrict the presentation to the case d = 2. For
our time interval S and for each i ∈ {1, 2}, we denote the velocity field of the
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corresponding measure by vi(t, x) with (t, x) ∈ S×Ω. Let also µ1
t , and µ2

t be two
time-dependent mass measures. Note that for each choice of i, the dependence
on t of vi is comprised in the functional dependence of vi on both measures µ1

t ,
and µ2

t . This is clearly indicated in (9). The fact that here we deal with two
mass measures µ1

t and µ2
t , transported with corresponding velocities v1 and v2,

translates into:
∂µ1

t

∂t
+∇ · (µ1

t v
1) = 0,

∂µ2
t

∂t
+∇ · (µ2

t v
2) = 0,

for all (t, x) ∈ S × Ω. (6)

These equations are accompanied by the following set of initial conditions:

µit = µi0 as t = 0 for i ∈ {1, 2}. (7)

It is worth noting that (6) is the measure-theoretical counterpart of the Reynolds
Theorem in continuum mechanics. To be able to interpret what a partial differ-
ential equation in terms of measures means, we give a weak formulation of (6).
Essentially, for all test functions ψ1, ψ2 ∈ C1

0 (Ω̄) and for almost every t ∈ S, the
following identity holds:

d

dt

∫
Ω

ψi(x)dµit(x) =

∫
Ω

vi(t, x) · ∇ψi(x)dµit(x) for all i ∈ {1, 2}. (8)

Definition 2.1 (Weak solution of (6)). The pair ({µ1
t}t>0, {µ2

t}t>0) is called a
weak solution of (6), if for all i ∈ {1, 2} the following properties hold:

1. the mappings t 7→
∫

Ω
ψi(x)dµit(x) are absolutely continuous for all ψi ∈

C1
0 (Ω̄);

2. vi ∈ L2
(
S;L1

µi
t
(Ω)
)

;

3. Equation (8) is fulfilled.

We refer the reader to [9] for an example where the existence of weak solu-
tions to a similar (but easier) transport equation for measures has been rigor-
ously shown.

3 Social velocities

We follow very much the philosophy developed by Helbing, Vicsek and coauthors
(see, e.g. [15] and references cited therein) which defends the idea that the
pedestrian’s motion is driven by a social force. Is worth noting that similar
thoughts were given in this direction (motion of social masses/networks) much
earlier, for instance, by Spiru Haret [13] and Antonio Portuondo y Barceló [23].
Moreover, other authors (for instance, Hoogendoorn and Bovy [16]) prefer to
account also for the Zipfian principle of least effort for the human behavior. We
do not attempt to capture the least effort principle in this study.
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3.1 Specification of the velocity fields vi

Until now, we have not explicitly defined the velocity fields vi (i ∈ {1, 2}). Very
much inspired by the social force model by Dirk Helbing et al. [14], the velocity
of a pedestrian is modeled as a desired velocity vides perturbed by a component
vi

[µ1
t ,µ

2
t ]

. The latter component is due to the presence of other individuals, both

from the pedestrian’s own subpopulation and from the other subpopulation.
The desired velocity is independent of the measures µ1

t and µ2
t , and represents

the velocity that an agent would have had in absence of other pedestrians.
For each i ∈ {1, 2}, the velocity vi is defined by superposing the two velocities

vides and vi
[µ1

t ,µ
2
t ]

as follows:

vi(t, x) := vides(x) + vi[µ1
t ,µ

2
t ](x), for all t ∈ (0, T ) and x ∈ Ω. (9)

For a counterflow scenario, the desired velocities of the two subpopulations
follow opposite directions. We thus take

vides(x) = vides ∈ R2

fixed (for i ∈ {1, 2}) and
v1

des = −v2
des.

The component vi
[µ1

t ,µ
2
t ]

models the effect of interactions with other pedestri-

ans on the current velocity8. Since the interactions between members of the
same subpopulation differ (in general) from the interactions between members
of opposite subpopulations, we assume that vi

[µ1
t ,µ

2
t ]

consists of two parts:

vi[µ1
t ,µ

2
t ](x) :=

∫
Ω\{x}

fown(|y − x|)g(αixy)
y − x
|y − x|

dµit(y)

+

∫
Ω\{x}

fopp(|y − x|)g(αixy)
y − x
|y − x|

dµjt (y), (10)

for i ∈ {1, 2}, where j = 1 if i = 2 and vice versa. In (10) we have used the
following:

• fown and fopp are continuous functions from R+ to R, describing the effect
of the mutual distance between individuals on their interaction. Compare
the concept of distance interactions defined in [25]. fown incorporates the
influence by members of the same subpopulation, whereas fopp accounts
for the interaction between members of opposite subpopulations. fown is
a composition of two effects: on the one hand individuals are repelled,
since they want to avoid collisions and congestion, on the other hand they
are attracted to other group mates, in order not to get separated from
the group. fopp only contains a repulsive part, since we assume that
pedestrians do not want to stick to the other subpopulation.

8The interactions we are pointing at are nonlocal.
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• αixy denotes the angle between y − x and vides(x): the angle under which

x sees y if it were moving in the direction of vides(x).

• g is a function from [−π, π] to [0, 1] that encodes the fact that an individ-
ual’s vision is not equal in all directions.

Regarding the specific choice of fown, fopp and g we are very much inspired
by [14] and [10], e.g. However we do not use exactly their way of modeling
pedestrians’ interaction forces. We list here the following forms for the functions
fown, fopp and g that match the given characterization:

fopp(s) :=

 −F opp
( 1

s2
− 1

(Ropp
r )2

)
, if s 6 Ropp

r ;

0, if s > Ropp
r ,

(11)

fown(s) :=

 −F own
(1

s
− 1

Rown
r

)(1

s
− 1

Rown
a

)
, if s 6 Rown

a ;

0, if s > Rown
a ,

(12)

g(α) := σ + (1− σ)
1 + cos(α)

2
, for α ∈ [−π.π]. (13)

Here F opp and F own are fixed, positive constants. The constants Ropp
r , Rown

r

(radii of repulsion) and Rown
a (radius of attraction) are fixed and should be cho-

sen such that 0 < Rown
r < Rown

a and 0 < Ropp
r . Furthermore, the restriction

max{Rown
a , Ropp

r } � L has to be fulfilled. The interaction fopp is designed such
that individuals “feel” repulsion (i.e. fopp < 0) from another pedestrian if they
are placed within a distance Ropp

r from one another. The corresponding state-
ment holds for fown if individuals are within the distance Rown

r . Additionally,
an individual is attracted to a second individual if their mutual distance ranges
between Rown

r and Rown
a .

The function g ensures that an individual experiences the strongest influence
from someone straight ahead, since g(0) = 1 for any σ ∈ [0, 1]. The constant σ is
a tuning parameter called potential of anisotropism. It determines how strongly
a pedestrian is focussed on what happens in front of him, and how large the
influence is of people at his sides or behind him.

In the remainder of this section, we suggest four different alternatives for the
definition of vi

[µ1
t ,µ

2
t ]

by indicating various special choices of distance interactions

and visibility angles (conceptually similar to αixy) as they arise in (10). All
of them boil down to including an implicit dependency of the actual velocity
vi = vides + vi

[µ1
t ,µ

2
t ]

. Note that this effect increases the degree of realism of the

model, but on the other hand it makes the mathematical justification of the
corresponding models much harder to get.

3.1.1 Modification of the angle αixy

We defined the angle αixy as the angle between the vector y − x and vides(x).
However this is not a good definition if the pedestrian in position x is not moving

8



in the direction of vides(x) (or, in a broader sense, if the actual speed cannot be
approximated sufficiently well by the desired velocity). Therefore we suggest to
define αixy = αixy(t) as the angle between y − x and vi(t, x).

3.1.2 Prediction of mutual distance in (near) future

Up to now the functions fown and fopp depended on the actual distance between
x and y at time t. However pedestrians are likely to anticipate on the distance
they expect to have after a certain (small) time-step (say, some fixed ∆t ∈ R).
In practice, this means that at a time t ∈ S a person will modify his velocity
(either in direction, or in magnitude, or both) if he foresees a collision at time
t+ ∆t ∈ S.

To predict the mutual distance between x and y at time t+ ∆t, the current
velocities at x and y are used for extrapolation. The predicted distance is:
|(y+v(y, t)∆t)−(x+v(x, t)∆t)|. Consequently, sticking to the notation in (10),
the interaction potential fown and fopp should depend on |(y+vi(t, y)∆t)−(x+
vi(t, x)∆t)| and on |(y+vj(t, y)∆t)− (x+vi(t, x)∆t)| respectively (where j = 1
if i = 2 and vice versa).

3.1.3 Prediction of mutual distance within a time interval in the
(near) future

The disadvantage of using |(y + v(y, t)∆t)− (x+ v(x, t)∆t)| is that ∆t is fixed.
A pedestrian can thus only predict the distance at an a priori specified point
in time in the future. However, people are able to anticipate also if they expect
a collision to occur at a time that is not equal to t+ ∆t. We assume now that
we are given a fixed ∆tmax ∈ R+ such that an individual can predict mutual
distances by extrapolation for any time τ ∈ (t, t+∆tmax). Thus, ∆tmax imposes
a bound on how far can an individual look ahead into the future. To capture
this effect, we suggest to replace fown(|y − x|) and fopp(|y − x|) by:

1

∆tmax

∫ ∆tmax

0

fown(
∣∣(y + vi(t, y)τ)− (x+ vi(t, x)τ)

∣∣)dτ, (14)

and
1

∆tmax

∫ ∆tmax

0

fopp(
∣∣(y + vj(t, y)τ)− (x+ vi(t, x)τ)

∣∣)dτ, (15)

respectively.

3.1.4 Weighted prediction

Since an individual probably attaches more value to his predictions for points
in time that are nearer by than others, one additional modification comes to
our mind. Let h : [t, t + ∆tmax] → [0, 1] be a weight function. Then instead of
(14) and (15), we propose

1

∆tmax

∫ ∆tmax

0

fown(
∣∣(y + vi(t, y)τ)− (x+ vi(t, x)τ)

∣∣)h(τ)dτ, (16)

9



and
1

∆tmax

∫ ∆tmax

0

fopp(
∣∣(y + vj(t, y)τ)− (x+ vi(t, x)τ)

∣∣)h(τ)dτ. (17)

If h is decreasing, then the influence of t1 is larger than the influence of t2, if
t1 < t2 (which matches our intuition).

3.2 Two-scale measures

We now consider the explicit decomposition of the measures µ1
t and µ2

t . Let the
pair (θ1, θ2) be in [0, 1]2, and consider the following decomposition of µ1

t and µ2
t :

µit = θim
i
t + (1− θi)M i

t , i ∈ {1, 2}. (18)

Here, mi
t is a microscopic measure. We consider {pik(t)}Ni

k=1 ⊂ Ω to be the
positions at time t of N i chosen pedestrians, that are members of subpopulation
i. We want mi

t to be a counting measure with respect to these pedestrians, i.e.
for all Ω′ ∈ B(Ω):

mi
t(Ω

′) = #{pik(t) ∈ Ω′}, i ∈ {1, 2}. (19)

We thus define mi
t as the sum of Dirac masses (cf. Section 2.1.1), centered at

the pik, k = 1, 2, . . . , N i:

mi
t =

Ni∑
k=1

δpik(t), i ∈ {1, 2}. (20)

M i
t is the macroscopic part of the measure, which takes into account the part

of the crowd that is considered continuous. We consequently have M i
t � λ2,

since a set of zero volume cannot contain any mass. Note that we are thus
in the setting of Section 2.1.2. Now, Radon-Nikodym Theorem guarantees the
existence of a real, non-negative density ρ̂i(t, ·) ∈ L1

λ2(Ω) such that:

M i
t (Ω

′) =

∫
Ω′
ρ̂i(t, x)dλ2(x) (21)

for all Ω′ ∈ B(Ω) and all i ∈ {1, 2}.

4 Micro-macro modeling of pedestrians motion
in heterogeneous domains

We have already made clear that we want to model the heterogeneity of the
interior of the corridor. In practice this means that pedestrians cannot enter
all parts of the domain. As described in Section 2.2, we have a measure µp
corresponding to the porosity of the domain (which is fixed in time). However,
we note that the concept of porosity (cf. Section 2.2) is a macroscopic one.

10



For this reason only the macroscopic part of the mass measure in (18) needs
some modification with respect to the porosity. In this context, one should
be aware of the analogy with mathematical homogenization. This technique
distinguishes between microscopic and macroscopic scales, where we also see
that some (averaged) characteristics are only defined on the macroscopic scale.
For more details, the reader is referred to [2] or [17]. In R2, we have µp � λ2.
Furthermore M i

t � µp for i ∈ {1, 2} and a.e. t ∈ S. This is obvious, since no
pedestrians can be present in a set that has no pore space (i.e. zero porosity
measure). A basic property of Radon-Nikodym derivatives now gives us:

dM i
t

dλ2
=
dM i

t

dµp

dµp
dλ2

i ∈ {1, 2} for almost every t ∈ S. (22)

We have already defined ρ̂i(t, ·) :=
dM i

t

dλ2
and φ :=

dµp
dλ2

. If we now denote

by ρi(t, ·) the Radon-Nikodym derivative
dM i

t

dµp
, the following relation holds:

ρ̂i(t, ·) ≡ ρi(t, ·)φ(·) for all i ∈ {1, 2}.

4.1 Weak formulation for micro-macro mass measures

We now have the following measure:

µit = θim
i
t + (1− θi)M i

t , i ∈ {1, 2}, (23)

as was given in (18), where now:

mi
t =

Ni∑
k=1

δpik(t), dM i
t (x) = ρi(t, x)φ(x)dλ2(x). (24)

This specific form of the measure will now be included in the weak formulation
(8), with velocity field (9)-(10). The real positive numbers θi (i ∈ {1, 2}) are
intrinsic scaling parameters depending on N i.

The transport equation (8) takes the following form:

d

dt

(
θi

Ni∑
k=1

ψi
(
pik(t)

)
+ (1− θi)

∫
Ω

ψi(x)ρi(t, x)φ(x)dλ2(x)
)

=

θi

Ni∑
k=1

vi
(
t, pik(t)

)
· ∇ψi

(
pik(t)

)
+ (1− θi)

∫
Ω

vi(t, x) · ∇ψi(x)ρi(t, x)φ(x)dλ2(x),

(25)

for all i ∈ {1, 2}. Here we have used the sifting property of the Dirac distribu-

11



tion. In the same manner, we specify vi
[µ1

t ,µ
2
t ]

from (10) as

vi[µ1
t ,µ

2
t ](x) = θi

Ni∑
k=1

pik(t)6=x

fown(|pik(t)− x|)g(αixpik(t))
pik(t)− x
|pik(t)− x|

+(1− θi)
∫

Ω

fown(|y − x|)g(αixy)
y − x
|y − x|

ρi(t, y)φ(y)dλ2(y)

+θj

Nj∑
k=1

pjk(t)6=x

fopp(|pjk(t)− x|)g(αi
xpjk(t)

)
pjk(t)− x
|pjk(t)− x|

+(1− θj)
∫

Ω

fopp(|y − x|)g(αixy)
y − x
|y − x|

ρj(t, y)φ(y)dλ2(y),

for i ∈ {1, 2}, and j as before (j = 1 if i = 2 and vice versa). We have omitted
the exclusion of {x} from the domain of integration (in the macroscopic part),
since {x} is a nullset and thus negligible w.r.t. λ2. Note that the sums may be
evaluated in any point x ∈ Ω (not necessarily x = pik(t) for some i and k); the
integral parts may also be evaluated in all x, including x = pik(t) for some i and
k.

5 Numerical illustration

We wish to illustrate now the microscale description of a counterflow scenario
(i.e. for θ1 = θ2 = 1) by presenting plots of the configuration of all individuals
situated in a given corridor at specific moments in time.

We consider a specific instance in which there are in total 40 individuals (20
in each subpopulation). The dimensions of the corridor are d = 4 and L = 20.
The velocity is taken as defined in (10)-(13). Furthermore, the following model
parameters are used: v1

des = 1.34e1, v2
des = −1.34e1, F opp = 0.3, F own = 0.3,

Ropp
r = 2, Rown

a = 2, Rown
r = 0.5, Fw = 0.5, Rw = 0.5, σ = 0.5.

In Figure 2, we show the configuration in the corridor at times t = 0, t = 7.5,
and t = 15. The individuals of the subpopulation 1 are colored blue, while the
individuals of the subpopulation 2 are colored red. Clearly, self-organization
can be observed in the system: Pedestrians that desire to move in the same
direction form lanes (in this case, three of them). This feature is observed and
described extensively in literature, cf. e.g. [15].

Another feature, pointed out by Figure 2, is the following: Within the three
already formed lanes, small clusters of people are formed. This flocking is a
result of the typical choice for fown in (12). Members of the same subpopulation
are repelled if their mutual distance is in the range (0, Rown

r ); they are attracted
if their mutual distance is in the range (Rown

r , Rown
a ). No interaction takes place

if individuals are more than a distance Rown
a apart.

The attraction part of the interaction causes individuals that are already rel-
atively close to get even closer, until they are at a distance Rown

r . For distances
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Figure 2: The simulation of a crowd’s motion in a corridor of length L = 20
and width d = 4. Each of the two sub-populations consists of 20 individuals.
The images were taken at t = 0 (left), t = 7.5 (middle), t = 15 (right).

around Rown
r , there is an interplay between repulsion and attraction, eventu-

ally leading to some equilibrium in the mutual distances between neighboring
individuals in one cluster. In Figure 2, we observe self-organized patterns even
within clusters.

Acknowledgments

We acknowledge fruitful discussions within the ”Particle Systems Seminar” of
ICMS (Institute for Complex Molecular Systems, TU Eindhoven, The Nether-
lands), especially with H. ten Eikelder, B. Markvoort, F. Nardi, M. Peletier,
M. Renger, and F. Toschi. A.M. is indebted to Michael Böhm (Bremen) for
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