SCHUR-FINITENESS IN λ -RINGS

C. MAZZA AND C. WEIBEL

ABSTRACT. We introduce the notion of a Schur-finite element in a λ -ring.

Since the beginning of algebraic K-theory in [G57], the splitting principle has proven invaluable for working with λ -operations. Unfortunately, this principle does not seem to hold in some recent applications, such as the K-theory of motives. The main goal of this paper is to introduce the subring of Schur-finite elements of any λ -ring, and study its main properties, especially in connection with the virtual splitting principle.

A rich source of examples comes from Heinloth's theorem [HI], that the Grothendieck group $K_0(\mathcal{A})$ of an idempotent-complete \mathbb{Q} -linear tensor category \mathcal{A} is a λ -ring. For the category \mathcal{M}^{eff} of effective Chow motives, we show that $K_0(Var) \to K_0(\mathcal{M}^{\text{eff}})$ is not an injection, answering a question of Grothendieck.

When \mathcal{A} is the derived category of motives \mathbf{DM}_{gm} over a field of characteristic 0, the notion of Schur-finiteness in $K_0(\mathbf{DM}_{gm})$ is compatible with the notion of a Schur-finite object in \mathbf{DM}_{gm} , introduced in [Mz].

We begin by briefly recalling the classical splitting principle in Section 1, and answering Grothendieck's question in Section 2. In section 3 we recall the Schur polynomials, the Jacobi-Trudi identities and the Pieri rule from the theory of symmetric functions. Finally, in Section 4, we define Schur-finite elements and show that they form a subring of any λ -ring. We also state the conjecture that every Schur-finite element is a virtual sum of line elements.

Notation. We will use the term λ -ring in the sense of [Ber, 2.4]; we warn the reader that our λ -rings are called *special* λ -rings by Grothendieck, Atiyah and others; see [G57] [AT] [A].

A \mathbb{Q} -linear category \mathcal{A} is a category in which each hom-set is uniquely divisible (i.e., a \mathbb{Q} -module). By a \mathbb{Q} -linear tensor category (or $\mathbb{Q}TC$) we mean a \mathbb{Q} -linear category which is also symmetric monoidal and such that the tensor product is \mathbb{Q} -linear. We will be interested in $\mathbb{Q}TC$'s which are idempotent-complete.

Date: November 8, 2010.

Weibel's research was supported by NSA and NSF grants.

C. MAZZA AND C. WEIBEL

1. Finite-dimensional λ -rings

Almost all λ -rings of historical interest are finite-dimensional. This includes the complex representation rings R(G) and topological K-theory of compact spaces [AT, 1.5] as well as the algebraic K-theory of algebraic varieties [G57]. In this section we present this theory from the viewpoint we are adopting. Little in this section is new.

Recall that an element x in a λ -ring R is said to be *even* of finite degree n if $\lambda_t(x)$ is a polynomial of degree n, or equivalently that there is a λ -ring homomorphism from the ring Λ_n defined in 1.2 to R, sending a to x. We say that x is a *line element* if it is even of degree 1, i.e., if $\lambda^n(x) = 0$ for all n > 1.

We say that x is odd of degree n if $\sigma_t(x) = \lambda_{-t}(x)^{-1}$ is a polynomial of finite degree n. Since $\sigma_{-t}(x) = \lambda_t(-x)$, we see that x is odd just in case -x is even. Therefore there is a λ -ring homomorphism from the ring Λ_{-n} defined in 1.2 to R sending b to x.

We say that an element x is *finite-dimensional* if it is the difference of two even elements, or equivalently if x is the sum of an even and an odd element. The subset of even elements in R is closed under addition and multiplication, and the subset of finite-dimensional elements forms a subring of R.

Example 1.1. If R is a binomial λ -ring, then r is even if and only if some $r(r-1)\cdots(r-n) = 0$, and odd if and only if some $r(r+1)\cdots(r+n) = 0$. The binomial rings $\prod_{i=1}^{n} \mathbb{Z}$ are finite dimensional. If R is connected then the subring of finite-dimensional elements is just \mathbb{Z} .

There is a well known family of universal finite-dimensional λ -rings $\{\Lambda_n\}$.

Definition 1.2. Following [AT], let Λ_n denote the free λ -ring generated by one element $a = a_1$ of finite degree n (i.e., subject to the relations that $\lambda^k(a) = 0$ for all k > n). By [Ber, 4.9], Λ_n is just the polynomial ring $\mathbb{Z}[a_1, ..., a_n]$ with $a_i = \lambda^i(a_1)$.

Similarly, we write Λ_{-n} for the free λ -ring generated by one element $b = b_1$, subject to the relations that $\sigma^k(b) = 0$ for all k > n. Using the antipode S, we see that there is a λ -ring isomorphism $\Lambda_{-n} \cong \Lambda_n$ sending b to -a, and hence that $\Lambda_{-n} \cong \mathbb{Z}[b_1, ..., b_n]$ with $b_k = \sigma^k(b)$.

Consider finite-dimensional elements in λ -rings R which are the difference of an even element of degree m and an odd element of degree n. The maps $\Lambda_m \to R$ and $\Lambda_{-n} \to R$ induce a λ -ring map from $\Lambda_m \otimes \Lambda_{-n}$ to R.

Lemma 1.3. If an element x is both even and odd in a λ -ring, then x and all the $\lambda^i(x)$ are nilpotent. Thus $\lambda_t(x)$ is a unit of R[t].

Proof. If x is even and odd then $\lambda_t(x)$ and $\sigma_{-t}(x)$ are polynomials in R[t] which are inverse to each other. It follows that the coefficients $\lambda^i(x)$ of the t^i are nilpotent for all i > 0.

If R is a graded λ -ring, an element $\sum r_i$ is even (resp., odd, resp., finitedimensional) if and only if each homogeneous term r_i is even (resp., odd, resp., finite-dimensional). This is because the operations λ^n multiply the degree of an element by n.

The forgetful functor from λ -rings to commutative rings has a right adjoint; see [Kn, pp. 20–21]. It follows that the category of λ -rings has all colimits. In particular, if $B \leftarrow A \rightarrow C$ is a diagram of λ -rings, the tensor product $B \otimes_A C$ has the structure of a λ -ring. Here is a typical, classical application of this construction, originally proven in [AT, 6.1].

Proposition 1.4 (Splitting Principle). If x is any even element of finite degree n in a λ -ring R, there exists an inclusion $R \subseteq R'$ of λ -rings and line elements $\ell_1, ..., \ell_n$ in R' so that $x = \sum \ell_i$.

Proof. Let Ω_n denote the tensor product of n copies of the λ -ring $\Lambda_1 = \mathbb{Z}[\ell]$; this is a λ -ring whose underlying ring is the polynomial ring $\mathbb{Z}[\ell_1, ..., \ell_n]$, and the λ -ring Λ_n of Definition 1.2 is the subring of symmetric polynomials in Ω_n ; see [AT, §2]. Let R' be the pushout of the diagram $\Omega_n \leftarrow \Lambda_n \rightarrow R$. Since the image of x is $1 \otimes x = a \otimes 1 = (\sum \ell_i) \otimes 1$, it suffices to show that $R \rightarrow R'$ is an injection. This follows from the fact that Ω_n is free as a Λ_n -module.

Corollary 1.5. If x is any finite-dimensional element of a λ -ring R, there is an inclusion $R \subseteq R'$ of λ -rings and line elements ℓ_i , ℓ'_j in R' so that

$$x = (\sum \ell_i) - (\sum \ell'_j).$$

Scholium 1.6. For later use, we record an observation, whose proof is implicit in the proof of Proposition 4.2 of [AT]: $\lambda^m(\lambda^n x) = P_{m,n}(\lambda^1 x, \ldots, \lambda^{mn} x)$ is a sum of monomials, each containing a term $\lambda^i x$ for $i \ge n$. For example, $\lambda^2(\lambda^3 x) = \lambda^6 x - x \lambda^5 x + \lambda^4 x \lambda^2 x$ (see [Kn, p. 11]).

2. K_0 of tensor categories

The Grothendieck group of a \mathbb{Q} -linear tensor category provides numerous examples of λ -rings, and forms the original motivation for introducing the notion of Schur-finite elements in a λ -ring.

A Q-linear tensor category is *exact* if it has a distinguished family of sequences, called *short exact sequences* and satisfying the axioms of [Q], and such that each $A \otimes -$ is an exact functor. In many applications \mathcal{A} is *split exact*: the only short exact sequences are those which split. By $K_0(\mathcal{A})$ we mean the Grothendieck group as an exact category, i.e., the quotient of the free abelian group on the objects $[\mathcal{A}]$ by the relation that $[B] = [\mathcal{A}] + [C]$ for every short exact sequence $0 \to \mathcal{A} \to B \to C \to 0$.

Let \mathcal{A} be an idempotent-complete exact category which is a $\mathbb{Q}\text{TC}$ for \otimes . For any object A in \mathcal{A} , the symmetric group Σ_n (and hence the group ring $\mathbb{Q}[\Sigma_n]$) acts on the *n*-fold tensor product $A^{\otimes n}$. If \mathcal{A} is idempotent-complete, we define $\wedge^n A$ to be the direct summand of $A^{\otimes n}$ corresponding to the alternating idempotent $\sum (-1)^{\sigma} \sigma/n!$ of $\mathbb{Q}[\Sigma_n]$. Similarly, we can define the symmetric powers $\text{Sym}^n(\mathcal{A})$. It turns out that $\lambda^n(\mathcal{A})$ only depends upon the element $[\mathcal{A}]$ in $K_0(\mathcal{A})$, and that λ^n extends to a well defined operation on $K_0(\mathcal{A})$.

The following result was proven by F. Heinloth in [Hl, Lemma 4.1], but the result seems to have been in the air; see [Dav, p. 486], [LL04, 5.1] and [B1, B2]. A special case of this result was proven long ago by Swan in [Sw].

Theorem 2.1. If \mathcal{A} is any idempotent-complete exact $\mathbb{Q}TC$, $K_0(\mathcal{A})$ has the structure of a λ -ring. If \mathcal{A} is any object of \mathcal{A} then $\lambda^n([\mathcal{A}]) = [\wedge^n \mathcal{A}]$.

Kimura [Kim] and O'Sullivan have introduced the notion of an object C being finite-dimensional in any QTC \mathcal{A} : C is the direct sum of an even object A (one for which some $\wedge^n A \cong 0$) and an odd object B (one for which some $\operatorname{Sym}^n(B) \cong 0$). It is immediate that [C] is a finite-dimensional element in the λ -ring $K_0(\mathcal{A})$. Thus the two notions of finite dimensionality are related.

Example 2.2. Let \mathcal{M}^{eff} denote the category of \mathbb{Q} -linear pure effective Chow motives with respect to rational equivalence over a field k. Its objects are summands of smooth projective varieties over a field k and morphisms are given by Chow groups. Thus $K_0(\mathcal{M}^{\text{eff}})$ is the group generated by the classes of objects, modulo the relation $[M_1 \oplus M_2] = [M_1] + [M_2]$. Since \mathcal{M}^{eff} is a $\mathbb{Q}\text{TC}$, $K_0(\mathcal{M}^{\text{eff}})$ is a λ -ring. By adjoining an inverse to the Lefschetz motive to \mathcal{M}^{eff} , we obtain the category

By adjoining an inverse to the Lefschetz motive to \mathcal{M}^{eff} , we obtain the category \mathcal{M} of Chow motives (with respect to rational equivalence). This is also a QTC, so $K_0(\mathcal{M})$ is a λ -ring.

The category \mathcal{M}^{eff} embeds into the triangulated category $\mathbf{DM}_{gm}^{\text{eff}}$ of effective geometric motives; see [MVW, 20.1]. Similarly, The category \mathcal{M} embeds in the triangulated category \mathbf{DM}_{gm} of geometric motives [MVW, 20.2]. Bondarko proved in [Bo, 6.4.3] that $K_0(\mathbf{DM}_{gm}^{\text{eff}}) \cong K_0(\mathcal{M}^{\text{eff}})$ and $K_0(\mathbf{DM}_{gm}) \cong K_0(\mathcal{M})$. Thus we may investigate λ -ring questions in these triangulated settings. As far as we know, it is possible that every element of $K_0(\mathbf{DM}_{gm})$ is finite-dimensional.

Here is an application of these ideas. Recall that any quasiprojective scheme X has a motive with compact supports in \mathbf{DM}^{eff} , $M^c(X)$. If k has characteristic 0, this is an effective geometric motive, and if U is open in X with complement Z there is a triangle $M^c(Z) \to M^c(X) \to M^c(U)$; see [MVW, 16.15]. It follows that $[M^c(X)] = [M^c(U)] + [M^c(Z)]$ in $K_0(\mathcal{M}^{\text{eff}})$. (This was originally proven by Gillet and Soulé in [GS, Thm. 4] before the introduction of **DM**, but see [GS, 3.2.4].

Definition 2.3. Let $K_0(Var)$ be the Grothendieck ring of varieties obtained by imposing the relation $[U] + [X \setminus U] = [X]$ for any variety X. By the above remarks, there is a well defined ring homomorphism $K_0(Var) \to K_0(\mathcal{M}^{\text{eff}})$.

Grothendieck asked in [G64, p.174] if this morphism was far from being an isomorphism. We can now answer his question.

Theorem 2.4. The homomorphism $K_0(Var) \to K_0(\mathcal{M}^{eff})$ is not an injection.

For the proof, we need to introduce Kapranov's zeta-function. If X is any quasiprojective variety, its symmetric power $S^n X$ is the quotient of X^n by the action of the symmetric group. We define $\zeta_t(X) = \sum [S^n X] t^n$ as a power series with coefficients in $K_0(Var)$.

Lemma 2.5. ([Gul]) The following diagram is commutative:

$$\begin{array}{c|c} K_0(Var) & \xrightarrow{\zeta_t} & 1 + K_0(Var)[[t]] \\ M^c & & \downarrow M^c \\ K_0(\mathcal{M}^{eff}) \xrightarrow{\sigma_t} & 1 + K_0(\mathcal{M}^{eff})[[t]]. \end{array}$$

Proof. It suffices to show that $[M^c(S^n X)] = \text{Sym}^n[M^c(X)]$ in $K_0(\mathcal{M}^{\text{eff}})$ for any X. This is proven by del Baño and Navarro in [dBN, 5.3].

Definition 2.6. Following [LL04, 2.2], we say that a power series $f(t) = \sum r_n t^n \in R[[t]]$ is determinentally rational over a ring R if there exists an m > 0 such that the $m \times m$ symmetric matrices $(r_{n+i+j})_{i,j=1}^m$ have determinant 0 for all large n. The name comes from the classical fact ([1894]) that when R is a field (or a domain) a power series is determinentally rational if and only if it is a rational function.

Clearly, if f(t) is not determinentally rational over R and $R \subset R'$ then f(t) cannot be determinentally rational over R'.

If x = a + b is a finite-dimensional element of a λ -ring R, with a even and b odd, then $\lambda_t(a)$ and $\lambda_t(-b)$ are polynomials so $\lambda_t(x) = \lambda_t(a)\lambda_t(-b)$ and $\sigma_t(x) = \lambda_t(x)^{-1}$ are rational functions, and hence rational functions. This was observed by André in [A05].

Proof of Theorem 2.4. Let X be the product $C \times D$ of two smooth projective curves of genus > 0, so that $p_g(X) > 0$. Larsen and Lunts showed in [LL04, 2.4, 3.9] that $\zeta_t(X)$ is not determinentally rational over $R = K_0(Var)$. On the other hand, Kimura proved in [Kim] that X is a finite-dimensional object in \mathcal{M}^{eff} , so $\sigma_t(X) = \lambda_t(X)^{-1}$ is a determinentally rational function in $R' = K_0(\mathcal{M}^{\text{eff}})$. It follows that $R \to R'$ cannot be an injection. \Box

3. Symmetric functions

We devote this section to a quick study of the ring Λ of symmetric functions, and especially the Schur polynomials s_{π} , referring the reader to [Macd] for more information. In the next section, we will use these polynomials to define the notion of Schur-finite elements in a λ -ring.

The ring Λ is defined as the ring of symmetric polynomials in variables x_i ; a major role is played by the *elementary symmetric polynomials* $e_i \in \Lambda$ and the *homogeneous power sums* $h_n = \sum x_{i_1} \cdots x_{i_n}$ (where the sum being taken over $i_1 \leq \cdots \leq i_n$). Their generating functions $E(t) = \sum e_n t^n$ and $H(t) = \sum h_n t^n$ are $\prod (1 + x_i t)$ and $\prod (1 - x_i t)^{-1}$, so that H(t)E(-t) = 1. In fact, Λ is a graded polynomial ring in two relevant ways (with e_n and h_n in degree n):

$$\Lambda = \mathbb{Z}[e_1, ..., e_n, ...] = \mathbb{Z}[h_1, ..., h_n, ...].$$

Given a partition $\pi = (n_1, ..., n_r)$ of n (so that $\sum n_i = n$), we let $s_{\pi} \in \Lambda_n$ denote the Schur polynomial of π . The elements e_n and h_n of Λ are identified with $s_{(1,...,1)}$ and $s_{(n)}$, respectively. The Schur polynomials also form a \mathbb{Z} -basis of Λ by [Macd, 3.3]. By abuse, we will say that a partition π contains a partition $\lambda = (\lambda_1, ..., \lambda_s)$ if $n_i \geq \lambda_i$ and $r \geq s$, which is the same as saying that the Young diagram for π contains the Young diagram for λ .

Here is another description of Λ , taken from [Kn]: Λ is isomorphic to the direct sum R_* of the representation rings $R(\Sigma_n)$, made into a ring via the outer product $R(\Sigma_m) \otimes R(\Sigma_n) \to R(\Sigma_{m+n})$. Under this identification, $e_n \in \Lambda_n$ is identified with the class of the trivial simple representation V_n of Σ_n . More generally, s_{π} corresponds to the class $[V_{\pi}]$ in $R(\Sigma_n)$ of the irreducible respesentation corresponding to π . (See [Kn, III.3].)

Proposition 3.1. Λ is a graded Hopf algebra, with coproduct Δ and antipode S determined by the formulas

$$\Delta(e_n) = \sum_{i+j=n} e_i \otimes e_j, \quad S(e_n) = h_n \text{ and } S(h_n) = e_n.$$

Proof. The graded bialgebra structure is well known and due to Burroughs [Bu], who defined the coproduct on R_* as the map induced from the restriction maps $R(\Sigma_{m+n}) \to R(\Sigma_m) \otimes R(\Sigma_n)$, and established the formulas $\Delta(e_n) = \sum_{i+j=n} e_i \otimes e_j$. The fact that there is a ring involution S interchanging e_n and h_n is also well known. The fact that S is an antipode does not seem to be well known, but it is immediate from the formula $\sum (-1)^r e_r h_{n-r}$ of [Macd, (2.6)].

Remark 3.2. Atiyah shows in [A, 1.2] that Λ is isomorphic to the graded dual $R^* = \oplus \operatorname{Hom}(R(\Sigma_n), \mathbb{Z})$. That is, if $\{v_\pi\}$ is the dual basis in R^n to the basis $\{[V_\pi]\}$ of simple representations in R_n and the restriction of $[V_\pi]$ is $\sum c_{\pi}^{\mu\nu}[V_{\mu}] \otimes [V_{\nu}]$ then $v_{\mu}v_{\nu} = \sum_{\pi} c_{\pi}^{\mu\nu}v_{\pi}$ in R^* . Thus the product studied by Atiyah on the graded dual R^* is exactly the algebra structure dual to the coproduct Δ .

Let π' denote the conjugate partition to π . The Jacobi-Trudi identities $s_{\pi} = \det |h_{\pi_i+j-i}| = \det |e_{\pi'_i+j-i}|$ show that the antipode S interchanges s_{π} and $s_{\pi'}$. (Jacobi conjectured the identities, and his student Nicoló Trudi verified them in 1864; they were rediscovered by Giovanni Giambelli in 1903 and are sometimes called the *Giambelli identities*).

Let $I_{e,n}$ denote the ideal of Λ generated by the e_i with $i \geq n$. The quotient $\Lambda/I_{e,n}$ is the polynomial ring $\Lambda_{n-1} = \mathbb{Z}[e_1, ..., e_{n-1}]$. Let $I_{h,n}$ denote $S(I_{e,n})$, i.e., the ideal of Λ generated by the h_i with $i \geq n$.

Proposition 3.3. The Schur polynomials s_{π} for partitions π containing (1^n) (i.e., with at least n rows) form a \mathbb{Z} -basis for the ideal $I_{e,n}$. The Schur polynomials with at most n rows form a \mathbb{Z} -basis of Λ_n .

Similarly, the Schur polynomials s_{π} for partitions π containing (n) (i.e., with $\pi_1 \geq n$) form a \mathbb{Z} -basis for the ideal $I_{h,n}$.

Proof. We prove the assertions about $I_{e,n}$; the assertion about $I_{h,n}$ follows by applying the antipode S. By [Macd, 3.2], the s_{π} which have fewer than n rows project onto a \mathbb{Z} -basis of $\Lambda_{n-1} = \Lambda/I_{e,n}$. Since the s_{π} form a \mathbb{Z} -basis of Λ , it suffices to show that every partition $\pi = (\pi_1, ..., \pi_r)$ with r > n is in $I_{e,n}$. Expansion along the first row of the Jacobi-Trudi identity $s_{\pi} = \det |e_{\pi'_i+j-i}|$ shows that s_{π} is in the ideal $I_{e,r}$.

Corollary 3.4. The ideal $I_{h,m} \cap I_{e,n}$ of Λ has a \mathbb{Z} -basis consisting of the Schur polynomials s_{π} for partitions π containing the hook $(m, 1^{n-1}) = (m, 1, ..., 1)$.

Definition 3.5. For any partition $\lambda = (\lambda_1, ..., \lambda_r)$, let I_{λ} denote the subgroup of Λ generated by the Schur polynomials s_{π} for which π contains λ , i.e., $\pi_i \geq \lambda_i$ for i = 1, ..., r. We have already encountered the special cases $I_{e,n} = I_{(1,...,1)}$ and $I_{h,n} = I_{(n)}$ in Proposition 3.3, and $I_{(m,1,...,1)} = I_{h,m} \cap I_{e,n}$ in Corollary 3.4.

Example 3.6. Consider the partition $\lambda = (2, 1)$. Since $I_{\lambda} = I_{h,2} \cap I_{e,2}$ by Corollary 3.4, Λ_{λ} is the pullback of $\mathbb{Z}[a]$ and $\mathbb{Z}[b]$ along the common quotient $\mathbb{Z}[a]/(a^2) = \Lambda/(I_{(1,1)} + I_{(2)})$. The universal element of Λ_{λ} is x = (a, b) and if we set $y = (0, b^2)$ then $\Lambda_{(2,1)} \cong \mathbb{Z}[x, y]/(y^2 - x^2y)$. Since $\lambda^n(b) = b^n$ for all n, it is easy to check that $\lambda^{2i}(x) = y^i$ and $\lambda^{2i+1}(x) = xy^i$.

Lemma 3.7. The I_{λ} are ideals of Λ , and $\{I_{\lambda}\}$ is closed under intersection.

Proof. The Pieri rule writes $h_p s_{\pi}$ as a sum of s_{μ} , where μ runs over partitions containing π . Thus I_{λ} is closed under multiplication by the h_p . As every element of Λ is a polynomial in the h_p , I_{λ} is an ideal.

If $\mu = (\mu_1, ..., \mu_s)$ is another partition, then s_{π} is in $I_{\lambda} \cap I_{\mu}$ if and only if $\pi_i \ge \max\{\lambda_i, \mu_i\}$ Thus $I_{\lambda} \cap I_{\mu} = I_{\lambda \cup \mu}$.

Remark 3.8. The λ -ideal $I_{\lambda} + I_{\mu}$ need not be of the form I_{ν} for any ν . For example, $I = I_{(2)} + I_{(1,1)}$ contains every Schur polynomial except 1 and $s_1 = e_1$.

We conclude this section by connecting Λ with λ -rings. Recall from [Ber, 4.4], [G57, I.4] or [AT, §2] that the universal λ -ring on one generator $a = a_1$ is the polynomial ring $\mathbb{Z}[a_1, \ldots, a_n, \ldots]$, with $\lambda^n(a) = a_n$. This ring is naturally isomorphic to the ring of natural operations on the category of λ -rings, with a_n corresponding to the operation λ^n ; an operation ϕ corresponds to $\phi(a) \in \Lambda$.

Following [A] and [Kn], we may identify this universal λ -ring with Λ , where the a_i are identified with the $e_i \in \Lambda$. The operation σ^n , defined by $\sigma^n(x) = (-1)^n \lambda^n(-x)$, corresponds to h_n ; this may be seen by comparing the generating functions $H(t) = E(-t)^{-1}$ and $\sigma_t(x) = \lambda_{-t}(x)^{-1}$.

Proposition 3.9. If ϕ is an element of Λ , and $\Delta(\phi) = \sum \phi'_i \otimes \phi''_i$ then the corresponding natural operation on λ -rings satisfies $\phi(x+y) = \sum \phi'_i(x)\phi''_i(y)$.

Proof. Consider the set Λ' of all operations in Λ satisfying the condition of the proposition. Since Δ is a ring homomorphism, Λ' is a subring of Λ . Since $\Delta(e_n) = \sum e_i \otimes e_{n-i}$ and $\lambda^n(x+y) = \sum \lambda^i(x)\lambda^{n-i}(y)$, Λ' contains the generators e_n of Λ , and hence $\Lambda' = \Lambda$.

The Littlewood-Richardson rule states that $\Delta([V_{\pi}])$ is a sum $\sum c_{\pi}^{\mu\nu}[V_{\mu}] \otimes [V_{\nu}]$, where $\mu \subseteq \pi$ and π is obtained from μ by concatenating ν in a certain way. By Proposition 3.9, we then have **Corollary 3.10.** $s_{\pi}(x+y) = \sum c_{\pi}^{\mu\nu} s_{\mu}(x) s_{\nu}(y).$

4. Schur-finite λ -rings

In this section we introduce the notion of a Schur-finite element in a λ -ring R, and show that these elements form a subring of R containing the subring of finite-dimensional elements. We conjecture that they are the elements for which the virtual splitting principle holds.

Definition 4.1. We say that an element x in a λ -ring R is *Schur-finite* if there exists a partition λ such that $s_{\mu}(x) = 0$ for every partition μ containing λ . That is, I_{λ} annihilates x. We call such a λ a bound for x.

By Remark 3.8, $x \in R$ may have no unique minimal bound λ . By Example 4.5 below, $s_{\lambda}(x) = 0$ does not imply that λ is a bound for x.

Proposition 4.2. Each I_{λ} is a λ -ideal, and $\Lambda_{\lambda} = \Lambda/I_{\lambda}$ is a λ -ring. Thus every Schur-finite $x \in R$ with bound λ determines a λ -ring map $f : \Lambda_{\lambda} \to R$ with f(a) = x. Moreover, if λ is a rectangular partition then I_{λ} is a prime ideal, and Λ_{λ} is a

subring of a polynomial ring in which a becomes finite-dimensional.

Proposition 4.2 verifies Conjecture 3.9 of [KKT].

Proof. Fix a rectangular partition $\beta = ((m+1)^{n+1}) = (m+1, ..., m+1)$, and set $a = \sum_{1}^{m} a_i, b = \sum_{1}^{n} b_j$. Consider the universal λ -ring map

 $f:\Lambda \to \Lambda_m \otimes \Lambda_{-n} \cong \mathbb{Z}[a_1,...,a_m,b_1,...,b_n]$

sending e_1 to the finite-dimensional element a + b (see Definition 1.2). We claim that the kernel of f is I_{β} . Since $\operatorname{Ker}(f)$ is a λ -ideal, this proves that I_{β} is a λ ideal and that Λ/I_{β} embeds into the polynomial ring $\mathbb{Z}[a_1, ..., a_m, b_1, ..., b_n]$. Since any partition λ can be written as a union of rectangular partitions β_i , Lemma 3.7 implies that $I_{\lambda} = \cap I_{\beta_i}$ is also a λ -ideal.

By the Littlewood-Richardson rule 3.10, $s_{\pi}(a+b) = \sum c_{\pi}^{\mu\nu} s_{\mu}(a) s_{\nu}(b)$, where π is obtained from μ by concatenating ν in a certain way. If π contains β then $s_{\pi}(a+b) = 0$, because either the length of μ is > m or else $\nu_1 > n$; by Proposition 3.3, $s_{\mu}(a) = 0$ in the first case and $s_{\nu}(b) = 0$ in the second case. Thus $I_{\lambda} \subseteq \text{Ker}(f)$.

If π does not contain β then the length of μ is at most m and $\nu_1 \leq n$. By Proposition 3.3, $s_{\mu}(a) \neq 0$ in Λ_m and $s_{\nu}(b) \neq 0$ in Λ_{-n} . As the $s_{\mu}(a)$ run over a basis of Λ_m and the $s_{\nu}(b)$ run over a basis of Λ_{-n} , by Proposition 3.3, we have $f(s_{\pi}) = s_{\pi}(a+b) \neq 0$. Thus $I_{\lambda} = \text{Ker}(f)$, as claimed. \Box

Corollary 4.3. $\Lambda_{(2,2)}$ is the subring $\mathbb{Z} + x\mathbb{Z}[a,b]$ of $\mathbb{Z}[a,b]$, where x = a + b.

Proof. By Proposition 4.2, $\Lambda_{(2,2)}$ is the subring of $\mathbb{Z}[a,b]$ generated x = a + b and the $\lambda^n(x)$. Since

$$\lambda^{n+1}(x) = a\lambda^n(b) + \lambda^{n+1}(b) = ab^n + b^{n+1} = xb^n,$$

we have $\Lambda_{(2,2)} = \mathbb{Z}[x, xb, xb^2, \dots, xb^n, \dots] = \mathbb{Z} + x\mathbb{Z}[a, b].$

Remark 4.4. The ring $\Lambda_{(2,2)}$ was studied in [KKT, 3.8], where it was shown that $\Lambda_{(2,2)}$ embeds into $\mathbb{Z}[x, y]$ sending e_n to xy^{n-1} . This is the same as the embedding in Corollary 4.3, up to the change of coordinates (x, y) = (a + b, b).

Example 4.5. Let I be the ideal of $\Lambda_{(2,2)}$ generated by the $\lambda^{2i}(x)$ (i > 0) and set $R = \Lambda_{(2,2)}/I$. Then R is a λ -ring and x is a nonzerodivisor such that $\lambda^{2i}(x) = 0$ but $\lambda^{2i+1}(x) \neq 0$. In particular, $\lambda^2(x) = 0$ yet $\lambda^3(x) \neq 0$.

To see this, we use the embedding of Corollary 4.3 to see that I contains $x(xb^{2i-1})$ and $(xb)(xb^{2i-1})$ and hence the ideal J of $\mathbb{Z}[a,b]$ generated by x^2b . In

fact, *I* is additively generated by *J* and the $\{xb^{2i-1}\}$. It follows that *R* has basis $\{1, x^n, xb^{2n} | n \ge 1\}$. Since $\lambda^n(\lambda^{2i}(x))$ is equivalent to $\lambda^{2in}(x) = xb^{2in-1}$ modulo *J* (by 1.6), it lies in *I*. Hence *I* is a λ -ideal of $\Lambda_{(2,2)}$.

Lemma 4.6. If x and y are Schur-finite, so is x + y.

Proof. Given a partition λ , there is a partition π_0 such that whenever π contains π_0 , one of the partitions μ and ν appearing in the Littlewood-Richardson rule 3.10 must contain λ . If x and y are both killed by all Schur polynomials indexed by partitions containing λ , we must therefore have $s_{\pi}(x+y) = 0$.

Corollary 4.7. Finite-dimensional elements are Schur-finite.

Proof. Proposition 3.3 shows that even and odd elements are Schur-finite. \Box

Example 4.8. If R is a binomial ring containing \mathbb{Q} , then every Schur-finite element is finite-dimensional. This follows from Example 1.1 and [Macd, Ex.I.3.4], which says that $s_{\pi}(r)$ is a rational number times a product of terms r - c(x), where the c(x) are integers.

Example 4.9. The universal element x of $\Lambda_{(2,1)}$ is Schur-finite but not finite-dimensional. To see this, recall from Example 3.6 that $\Lambda_{(2,1)} \cong \mathbb{Z}[x,y]/(y^2 - x^2y)$. Because $\Lambda_{(2,1)}$ is graded, if x were finite-dimensional it would be the sum of an even and odd element in the degree 1 part $\{nx\}$ of $\Lambda_{(2,1)}$. If $n \in \mathbb{N}$, nx cannot be even because the second coordinate of $\lambda^k(nx)$ is $\binom{-n}{k}b^k$ by 1.2. And nx cannot be odd, because the first coordinate of $\sigma^k(nx)$ is $(-1)^k \binom{-n}{k}a^k$.

Lemma 4.10. Let $R \subset R'$ be an inclusion of λ -rings. If $x \in R$ is Schur-finite in R', then x is Schur-finite in R. In particular, if x is finite-dimensional in R', then x is Schur-finite in R.

Proof. Since $s_{\pi}(x)$ may be computed in either R or R', the set of partitions π for which $s_{\pi}(x) = 0$ is the same for R and R'. The final assertion follows from Lemma 4.7.

Lemma 4.11. If π is a partition on n, $s_{\pi'}(-x) = (-1)^n s_{\pi}(x)$.

Proof. Write s_{π} as a homogeneous polynomial $f(e_1, e_2, ...)$ of degree n. Applying the antipode S in Λ , we have $s_{\pi'} = f(h_1, h_2, ...)$. It follows that $s_{\pi'}(-x) = f(\sigma^1, \sigma^2, ...)(-x)$. Since $\sigma^i(-x) = (-1)^i \lambda^i(x)$, and f is homogeneous, we have

$$s_{\pi'}(-x) = f(-\lambda^1, +\lambda^2, ...)(x) = (-1)^n f(\lambda^1, \lambda^2, ...)(x) = s_{\pi}(x).$$

Theorem 4.12. The Schur-finite elements form a subring of any λ -ring, containing the subring of finite-dimensional elements.

Proof. The Schur-finite elements are closed under addition by Lemma 4.6. Since π contains λ just in case π' contains λ' , Lemma 4.11 implies that -x is Schur-finite whenever x is. Hence the Schur-finite elements form a subgroup of R. It suffices to show that if x and y are Schur-finite in R, then xy and all $\lambda^{i}(x)$ are Schur-finite.

Let x be Schur-finite with rectangular bound μ , so there is a map from the λ -ring Λ_{μ} to R sending the generator e to x. Embed Λ_{μ} in $R' = \mathbb{Z}[a_1, \ldots, b_1, \ldots]$ using Proposition 4.2. Since every element of R' is finite-dimensional, $\lambda^n(e)$ is finite-dimensional in R', and hence Schur-finite in Λ_{μ} by Lemma 4.10. It follows that the image $\lambda^n(x)$ of $\lambda^n(e)$ in R is also Schur-finite.

Let x and y be Schur-finite with rectangular bounds μ and ν , and let $\Lambda_{\mu} \to R$ and $\Lambda_{\nu} \to R$ be the λ -ring maps sending the generators e_{μ} and e_{ν} to x and y. Since the induced map $\Lambda_{\mu} \otimes \Lambda_{\nu} \to R$ sends $e_{\mu} \otimes e_{\nu}$ to xy, we only need to show that $e_{\mu} \otimes e_{\nu}$ is Schur-finite. But $\Lambda_{\mu} \otimes \Lambda_{\nu} \subset \mathbb{Z}[a_1, \ldots, b_1, \ldots] \otimes \mathbb{Z}[a_1, \ldots, b_1, \ldots]$, and in

8

the larger ring every element is finite-dimensional, including the tensor product. By Lemma 4.10, $e_{\mu} \otimes e_{\nu}$ is Schur-finite in $\Lambda_{\mu} \otimes \Lambda_{\nu}$.

Conjecture 4.13 (Virtual Splitting principle). Let x be a Schur-finite element of a λ -ring R. Then R is contained in a larger λ -ring R' such that x is finite-dimensional in R', i.e., there are line elements ℓ_i , ℓ'_j in R' so that

$$x = (\sum \ell_i) - (\sum \ell'_j).$$

Example 4.14. The virtual splitting principle holds in the universal case, where $R_0 = \Lambda_\beta$. Indeed, we know that x is $\sum a_i + \sum b_j$ in $R'_0 = \mathbb{Z}[a_1, \ldots, b_1, \ldots]$. Since $\ell_j = -b_j$ is a line element, x is a difference of sums of line elements in R'_0 .

Unfortunately, although the induced map $f : R \to R \otimes_{R_0} R'_0$ sends a Schurfinite element x to a difference of sums of line elements, the map f need not be an injection.

As partial evidence for Conjecture 4.13, we show that the virtual splitting principle holds for elements bounded by the hook (2, 1).

Theorem 4.15. Let x be a Schur-finite element in a λ -ring R. If x has bound (2,1), then R is contained in a λ -ring R' in which x is a virtual sum $\ell_1 + \ell_2 - a$ of line elements.

Proof. The polynomial ring R[a] becomes a λ -ring once we declare a to be a line element. Set y = x + a, and let I be the ideal of R[a] generated by $\lambda^3(y)$.

For all $n \ge 2$, the equation $s_{n,1}(x) = 0$ yields $\lambda^{n+1}(x) = x\lambda^n(x) = x^{n-1}\lambda^2(x)$ in R, and therefore $\lambda^{n+1}(y) = (a+x)x^{n-2}\lambda^2(x) = x^{n-2}\lambda^3(y)$. It follows from Scholium 1.6 that $\lambda^m(\lambda^3 y) \in I$ for all $m \ge 1$ and hence that

$$\lambda^n(f \cdot \lambda^3 y) = P_n(\lambda^1(f), \dots, \lambda^n(f); \lambda^1(\lambda^3 y), \dots, \lambda^n(\lambda^3 y))$$

is in I for all $f \in R[a]$. Thus I is a λ -ideal of R[a], A = R[a]/I is a λ -ring, and the image of y in A is even of degree 2. By the Splitting Principle 1.4, the image of x = y - a in some λ -ring A' containing A is a virtual sum $\ell_1 + \ell_2 - a$ of line elements.

To conclude, it suffices to show that R injects into A = R[a]/I. If $r \in R$ vanishes in A then $r = f\lambda^3(y)$ for some f = f(a) in R[a]. We may take f to have minimal degree $d \ge 0$. Writing $f(a) = c a^d + g(a)$, with $c \in R$ and $\deg(g) < d$, the coefficient of a^{d+1} in $f\lambda^3(y)$, namely $c\lambda^2(x)$, must be zero. But then $c\lambda^3 y = 0$, and $r = g\lambda^3 y$, contradicting the minimality of f.

Remark 4.16. The rank of a Schur-finite object with bound π cannot be well defined unless π is a rectangular partition. This is because any rectangular partition $\mu = (m+1)^{n+1}$ contained in π yields a map $R \to R'$ sending x to an element of rank m-n. If π is not rectangular there are different maximal rectangular subpartitions with different values of m-n.

Example 4.16.1. Let x be the element of Theorem 4.15. By Lemma 4.11, -x also has bound (2, 1). Applying Theorem 4.15 to -x shows that R is also contained in a λ -ring R'' in which x is a virtual sum $a - \ell_1 - \ell_2$ of line bundles. Therefore x has rank 1 in R', and has rank -1 in R''.

Let R be a λ -ring and $x \in R$. One central question is to determine when the power series $\lambda_t(x)$ is a rational function. (See [A05], [LL04], [H1], [Gu1], [B1, B2], [KKT] for example.) For concreteness, we consider the question of being determinentally rational (see 2.6). This is connected to Schur-finiteness. **Proposition 4.17.** If x is Schur-finite, then $\lambda_t(x)$ is determinentally rational.

Conversely, if $\lambda_t(x)$ is determinentally rational, there is an m such that the sequence $s_{(1^m)}(x), \ldots, s_{(n^m)}(x), \ldots$ is eventually 0.

The first assertion of this proposition was proven in [KKT, 3.10] for λ -rings of the form $K_0(\mathcal{A})$ using categorical methods.

Proof. By definition, $\lambda_t(x)$ is determinentally rational if and only if for some m the determinants of the $m \times m$ matrices $A_n = (\lambda^{n+i+j}(x))$ are 0 for all large n. Reversing the rows in A_{n-m} yields the matrix in the Jacobi-Trudi identity for $s_{\pi}(x)$, $\pi = (n^m) = (n, n, ..., n)$. Since $\det(A_{m-n}) = \pm s_{\pi}(x)$, $\lambda_t(x)$ is determinentally rational if and only if for some m the sequence $\{s_{(n^m)}(x)\}$ is eventually 0.

If x is Schur-finite, some bound for x is a rectangular partition (N^m) . Then $s_{(n^m)}(x) = 0$ for all $n \ge N$, because the partition (n^m) contains (N^m) .

We conclude by connecting our notion of Schur-finiteness to the notion of a Schur-finite object in a Q-linear tensor category \mathcal{A} , given in [Mz]). By definition, an object A is Schur-finite if some $S_{\lambda}(A) \cong 0$ in \mathcal{A} . By [Mz, 1.4], this implies that $S_{\mu}(A) = 0$ for all μ containing λ . It is evident that if A is a Schur-finite object of \mathcal{A} then [A] is a Schur-finite element of $K_0(\mathcal{A})$. However, the converse need not hold. For example, if \mathcal{A} contains infinite direct sums then $K_0(\mathcal{A}) = 0$ by the Eilenberg swindle, so [A] is always Schur-finite.

Here are two examples of Schur-finite objects whose class in $K_0(\mathcal{A})$ is finitedimensional even though they are not finite-dimensional objects.

Example 4.18. Let \mathcal{A} denote the abelian category of positively graded modules over the graded ring $A = \mathbb{Q}[\varepsilon]/(\varepsilon^2 = 0)$. It is well known that \mathcal{A} is a tensor category under $\otimes_{\mathbb{Q}}$, with the λ -ring $K_0(\mathcal{A}) \cong \Lambda_{-1} = \mathbb{Z}[b]$; 1 = [Q] and $b = [\mathbb{Q}[1]]$. The graded object \mathcal{A} is Schur-finite but not finite-dimensional in \mathcal{A} by [Mz, 1.12]. However, $[\mathcal{A}]$ is a finite-dimensional element in $K_0(\mathcal{A})$ because $[\mathcal{A}] = [\mathbb{Q}] + [\mathbb{Q}[1]]$.

Example 4.19 (O'Sullivan). Let X a Kummer surface; then there is an open subvariety U of X, whose complement Z is a finite set of points, such that M(U) is Schur-finite but not finite-dimensional in the Kimura-O'Sullivan sense [Mz, 3.3]. However, it follows from the distinguished triangle

$$M(Z)(2)[3] \to M(U) \to M(X) \to M(Z)(2)[4]$$

that [M(U)] = [M(Z)(2)[3]] + [M(X)] in $K_0(\mathbf{DM}_{gm}$ and hence in $K_0(\mathcal{M})$. Since both M(X) and M(Z)(2)[3] are finite-dimensional, [M(U)] is a finite-dimensional element of $K_0(\mathcal{M})$.

Acknowledgements. The authors would like to thank Anders Buch, Alessio Del Padrone and Christophe Soulé for valuable discussions.

References

- [1894] E. Borel, Sur une application d'un théorème de M. Hadamard, Bull. Sciences Math. 18 (1894), 22–25.
- [A] M. Atiyah, Power operations in K-theory, Quart. J. Math. Oxford 17 (1966), 165–193.
- [AT] M. Atiyah and D. Tall, Group representations, λ-rings and and the J-homomorphism, Topology 8 (1969), 253–297.
- [A05] Y. André, Motifs de dimension finie (d'aprés S.-I. Kimura, P. O'Sullivan ...), Astérisque 299 (2005), 115–145.
- [Ber] P. Berthelot, Generalites sur les $\lambda\text{-anneaux},$ Exposé V (pages 297–364) in SGA6, Lecture Notes in Math. 225, Spinger, 1971.
- [B1] S. Biglari, On finite dimensionality of mixed Tate motives J. K-Theory 4 (2009), 145–161
- [B2] S. Biglari, Lambda ring structure on the Grothendieck ring of mixed motives, preliminary version, 2009. Available at http://www.math.uni-bielefeld.de/~biglari/manuscripts/lrsmm.pdf

10

- [B3] S. Biglari, On rings and categories of general representations, preprint, 2010. Available at http://arxiv.org/abs/1002.2801
- [Bo] M. Bondarko, Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura. J. Inst. Math. Jussieu 8 (2009), no. 1, 39–97.
- [Bu] J. Burroughs, Operations in Grothendieck rings and the symmetric group, Canad. J. Math XXVI (1974), 543–550.
- [Dav] A. A. Davidov, Monoidal Categories, Journal of Mathematical Asciences 88(4) (1998), 457– 519.
- [dBN] S. del Baño Rollin and V. Navarro Aznar, On the motive of a quotient variety, Collecteana Math. 49 (1998), no. 2-3, 203–226.
- [G57] A. Grothendieck, Classes de Faisceaux et Théorème de Riemann-Roch, Exposé 0-App (pages 20–77) in SGA6, Lecture Notes in Math. 225, Spinger, 1971. Original preprint dated November 1957.
- [G64] A. Grothendieck, Letter to Serre, August 16, 1964, pp.172–175 in Correspondence Grothendieck-Serre, Ed. P. Colmez and J.-P. Serre, Soc. Math. France, 2001.
- [GS] H. Gillet and C. Soulé, Descent, motives and K-theory, J. Reine Angew. Math. 478 (1996), 127–176.
- [GN] F. Guillén and V. Navarro Aznar, Un critère d'extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1–91.
- [Gul] V. Guletskii, Zeta-functions in triangulated categories, Mathematical Notes. 87 (2010), 369– 381.
- [HI] F. Heinloth, A note on functional equations for zeta functions with values in Chow motives, Ann. Inst. Fourier (Grenoble) 57 (2007), 927-1945.
- [Kap] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint, 2000. Available at math.AG/0001005
- [Kim] S. Kimura, Chow groups are finite dimensional, in some sense, Math. Annalen 331 (2005), 173–201.
- [KKT] K. Kimura, S. Kimura and N. Takahashi, Motivic Zeta functions in additive monoidal categories, preprint, 2009.
- [Kn] D. Knutson, $\lambda\text{-rings}$ and the Representation Theory of the Symmetric Group, Lecture Notes in Math. 308 (1973)
- [LL03] M. Larsen and V. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), 85–95, 259.
- [LL04] M. Larsen and V. Lunts, Rationality criteria for motivic zeta functions, Compositio 140 (2004), 1537–1560.
- [Macd] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, 1979
- [Mz] C. Mazza, Schur functors and motives, K-Theory 33 (2004), 89-106.
- [MVW] C. Mazza, V. Voevodsky, and C. Weibel, *Lecture notes on motivic cohomology*, Clay Math. Monographs, vol. 2, AMS, 2006.
- [Q] D. Quillen, Higher algebraic K-theory I, pages 85–147 in Lecture Notes in Math. 341, Spinger, 1973.
- [Sw] R. G. Swan, A splitting principle in algebraic K-theory. Proc. Sympos. Pure Math., Vol. XXI, (1971), pp. 155–159.
- [WHA] C. A. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994.

DIMA - UNIVERSITÀ DI GENOVA, GENOVA, ITALY E-mail address: mazza@dima.unige.it

DEPT. OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ 08901, USA *E-mail address*: weibel@math.rutgers.edu