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SCHUR-FINITENESS IN λ-RINGS

C. MAZZA AND C. WEIBEL

Abstract. We introduce the notion of a Schur-finite element in a λ-ring.

Since the beginning of algebraic K-theory in [G57], the splitting principle has
proven invaluable for working with λ-operations. Unfortunately, this principle does
not seem to hold in some recent applications, such as the K-theory of motives.
The main goal of this paper is to introduce the subring of Schur-finite elements of
any λ-ring, and study its main properties, especially in connection with the virtual
splitting principle.

A rich source of examples comes from Heinloth’s theorem [Hl], that the Grothendieck
group K0(A) of an idempotent-complete Q-linear tensor category A is a λ-ring. For
the categoryMeff of effective Chow motives, we show that K0(V ar) → K0(M

eff)
is not an injection, answering a question of Grothendieck.

When A is the derived category of motives DMgm over a field of characteristic 0,
the notion of Schur-finiteness in K0(DMgm) is compatible with the notion of a
Schur-finite object in DMgm, introduced in [Mz].

We begin by briefly recalling the classical splitting principle in Section 1, and
answering Grothendieck’s question in Section 2. In section 3 we recall the Schur
polynomials, the Jacobi-Trudi identities and the Pieri rule from the theory of sym-
metric functions. Finally, in Section 4, we define Schur-finite elements and show
that they form a subring of any λ-ring. We also state the conjecture that every
Schur-finite element is a virtual sum of line elements.

Notation. We will use the term λ-ring in the sense of [Ber, 2.4]; we warn the reader
that our λ-rings are called special λ-rings by Grothendieck, Atiyah and others; see
[G57] [AT] [A].

A Q-linear category A is a category in which each hom-set is uniquely divisible
(i.e., a Q-module). By a Q-linear tensor category (or QTC) we mean a Q-linear
category which is also symmetric monoidal and such that the tensor product is
Q-linear. We will be interested in QTC’s which are idempotent-complete.
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2 C. MAZZA AND C. WEIBEL

1. Finite-dimensional λ-rings

Almost all λ-rings of historical interest are finite-dimensional. This includes the
complex representation rings R(G) and topological K-theory of compact spaces
[AT, 1.5] as well as the algebraic K-theory of algebraic varieties [G57]. In this
section we present this theory from the viewpoint we are adopting. Little in this
section is new.

Recall that an element x in a λ-ring R is said to be even of finite degree n if λt(x)
is a polynomial of degree n, or equivalently that there is a λ-ring homomorphism
from the ring Λn defined in 1.2 to R, sending a to x. We say that x is a line element
if it is even of degree 1, i.e., if λn(x) = 0 for all n > 1.

We say that x is odd of degree n if σt(x) = λ−t(x)
−1 is a polynomial of finite

degree n. Since σ−t(x) = λt(−x), we see that x is odd just in case −x is even.
Therefore there is a λ-ring homomorphism from the ring Λ−n defined in 1.2 to R
sending b to x.

We say that an element x is finite-dimensional if it is the difference of two even
elements, or equivalently if x is the sum of an even and an odd element. The subset
of even elements in R is closed under addition and multiplication, and the subset
of finite-dimensional elements forms a subring of R.

Example 1.1. If R is a binomial λ-ring, then r is even if and only if some r(r −
1) · · · (r − n) = 0, and odd if and only if some r(r + 1) · · · (r + n) = 0. The
binomial rings

∏n
i=1 Z are finite dimensional. If R is connected then the subring of

finite-dimensional elements is just Z.

There is a well known family of universal finite-dimensional λ-rings {Λn}.

Definition 1.2. Following [AT], let Λn denote the free λ-ring generated by one
element a = a1 of finite degree n (i.e., subject to the relations that λk(a) = 0 for all
k > n). By [Ber, 4.9], Λn is just the polynomial ring Z[a1, ..., an] with ai = λi(a1).

Similarly, we write Λ−n for the free λ-ring generated by one element b = b1,
subject to the relations that σk(b) = 0 for all k > n. Using the antipode S, we
see that there is a λ-ring isomorphism Λ−n

∼= Λn sending b to −a, and hence that
Λ−n

∼= Z[b1, ..., bn] with bk = σk(b).
Consider finite-dimensional elements in λ-rings R which are the difference of an

even element of degree m and an odd element of degree n. The maps Λm → R and
Λ−n → R induce a λ-ring map from Λm ⊗ Λ−n to R.

Lemma 1.3. If an element x is both even and odd in a λ-ring, then x and all the
λi(x) are nilpotent. Thus λt(x) is a unit of R[t].

Proof. If x is even and odd then λt(x) and σ−t(x) are polynomials in R[t] which
are inverse to each other. It follows that the coefficients λi(x) of the ti are nilpotent
for all i > 0. �

If R is a graded λ-ring, an element
∑

ri is even (resp., odd, resp., finite-
dimensional) if and only if each homogeneous term ri is even (resp., odd, resp.,
finite-dimensional). This is because the operations λn multiply the degree of an
element by n.

The forgetful functor from λ-rings to commutative rings has a right adjoint;
see [Kn, pp. 20–21]. It follows that the category of λ-rings has all colimits. In
particular, if B ← A→ C is a diagram of λ-rings, the tensor product B ⊗A C has
the structure of a λ-ring. Here is a typical, classical application of this construction,
originally proven in [AT, 6.1].

Proposition 1.4 (Splitting Principle). If x is any even element of finite degree
n in a λ-ring R, there exists an inclusion R ⊆ R′ of λ-rings and line elements
ℓ1, ..., ℓn in R′ so that x =

∑

ℓi.
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Proof. Let Ωn denote the tensor product of n copies of the λ-ring Λ1 = Z[ℓ]; this is
a λ-ring whose underlying ring is the polynomial ring Z[ℓ1, ..., ℓn], and the λ-ring
Λn of Definition 1.2 is the subring of symmetric polynomials in Ωn; see [AT, §2].
Let R′ be the pushout of the diagram Ωn ← Λn → R. Since the image of x is
1 ⊗ x = a ⊗ 1 = (

∑

ℓi) ⊗ 1, it suffices to show that R → R′ is an injection. This
follows from the fact that Ωn is free as a Λn-module. �

Corollary 1.5. If x is any finite-dimensional element of a λ-ring R, there is an
inclusion R ⊆ R′ of λ-rings and line elements ℓi, ℓ

′
j in R′ so that

x = (
∑

ℓi)− (
∑

ℓ′j).

Scholium 1.6. For later use, we record an observation, whose proof is implicit in
the proof of Proposition 4.2 of [AT]: λm(λnx) = Pm,n(λ

1x, . . . , λmnx) is a sum
of monomials, each containing a term λix for i ≥ n. For example, λ2(λ3x) =
λ6x− xλ5x+ λ4xλ2x (see [Kn, p. 11]).

2. K0 of tensor categories

The Grothendieck group of a Q-linear tensor category provides numerous ex-
amples of λ-rings, and forms the original motivation for introducing the notion of
Schur-finite elements in a λ-ring.

A Q-linear tensor category is exact if it has a distinguished family of sequences,
called short exact sequences and satisfying the axioms of [Q], and such that each
A⊗− is an exact functor. In many applicationsA is split exact: the only short exact
sequences are those which split. By K0(A) we mean the Grothendieck group as an
exact category, i.e., the quotient of the free abelian group on the objects [A] by the
relation that [B] = [A] + [C] for every short exact sequence 0→ A→ B → C → 0.

Let A be an idempotent-complete exact category which is a QTC for ⊗. For
any object A in A, the symmetric group Σn (and hence the group ring Q[Σn]) acts
on the n-fold tensor product A⊗n. If A is idempotent-complete, we define ∧nA
to be the direct summand of A⊗n corresponding to the alternating idempotent
∑

(−1)σσ/n! of Q[Σn]. Similarly, we can define the symmetric powers Symn(A).
It turns out that λn(A) only depends upon the element [A] in K0(A), and that λn

extends to a well defined operation on K0(A).
The following result was proven by F.Heinloth in [Hl, Lemma 4.1], but the result

seems to have been in the air; see [Dav, p. 486], [LL04, 5.1] and [B1, B2]. A special
case of this result was proven long ago by Swan in [Sw].

Theorem 2.1. If A is any idempotent-complete exact QTC, K0(A) has the struc-
ture of a λ-ring. If A is any object of A then λn([A]) = [∧nA].

Kimura [Kim] and O’Sullivan have introduced the notion of an object C being
finite-dimensional in any QTC A: C is the direct sum of an even object A (one for
which some ∧nA ∼= 0) and an odd object B (one for which some Symn(B) ∼= 0).
It is immediate that [C] is a finite-dimensional element in the λ-ring K0(A). Thus
the two notions of finite dimensionality are related.

Example 2.2. LetMeff denote the category of Q-linear pure effective Chow motives
with respect to rational equivalence over a field k. Its objects are summands of
smooth projective varieties over a field k and morphisms are given by Chow groups.
Thus K0(M

eff) is the group generated by the classes of objects, modulo the relation
[M1 ⊕M2] = [M1] + [M2]. SinceM

eff is a QTC, K0(M
eff) is a λ-ring.

By adjoining an inverse to the Lefschetz motive toMeff, we obtain the category
M of Chow motives (with respect to rational equivalence). This is also a QTC, so
K0(M) is a λ-ring.
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The category Meff embeds into the triangulated category DMeff
gm of effective

geometric motives; see [MVW, 20.1]. Similarly, The category M embeds in the
triangulated category DMgm of geometric motives [MVW, 20.2]. Bondarko proved

in [Bo, 6.4.3] that K0(DMeff
gm) ∼= K0(M

eff) and K0(DMgm) ∼= K0(M). Thus we
may investigate λ-ring questions in these triangulated settings. As far as we know,
it is possible that every element of K0(DMgm) is finite-dimensional.

Here is an application of these ideas. Recall that any quasiprojective scheme X
has a motive with compact supports in DMeff, M c(X). If k has characteristic 0,
this is an effective geometric motive, and if U is open in X with complement Z
there is a triangle M c(Z)→ M c(X)→ M c(U); see [MVW, 16.15]. It follows that
[M c(X)] = [M c(U)] + [M c(Z)] in K0(M

eff). (This was originally proven by Gillet
and Soulé in [GS, Thm. 4] before the introduction of DM, but see [GS, 3.2.4].

Definition 2.3. Let K0(V ar) be the Grothendieck ring of varieties obtained by
imposing the relation [U ]+ [X \U ] = [X ] for any variety X . By the above remarks,
there is a well defined ring homomorphism K0(V ar)→ K0(M

eff).

Grothendieck asked in [G64, p.174] if this morphism was far from being an
isomorphism. We can now answer his question.

Theorem 2.4. The homomorphism K0(V ar)→ K0(M
eff) is not an injection.

For the proof, we need to introduce Kapranov’s zeta-function. If X is any
quasiprojective variety, its symmetric power SnX is the quotient of Xn by the
action of the symmetric group. We define ζ t(X) =

∑

[SnX ]tn as a power series
with coefficients in K0(V ar).

Lemma 2.5. ([Gul]) The following diagram is commutative:

K0(V ar)
ζ t
- 1 +K0(V ar)[[t]]

K0(M
eff)

M c

?
σt
- 1 +K0(M

eff)[[t]].

M c

?

Proof. It suffices to show that [M c(SnX)] = Symn[M c(X)] in K0(M
eff) for any X .

This is proven by del Baño and Navarro in [dBN, 5.3]. �

Definition 2.6. Following [LL04, 2.2], we say that a power series f(t) =
∑

rnt
n ∈

R[[t]] is determinentally rational over a ring R if there exists an m > 0 such that
the m×m symmetric matrices (rn+i+j)

m
i,j=1 have determinant 0 for all large n. The

name comes from the classical fact ([1894]) that when R is a field (or a domain) a
power series is determinentally rational if and only if it is a rational function.

Clearly, if f(t) is not determinentally rational over R and R ⊂ R′ then f(t)
cannot be determinentally rational over R′.

If x = a+ b is a finite-dimensional element of a λ-ring R, with a even and b odd,
then λt(a) and λt(−b) are polynomials so λt(x) = λt(a)λt(−b) and σt(x) = λt(x)

−1

are rational functions, and hence rational functions. This was observed by André
in [A05].

Proof of Theorem 2.4. Let X be the product C×D of two smooth projective curves
of genus > 0, so that pg(X) > 0. Larsen and Lunts showed in [LL04, 2.4, 3.9] that
ζ t(X) is not determinentally rational over R = K0(V ar). On the other hand,
Kimura proved in [Kim] that X is a finite-dimensional object inMeff, so σt(X) =
λt(X)−1 is a determinentally rational function in R′ = K0(M

eff). It follows that
R→ R′ cannot be an injection. �
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3. Symmetric functions

We devote this section to a quick study of the ring Λ of symmetric functions,
and especially the Schur polynomials sπ, referring the reader to [Macd] for more
information. In the next section, we will use these polynomials to define the notion
of Schur-finite elements in a λ-ring.

The ring Λ is defined as the ring of symmetric polynomials in variables xi; a major
role is played by the elementary symmetric polynomials ei ∈ Λ and the homogeneous
power sums hn =

∑

xi1 · · ·xin (where the sum being taken over i1 ≤ · · · ≤ in).
Their generating functions E(t) =

∑

ent
n and H(t) =

∑

hnt
n are

∏

(1 + xit) and
∏

(1 − xit)
−1, so that H(t)E(−t) = 1. In fact, Λ is a graded polynomial ring in

two relevant ways (with en and hn in degree n):

Λ = Z[e1, ..., en, ...] = Z[h1, ..., hn, ...].

Given a partition π = (n1, ..., nr) of n (so that
∑

ni = n), we let sπ ∈ Λn denote
the Schur polynomial of π. The elements en and hn of Λ are identified with s(1,...,1)
and s(n), respectively. The Schur polynomials also form a Z-basis of Λ by [Macd,
3.3]. By abuse, we will say that a partition π contains a partition λ = (λ1, ..., λs)
if ni ≥ λi and r ≥ s, which is the same as saying that the Young diagram for π
contains the Young diagram for λ.

Here is another description of Λ, taken from [Kn]: Λ is isomorphic to the direct
sum R∗ of the representation rings R(Σn), made into a ring via the outer product
R(Σm)⊗R(Σn)→ R(Σm+n). Under this identification, en ∈ Λn is identified with
the class of the trivial simple representation Vn of Σn. More generally, sπ corre-
sponds to the class [Vπ ] in R(Σn) of the irreducible respesentation corresponding
to π. (See [Kn, III.3].)

Proposition 3.1. Λ is a graded Hopf algebra, with coproduct ∆ and antipode S
determined by the formulas

∆(en) =
∑

i+j=n

ei ⊗ ej , S(en) = hn and S(hn) = en.

Proof. The graded bialgebra structure is well known and due to Burroughs [Bu],
who defined the coproduct on R∗ as the map induced from the restriction maps
R(Σm+n)→ R(Σm)⊗R(Σn), and established the formulas ∆(en) =

∑

i+j=n ei⊗ej .
The fact that there is a ring involution S interchanging en and hn is also well known.
The fact that S is an antipode does not seem to be well known, but it is immediate
from the formula

∑

(−1)rerhn−r of [Macd, (2.6)]. �

Remark 3.2. Atiyah shows in [A, 1.2] that Λ is isomorphic to the graded dual
R∗ = ⊕Hom(R(Σn),Z). That is, if {vπ} is the dual basis in Rn to the basis {[Vπ]}
of simple representations in Rn and the restriction of [Vπ ] is

∑

cµνπ [Vµ]⊗ [Vν ] then
vµvν =

∑

π c
µν
π vπ in R∗. Thus the product studied by Atiyah on the graded dual

R∗ is exactly the algebra structure dual to the coproduct ∆.

Let π′ denote the conjugate partition to π. The Jacobi-Trudi identities sπ =
det |hπi+j−i| = det |eπ′

i
+j−i| show that the antipode S interchanges sπ and sπ′ .

(Jacobi conjectured the identities, and his student Nicoló Trudi verified them in
1864; they were rediscovered by Giovanni Giambelli in 1903 and are sometimes
called the Giambelli identities).

Let Ie,n denote the ideal of Λ generated by the ei with i ≥ n. The quotient
Λ/Ie,n is the polynomial ring Λn−1 = Z[e1, ..., en−1]. Let Ih,n denote S(Ie,n), i.e.,
the ideal of Λ generated by the hi with i ≥ n.
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Proposition 3.3. The Schur polynomials sπ for partitions π containing (1n) (i.e.,
with at least n rows) form a Z-basis for the ideal Ie,n. The Schur polynomials with
at most n rows form a Z-basis of Λn.

Similarly, the Schur polynomials sπ for partitions π containing (n) (i.e., with
π1≥n) form a Z-basis for the ideal Ih,n.

Proof. We prove the assertions about Ie,n; the assertion about Ih,n follows by ap-
plying the antipode S. By [Macd, 3.2], the sπ which have fewer than n rows project
onto a Z-basis of Λn−1 = Λ/Ie,n. Since the sπ form a Z-basis of Λ, it suffices to
show that every partition π = (π1, ..., πr) with r > n is in Ie,n. Expansion along
the first row of the Jacobi-Trudi identity sπ = det |eπ′

i
+j−i| shows that sπ is in the

ideal Ie,r . �

Corollary 3.4. The ideal Ih,m ∩ Ie,n of Λ has a Z-basis consisting of the Schur
polynomials sπ for partitions π containing the hook (m, 1n−1) = (m, 1, ..., 1).

Definition 3.5. For any partition λ = (λ1, ..., λr), let Iλ denote the subgroup of
Λ generated by the Schur polynomials sπ for which π contains λ, i.e., πi ≥ λi

for i = 1, ..., r. We have already encountered the special cases Ie,n = I(1,...,1) and
Ih,n = I(n) in Proposition 3.3, and I(m,1,...,1) = Ih,m ∩ Ie,n in Corollary 3.4.

Example 3.6. Consider the partition λ = (2, 1). Since Iλ = Ih,2 ∩ Ie,2 by Corollary
3.4, Λλ is the pullback of Z[a] and Z[b] along the common quotient Z[a]/(a2) =
Λ/(I(1,1) + I(2)). The universal element of Λλ is x = (a, b) and if we set y = (0, b2)

then Λ(2,1)
∼= Z[x, y]/(y2 − x2y). Since λn(b) = bn for all n, it is easy to check that

λ2i(x) = yi and λ2i+1(x) = xyi.

Lemma 3.7. The Iλ are ideals of Λ, and {Iλ} is closed under intersection.

Proof. The Pieri rule writes hpsπ as a sum of sµ, where µ runs over partitions
containing π. Thus Iλ is closed under multiplication by the hp. As every element
of Λ is a polynomial in the hp, Iλ is an ideal.

If µ = (µ1, ..., µs) is another partition, then sπ is in Iλ ∩ Iµ if and only if πi ≥
max{λi, µi} Thus Iλ ∩ Iµ = Iλ∪µ. �

Remark 3.8. The λ-ideal Iλ+Iµ need not be of the form Iν for any ν. For example,
I = I(2) + I(1,1) contains every Schur polynomial except 1 and s1 = e1.

We conclude this section by connecting Λ with λ-rings. Recall from [Ber, 4.4],
[G57, I.4] or [AT, §2] that the universal λ-ring on one generator a = a1 is the poly-
nomial ring Z[a1, . . . , an, . . . ], with λn(a) = an. This ring is naturally isomorphic
to the ring of natural operations on the category of λ-rings, with an corresponding
to the operation λn; an operation φ corresponds to φ(a) ∈ Λ.

Following [A] and [Kn], we may identify this universal λ-ring with Λ, where the ai
are identified with the ei ∈ Λ. The operation σn, defined by σn(x) = (−1)nλn(−x),
corresponds to hn; this may be seen by comparing the generating functions H(t) =
E(−t)−1 and σt(x) = λ−t(x)

−1.

Proposition 3.9. If φ is an element of Λ, and ∆(φ) =
∑

φ′
i ⊗ φ′′

i then the corre-
sponding natural operation on λ-rings satisfies φ(x+ y) =

∑

φ′
i(x)φ

′′
i (y).

Proof. Consider the set Λ′ of all operations in Λ satisfying the condition of the
proposition. Since ∆ is a ring homomorphism, Λ′ is a subring of Λ. Since ∆(en) =
∑

ei ⊗ en−i and λn(x + y) =
∑

λi(x)λn−i(y), Λ′ contains the generators en of Λ,
and hence Λ′ = Λ. �

The Littlewood-Richardson rule states that ∆([Vπ ]) is a sum
∑

cµνπ [Vµ] ⊗ [Vν ],
where µ ⊆ π and π is obtained from µ by concatenating ν in a certain way. By
Proposition 3.9, we then have
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Corollary 3.10. sπ(x+ y) =
∑

cµνπ sµ(x)sν(y).

4. Schur-finite λ-rings

In this section we introduce the notion of a Schur-finite element in a λ-ring
R, and show that these elements form a subring of R containing the subring of
finite-dimensional elements. We conjecture that they are the elements for which
the virtual splitting principle holds.

Definition 4.1. We say that an element x in a λ-ring R is Schur-finite if there
exists a partition λ such that sµ(x) = 0 for every partition µ containing λ. That
is, Iλ annihilates x. We call such a λ a bound for x.

By Remark 3.8, x ∈ R may have no unique minimal bound λ. By Example 4.5
below, sλ(x) = 0 does not imply that λ is a bound for x.

Proposition 4.2. Each Iλ is a λ-ideal, and Λλ = Λ/Iλ is a λ-ring. Thus every
Schur-finite x∈R with bound λ determines a λ-ring map f : Λλ→R with f(a) = x.

Moreover, if λ is a rectangular partition then Iλ is a prime ideal, and Λλ is a
subring of a polynomial ring in which a becomes finite-dimensional.

Proposition 4.2 verifies Conjecture 3.9 of [KKT].

Proof. Fix a rectangular partition β = ((m + 1)n+1) = (m + 1, ...,m+ 1), and set
a =

∑m
1 ai, b =

∑n
1 bj . Consider the universal λ-ring map

f : Λ→ Λm ⊗ Λ−n
∼= Z[a1, ..., am, b1, ..., bn]

sending e1 to the finite-dimensional element a + b (see Definition 1.2). We claim
that the kernel of f is Iβ . Since Ker(f) is a λ-ideal, this proves that Iβ is a λ-
ideal and that Λ/Iβ embeds into the polynomial ring Z[a1, ..., am, b1, ..., bn]. Since
any partition λ can be written as a union of rectangular partitions βi, Lemma 3.7
implies that Iλ = ∩Iβi

is also a λ-ideal.
By the Littlewood-Richardson rule 3.10, sπ(a + b) =

∑

cµνπ sµ(a)sν(b), where
π is obtained from µ by concatenating ν in a certain way. If π contains β then
sπ(a+ b) = 0, because either the length of µ is > m or else ν1 > n; by Proposition
3.3, sµ(a) = 0 in the first case and sν(b) = 0 in the second case. Thus Iλ ⊆ Ker(f).

If π does not contain β then the length of µ is at most m and ν1 ≤ n. By
Proposition 3.3, sµ(a) 6= 0 in Λm and sν(b) 6= 0 in Λ−n. As the sµ(a) run over
a basis of Λm and the sν(b) run over a basis of Λ−n, by Proposition 3.3, we have
f(sπ) = sπ(a+ b) 6= 0. Thus Iλ = Ker(f), as claimed. �

Corollary 4.3. Λ(2,2) is the subring Z+ xZ[a, b] of Z[a, b], where x = a+ b.

Proof. By Proposition 4.2, Λ(2,2) is the subring of Z[a, b] generated x = a+ b and
the λn(x). Since

λn+1(x) = aλn(b) + λn+1(b) = abn + bn+1 = xbn,

we have Λ(2,2) = Z[x, xb, xb2, . . . , xbn, . . . ] = Z+ xZ[a, b]. �

Remark 4.4. The ring Λ(2,2) was studied in [KKT, 3.8], where it was shown that

Λ(2,2) embeds into Z[x, y] sending en to xyn−1. This is the same as the embedding
in Corollary 4.3, up to the change of coordinates (x, y)=(a + b, b).

Example 4.5. Let I be the ideal of Λ(2,2) generated by the λ2i(x) (i > 0) and set

R = Λ(2,2)/I. Then R is a λ-ring and x is a nonzerodivisor such that λ2i(x) = 0

but λ2i+1(x) 6= 0. In particular, λ2(x) = 0 yet λ3(x) 6= 0.
To see this, we use the embedding of Corollary 4.3 to see that I contains

x(xb2i−1) and (xb)(xb2i−1) and hence the ideal J of Z[a, b] generated by x2b. In
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fact, I is additively generated by J and the {xb2i−1}. It follows that R has basis
{1, xn, xb2n|n ≥ 1}. Since λn(λ2i(x)) is equivalent to λ2in(x) = xb2in−1 modulo J
(by 1.6), it lies in I. Hence I is a λ-ideal of Λ(2,2).

Lemma 4.6. If x and y are Schur-finite, so is x+ y.

Proof. Given a partition λ, there is a partition π0 such that whenever π contains
π0, one of the partitions µ and ν appearing in the Littlewood-Richardson rule 3.10
must contain λ. If x and y are both killed by all Schur polynomials indexed by
partitions containing λ, we must therefore have sπ(x+ y) = 0. �

Corollary 4.7. Finite-dimensional elements are Schur-finite.

Proof. Proposition 3.3 shows that even and odd elements are Schur-finite. �

Example 4.8. If R is a binomial ring containing Q, then every Schur-finite element
is finite-dimensional. This follows from Example 1.1 and [Macd, Ex. I.3.4], which
says that sπ(r) is a rational number times a product of terms r − c(x), where the
c(x) are integers.

Example 4.9. The universal element x of Λ(2,1) is Schur-finite but not finite-dimensional.

To see this, recall from Example 3.6 that Λ(2,1)
∼= Z[x, y]/(y2−x2y). Because Λ(2,1)

is graded, if x were finite-dimensional it would be the sum of an even and odd ele-
ment in the degree 1 part {nx} of Λ(2,1). If n ∈ N, nx cannot be even because the

second coordinate of λk(nx) is
(

−n
k

)

bk by 1.2. And nx cannot be odd, because the

first coordinate of σk(nx) is (−1)k
(

−n
k

)

ak.

Lemma 4.10. Let R ⊂ R′ be an inclusion of λ-rings. If x ∈ R is Schur-finite in
R′, then x is Schur-finite in R. In particular, if x is finite-dimensional in R′, then
x is Schur-finite in R.

Proof. Since sπ(x) may be computed in either R or R′, the set of partitions π for
which sπ(x) = 0 is the same for R and R′. The final assertion follows from Lemma
4.7. �

Lemma 4.11. If π is a partition on n, sπ′(−x) = (−1)nsπ(x).

Proof. Write sπ as a homogeneous polynomial f(e1, e2, ...) of degree n. Apply-
ing the antipode S in Λ, we have sπ′ = f(h1, h2, ...). It follows that sπ′(−x) =
f(σ1, σ2, ...)(−x). Since σi(−x) = (−1)iλi(x), and f is homogeneous, we have

sπ′(−x) = f(−λ1,+λ2, ...)(x) = (−1)nf(λ1, λ2, ...)(x) = sπ(x). �

Theorem 4.12. The Schur-finite elements form a subring of any λ-ring, containing
the subring of finite-dimensional elements.

Proof. The Schur-finite elements are closed under addition by Lemma 4.6. Since π
contains λ just in case π′ contains λ′, Lemma 4.11 implies that −x is Schur-finite
whenever x is. Hence the Schur-finite elements form a subgroup of R. It suffices to
show that if x and y are Schur-finite in R, then xy and all λi(x) are Schur-finite.

Let x be Schur-finite with rectangular bound µ, so there is a map from the λ-ring
Λµ to R sending the generator e to x. Embed Λµ in R′ = Z[a1, . . . , b1, . . .] using
Proposition 4.2. Since every element of R′ is finite-dimensional, λn(e) is finite-
dimensional in R′, and hence Schur-finite in Λµ by Lemma 4.10. It follows that the
image λn(x) of λn(e) in R is also Schur-finite.

Let x and y be Schur-finite with rectangular bounds µ and ν, and let Λµ → R
and Λν → R be the λ-ring maps sending the generators eµ and eν to x and y. Since
the induced map Λµ ⊗ Λν → R sends eµ ⊗ eν to xy, we only need to show that
eµ ⊗ eν is Schur-finite. But Λµ ⊗ Λν ⊂ Z[a1, . . . , b1, . . .] ⊗ Z[a1, . . . , b1, . . .], and in
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the larger ring every element is finite-dimensional, including the tensor product.
By Lemma 4.10, eµ ⊗ eν is Schur-finite in Λµ ⊗ Λν . �

Conjecture 4.13 (Virtual Splitting principle). Let x be a Schur-finite element of a
λ-ring R. Then R is contained in a larger λ-ring R′ such that x is finite-dimensional
in R′, i.e., there are line elements ℓi, ℓ

′
j in R′ so that

x = (
∑

ℓi)− (
∑

ℓ′j).

Example 4.14. The virtual splitting principle holds in the universal case, where
R0 = Λβ. Indeed, we know that x is

∑

ai +
∑

bj in R′
0 = Z[a1, . . . , b1, . . .]. Since

ℓj = −bj is a line element, x is a difference of sums of line elements in R′
0.

Unfortunately, although the induced map f : R → R ⊗R0
R′

0 sends a Schur-
finite element x to a difference of sums of line elements, the map f need not be an
injection.

As partial evidence for Conjecture 4.13, we show that the virtual splitting prin-
ciple holds for elements bounded by the hook (2, 1).

Theorem 4.15. Let x be a Schur-finite element in a λ-ring R. If x has bound
(2, 1), then R is contained in a λ-ring R′ in which x is a virtual sum ℓ1 + ℓ2 − a of
line elements.

Proof. The polynomial ring R[a] becomes a λ-ring once we declare a to be a line
element. Set y = x+ a, and let I be the ideal of R[a] generated by λ3(y).

For all n ≥ 2, the equation sn,1(x) = 0 yields λn+1(x) = xλn(x) = xn−1λ2(x)
in R, and therefore λn+1(y) = (a + x)xn−2λ2(x) = xn−2λ3(y). It follows from
Scholium 1.6 that λm(λ3y) ∈ I for all m ≥ 1 and hence that

λn(f · λ3y) = Pn(λ
1(f), . . . , λn(f);λ1(λ3y), . . . , λn(λ3y))

is in I for all f ∈ R[a]. Thus I is a λ-ideal of R[a], A = R[a]/I is a λ-ring, and
the image of y in A is even of degree 2. By the Splitting Principle 1.4, the image
of x = y − a in some λ-ring A′ containing A is a virtual sum ℓ1 + ℓ2 − a of line
elements.

To conclude, it suffices to show that R injects into A = R[a]/I. If r ∈ R vanishes
in A then r = fλ3(y) for some f = f(a) in R[a]. We may take f to have minimal
degree d ≥ 0. Writing f(a) = c ad+g(a), with c ∈ R and deg(g) < d, the coefficient
of ad+1 in fλ3(y), namely c λ2(x), must be zero. But then cλ3y = 0, and r = g λ3y,
contradicting the minimality of f . �

Remark 4.16. The rank of a Schur-finite object with bound π cannot be well defined
unless π is a rectangular partition. This is because any rectangular partition µ =
(m + 1)n+1 contained in π yields a map R → R′ sending x to an element of rank
m−n. If π is not rectangular there are different maximal rectangular subpartitions
with different values of m− n.

Example 4.16.1. Let x be the element of Theorem 4.15. By Lemma 4.11, −x also
has bound (2, 1). Applying Theorem 4.15 to −x shows that R is also contained in a
λ-ring R′′ in which x is a virtual sum a− ℓ1 − ℓ2 of line bundles. Therefore x has
rank 1 in R′, and has rank −1 in R′′.

Let R be a λ-ring and x ∈ R. One central question is to determine when
the power series λt(x) is a rational function. (See [A05], [LL04], [Hl], [Gul], [B1,
B2], [KKT] for example.) For concreteness, we consider the question of being
determinentally rational (see 2.6). This is connected to Schur-finiteness.
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Proposition 4.17. If x is Schur-finite, then λt(x) is determinentally rational.
Conversely, if λt(x) is determinentally rational, there is an m such that the

sequence s(1m)(x), . . . , s(nm)(x), . . . is eventually 0.

The first assertion of this proposition was proven in [KKT, 3.10] for λ-rings of
the form K0(A) using categorical methods.

Proof. By definition, λt(x) is determinentally rational if and only if for some m
the determinants of the m × m matrices An = (λn+i+j(x)) are 0 for all large n.
Reversing the rows in An−m yields the matrix in the Jacobi-Trudi identity for sπ(x),
π = (nm) = (n, n, ..., n). Since det(Am−n) = ±sπ(x), λt(x) is determinentally
rational if and only if for some m the sequence {s(nm)(x)} is eventually 0.

If x is Schur-finite, some bound for x is a rectangular partition (Nm). Then
s(nm)(x) = 0 for all n ≥ N , because the partition (nm) contains (Nm). �

We conclude by connecting our notion of Schur-finiteness to the notion of a
Schur-finite object in a Q-linear tensor category A, given in [Mz]). By definition,
an object A is Schur-finite if some Sλ(A) ∼= 0 in A. By [Mz, 1.4], this implies that
Sµ(A) = 0 for all µ containing λ. It is evident that if A is a Schur-finite object of A
then [A] is a Schur-finite element of K0(A). However, the converse need not hold.
For example, if A contains infinite direct sums then K0(A) = 0 by the Eilenberg
swindle, so [A] is always Schur-finite.

Here are two examples of Schur-finite objects whose class in K0(A) is finite-
dimensional even though they are not finite-dimensional objects.

Example 4.18. Let A denote the abelian category of positively graded modules over
the graded ring A = Q[ε]/(ε2 = 0). It is well known that A is a tensor category
under ⊗Q, with the λ-ringK0(A) ∼= Λ−1 = Z[b]; 1 = [Q] and b = [Q[1]]. The graded
object A is Schur-finite but not finite-dimensional in A by [Mz, 1.12]. However, [A]
is a finite-dimensional element in K0(A) because [A] = [Q] + [Q[1]].

Example 4.19 (O’Sullivan). Let X a Kummer surface; then there is an open sub-
variety U of X , whose complement Z is a finite set of points, such that M(U) is
Schur-finite but not finite-dimensional in the Kimura-O’Sullivan sense [Mz, 3.3].
However, it follows from the distinguished triangle

M(Z)(2)[3]→M(U)→M(X)→M(Z)(2)[4]

that [M(U)] = [M(Z)(2)[3]] + [M(X)] in K0(DMgm and hence in K0(M). Since
both M(X) and M(Z)(2)[3] are finite-dimensional, [M(U)] is a finite-dimensional
element of K0(M).

Acknowledgements. The authors would like to thank Anders Buch, Alessio Del
Padrone and Christophe Soulé for valuable discussions.
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