SCHUR-FINITENESS IN λ-RINGS

C. MAZZA AND C. WEIBEL

Abstract. We introduce the notion of a Schur-finite element in a λ-ring.

Since the beginning of algebraic K-theory in G57, the splitting principle has proven invaluable for working with λ-operations. Unfortunately, this principle does not seem to hold in some recent applications, such as the K-theory of motives. The main goal of this paper is to introduce the subring of Schur-finite elements of any λ-ring, and study its main properties, especially in connection with the virtual splitting principle.

A rich source of examples comes from Heinloth's theorem Hl], that the Grothendieck group $K_{0}(\mathcal{A})$ of an idempotent-complete \mathbb{Q}-linear tensor category \mathcal{A} is a λ-ring. For the category $\mathcal{M}^{\text {eff }}$ of effective Chow motives, we show that $K_{0}(V a r) \rightarrow K_{0}\left(\mathcal{M}^{\text {eff }}\right)$ is not an injection, answering a question of Grothendieck.

When \mathcal{A} is the derived category of motives $\mathbf{D M}_{g m}$ over a field of characteristic 0 , the notion of Schur-finiteness in $K_{0}\left(\mathbf{D M}_{g m}\right)$ is compatible with the notion of a Schur-finite object in $\mathbf{D M}_{g m}$, introduced in Mz.

We begin by briefly recalling the classical splitting principle in Section 1, and answering Grothendieck's question in Section 2. In section 3 we recall the Schur polynomials, the Jacobi-Trudi identities and the Pieri rule from the theory of symmetric functions. Finally, in Section 4, we define Schur-finite elements and show that they form a subring of any λ-ring. We also state the conjecture that every Schur-finite element is a virtual sum of line elements.

Notation. We will use the term λ-ring in the sense of [Ber, 2.4]; we warn the reader that our λ-rings are called special λ-rings by Grothendieck, Atiyah and others; see G57 AT A.

A \mathbb{Q}-linear category \mathcal{A} is a category in which each hom-set is uniquely divisible (i.e., a \mathbb{Q}-module). By a \mathbb{Q}-linear tensor category (or $\mathbb{Q} T C$) we mean a \mathbb{Q}-linear category which is also symmetric monoidal and such that the tensor product is \mathbb{Q}-linear. We will be interested in $\mathbb{Q T C}$'s which are idempotent-complete.

[^0]
1. Finite-dimensional λ-Rings

Almost all λ-rings of historical interest are finite-dimensional. This includes the complex representation rings $R(G)$ and topological K-theory of compact spaces [AT, 1.5] as well as the algebraic K-theory of algebraic varieties G57. In this section we present this theory from the viewpoint we are adopting. Little in this section is new.

Recall that an element x in a λ-ring R is said to be even of finite degree n if $\lambda_{t}(x)$ is a polynomial of degree n, or equivalently that there is a λ-ring homomorphism from the ring Λ_{n} defined in 1.2 to R, sending a to x. We say that x is a line element if it is even of degree 1, i.e., if $\lambda^{n}(x)=0$ for all $n>1$.

We say that x is odd of degree n if $\sigma_{t}(x)=\lambda_{-t}(x)^{-1}$ is a polynomial of finite degree n. Since $\sigma_{-t}(x)=\lambda_{t}(-x)$, we see that x is odd just in case $-x$ is even. Therefore there is a λ-ring homomorphism from the ring Λ_{-n} defined in 1.2 to R sending b to x.

We say that an element x is finite-dimensional if it is the difference of two even elements, or equivalently if x is the sum of an even and an odd element. The subset of even elements in R is closed under addition and multiplication, and the subset of finite-dimensional elements forms a subring of R.
Example 1.1. If R is a binomial λ-ring, then r is even if and only if some $r(r-$ 1) $\cdots(r-n)=0$, and odd if and only if some $r(r+1) \cdots(r+n)=0$. The binomial rings $\prod_{i=1}^{n} \mathbb{Z}$ are finite dimensional. If R is connected then the subring of finite-dimensional elements is just \mathbb{Z}.

There is a well known family of universal finite-dimensional λ-rings $\left\{\Lambda_{n}\right\}$.
Definition 1.2. Following AT, let Λ_{n} denote the free λ-ring generated by one element $a=a_{1}$ of finite degree n (i.e., subject to the relations that $\lambda^{k}(a)=0$ for all $k>n)$. By [Ber, 4.9], Λ_{n} is just the polynomial ring $\mathbb{Z}\left[a_{1}, \ldots, a_{n}\right]$ with $a_{i}=\lambda^{i}\left(a_{1}\right)$.

Similarly, we write Λ_{-n} for the free λ-ring generated by one element $b=b_{1}$, subject to the relations that $\sigma^{k}(b)=0$ for all $k>n$. Using the antipode S, we see that there is a λ-ring isomorphism $\Lambda_{-n} \cong \Lambda_{n}$ sending b to $-a$, and hence that $\Lambda_{-n} \cong \mathbb{Z}\left[b_{1}, \ldots, b_{n}\right]$ with $b_{k}=\sigma^{k}(b)$.

Consider finite-dimensional elements in λ-rings R which are the difference of an even element of degree m and an odd element of degree n. The maps $\Lambda_{m} \rightarrow R$ and $\Lambda_{-n} \rightarrow R$ induce a λ-ring map from $\Lambda_{m} \otimes \Lambda_{-n}$ to R.
Lemma 1.3. If an element x is both even and odd in $a \lambda$-ring, then x and all the $\lambda^{i}(x)$ are nilpotent. Thus $\lambda_{t}(x)$ is a unit of $R[t]$.
Proof. If x is even and odd then $\lambda_{t}(x)$ and $\sigma_{-t}(x)$ are polynomials in $R[t]$ which are inverse to each other. It follows that the coefficients $\lambda^{i}(x)$ of the t^{i} are nilpotent for all $i>0$.

If R is a graded λ-ring, an element $\sum r_{i}$ is even (resp., odd, resp., finitedimensional) if and only if each homogeneous term r_{i} is even (resp., odd, resp., finite-dimensional). This is because the operations λ^{n} multiply the degree of an element by n.

The forgetful functor from λ-rings to commutative rings has a right adjoint; see [Kn, pp. 20-21]. It follows that the category of λ-rings has all colimits. In particular, if $B \leftarrow A \rightarrow C$ is a diagram of λ-rings, the tensor product $B \otimes_{A} C$ has the structure of a λ-ring. Here is a typical, classical application of this construction, originally proven in [AT, 6.1].
Proposition 1.4 (Splitting Principle). If x is any even element of finite degree n in a λ-ring R, there exists an inclusion $R \subseteq R^{\prime}$ of λ-rings and line elements $\ell_{1}, \ldots, \ell_{n}$ in R^{\prime} so that $x=\sum \ell_{i}$.

Proof. Let Ω_{n} denote the tensor product of n copies of the λ-ring $\Lambda_{1}=\mathbb{Z}[\ell]$; this is a λ-ring whose underlying ring is the polynomial ring $\mathbb{Z}\left[\ell_{1}, \ldots, \ell_{n}\right]$, and the λ-ring Λ_{n} of Definition 1.2 is the subring of symmetric polynomials in Ω_{n}; see [AT, §2]. Let R^{\prime} be the pushout of the diagram $\Omega_{n} \leftarrow \Lambda_{n} \rightarrow R$. Since the image of x is $1 \otimes x=a \otimes 1=\left(\sum \ell_{i}\right) \otimes 1$, it suffices to show that $R \rightarrow R^{\prime}$ is an injection. This follows from the fact that Ω_{n} is free as a Λ_{n}-module.

Corollary 1.5. If x is any finite-dimensional element of a λ-ring R, there is an inclusion $R \subseteq R^{\prime}$ of λ-rings and line elements $\ell_{i}, \ell_{j}^{\prime}$ in R^{\prime} so that

$$
x=\left(\sum \ell_{i}\right)-\left(\sum \ell_{j}^{\prime}\right)
$$

Scholium 1.6. For later use, we record an observation, whose proof is implicit in the proof of Proposition 4.2 of AT]: $\lambda^{m}\left(\lambda^{n} x\right)=P_{m, n}\left(\lambda^{1} x, \ldots, \lambda^{m n} x\right)$ is a sum of monomials, each containing a term $\lambda^{i} x$ for $i \geq n$. For example, $\lambda^{2}\left(\lambda^{3} x\right)=$ $\lambda^{6} x-x \lambda^{5} x+\lambda^{4} x \lambda^{2} x$ (see [Kn, p. 11]).

2. K_{0} OF TENSOR CATEGORIES

The Grothendieck group of a \mathbb{Q}-linear tensor category provides numerous examples of λ-rings, and forms the original motivation for introducing the notion of Schur-finite elements in a λ-ring.

A \mathbb{Q}-linear tensor category is exact if it has a distinguished family of sequences, called short exact sequences and satisfying the axioms of Q, and such that each $A \otimes-$ is an exact functor. In many applications \mathcal{A} is split exact: the only short exact sequences are those which split. By $K_{0}(\mathcal{A})$ we mean the Grothendieck group as an exact category, i.e., the quotient of the free abelian group on the objects $[A]$ by the relation that $[B]=[A]+[C]$ for every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$.

Let \mathcal{A} be an idempotent-complete exact category which is a $\mathbb{Q T C}$ for \otimes. For any object A in \mathcal{A}, the symmetric group Σ_{n} (and hence the group ring $\mathbb{Q}\left[\Sigma_{n}\right]$) acts on the n-fold tensor product $A^{\otimes n}$. If \mathcal{A} is idempotent-complete, we define $\wedge^{n} A$ to be the direct summand of $A^{\otimes n}$ corresponding to the alternating idempotent $\sum(-1)^{\sigma} \sigma / n$! of $\mathbb{Q}\left[\Sigma_{n}\right]$. Similarly, we can define the symmetric powers $\operatorname{Sym}^{n}(A)$. It turns out that $\lambda^{n}(A)$ only depends upon the element $[A]$ in $K_{0}(\mathcal{A})$, and that λ^{n} extends to a well defined operation on $K_{0}(\mathcal{A})$.

The following result was proven by F. Heinloth in [H1, Lemma 4.1], but the result seems to have been in the air; see [Dav, p. 486], [LD04, 5.1] and [B1, B2]. A special case of this result was proven long ago by Swan in Sw .

Theorem 2.1. If \mathcal{A} is any idempotent-complete exact $\mathbb{Q} T C, K_{0}(\mathcal{A})$ has the structure of a λ-ring. If A is any object of \mathcal{A} then $\lambda^{n}([A])=\left[\wedge^{n} A\right]$.

Kimura Kim and O'Sullivan have introduced the notion of an object C being finite-dimensional in any $\mathbb{Q T C} \mathcal{A}$: C is the direct sum of an even object A (one for which some $\wedge^{n} A \cong 0$) and an odd object B (one for which some $\operatorname{Sym}^{n}(B) \cong 0$). It is immediate that $[C]$ is a finite-dimensional element in the λ-ring $K_{0}(\mathcal{A})$. Thus the two notions of finite dimensionality are related.
Example 2.2. Let $\mathcal{M}^{\text {eff }}$ denote the category of \mathbb{Q}-linear pure effective Chow motives with respect to rational equivalence over a field k. Its objects are summands of smooth projective varieties over a field k and morphisms are given by Chow groups. Thus $K_{0}\left(\mathcal{M}^{\mathrm{eff}}\right)$ is the group generated by the classes of objects, modulo the relation $\left[M_{1} \oplus M_{2}\right]=\left[M_{1}\right]+\left[M_{2}\right]$. Since $\mathcal{M}^{\text {eff }}$ is a $\mathbb{Q T C}, K_{0}\left(\mathcal{M}^{\text {eff }}\right)$ is a λ-ring.

By adjoining an inverse to the Lefschetz motive to $\mathcal{M}^{\text {eff }}$, we obtain the category \mathcal{M} of Chow motives (with respect to rational equivalence). This is also a $\mathbb{Q T C}$, so $K_{0}(\mathcal{M})$ is a λ-ring.

The category $\mathcal{M}^{\text {eff }}$ embeds into the triangulated category $\mathbf{D M}_{g m}^{\text {eff }}$ of effective geometric motives; see MVW, 20.1]. Similarly, The category \mathcal{M} embeds in the triangulated category $\mathbf{D M}_{g m}$ of geometric motives [MVW, 20.2]. Bondarko proved in [Bo, 6.4.3] that $K_{0}\left(\mathbf{D M}_{g m}^{\text {eff }}\right) \cong K_{0}\left(\mathcal{M}^{\text {eff }}\right)$ and $K_{0}\left(\mathbf{D M}_{g m}\right) \cong K_{0}(\mathcal{M})$. Thus we may investigate λ-ring questions in these triangulated settings. As far as we know, it is possible that every element of $K_{0}\left(\mathbf{D M}_{g m}\right)$ is finite-dimensional.

Here is an application of these ideas. Recall that any quasiprojective scheme X has a motive with compact supports in $\mathbf{D M}{ }^{\text {eff }}, M^{c}(X)$. If k has characteristic 0 , this is an effective geometric motive, and if U is open in X with complement Z there is a triangle $M^{c}(Z) \rightarrow M^{c}(X) \rightarrow M^{c}(U)$; see [MVW, 16.15]. It follows that $\left[M^{c}(X)\right]=\left[M^{c}(U)\right]+\left[M^{c}(Z)\right]$ in $K_{0}\left(\mathcal{M}^{\mathrm{eff}}\right)$. (This was originally proven by Gillet and Soulé in [GS, Thm. 4] before the introduction of DM, but see [GS, 3.2.4].

Definition 2.3. Let $K_{0}(V a r)$ be the Grothendieck ring of varieties obtained by imposing the relation $[U]+[X \backslash U]=[X]$ for any variety X. By the above remarks, there is a well defined ring homomorphism $K_{0}(\operatorname{Var}) \rightarrow K_{0}\left(\mathcal{M}^{\text {eff }}\right)$.

Grothendieck asked in [G64, p.174] if this morphism was far from being an isomorphism. We can now answer his question.
Theorem 2.4. The homomorphism $K_{0}(V a r) \rightarrow K_{0}\left(\mathcal{M}^{\text {eff }}\right)$ is not an injection.
For the proof, we need to introduce Kapranov's zeta-function. If X is any quasiprojective variety, its symmetric power $S^{n} X$ is the quotient of X^{n} by the action of the symmetric group. We define $\zeta_{t}(X)=\sum\left[S^{n} X\right] t^{n}$ as a power series with coefficients in $K_{0}(V a r)$.
Lemma 2.5. (Gul]) The following diagram is commutative:

Proof. It suffices to show that $\left[M^{c}\left(S^{n} X\right)\right]=\operatorname{Sym}^{n}\left[M^{c}(X)\right]$ in $K_{0}\left(\mathcal{M}^{\text {eff }}\right)$ for any X. This is proven by del Baño and Navarro in dBN, 5.3].

Definition 2.6. Following LL04, 2.2], we say that a power series $f(t)=\sum r_{n} t^{n} \in$ $R[[t]]$ is determinentally rational over a ring R if there exists an $m>0$ such that the $m \times m$ symmetric matrices $\left(r_{n+i+j}\right)_{i, j=1}^{m}$ have determinant 0 for all large n. The name comes from the classical fact (1894) that when R is a field (or a domain) a power series is determinentally rational if and only if it is a rational function.

Clearly, if $f(t)$ is not determinentally rational over R and $R \subset R^{\prime}$ then $f(t)$ cannot be determinentally rational over R^{\prime}.

If $x=a+b$ is a finite-dimensional element of a λ-ring R, with a even and b odd, then $\lambda_{t}(a)$ and $\lambda_{t}(-b)$ are polynomials so $\lambda_{t}(x)=\lambda_{t}(a) \lambda_{t}(-b)$ and $\sigma_{t}(x)=\lambda_{t}(x)^{-1}$ are rational functions, and hence rational functions. This was observed by André in A05.
Proof of Theorem 2.4. Let X be the product $C \times D$ of two smooth projective curves of genus >0, so that $p_{g}(X)>0$. Larsen and Lunts showed in [LL04, 2.4, 3.9] that $\zeta_{t}(X)$ is not determinentally rational over $R=K_{0}($ Var $)$. On the other hand, Kimura proved in Kim that X is a finite-dimensional object in $\mathcal{M}^{\text {eff }}$, so $\sigma_{t}(X)=$ $\lambda_{t}(X)^{-1}$ is a determinentally rational function in $R^{\prime}=K_{0}\left(\mathcal{M}^{\text {eff }}\right)$. It follows that $R \rightarrow R^{\prime}$ cannot be an injection.

3. Symmetric functions

We devote this section to a quick study of the ring Λ of symmetric functions, and especially the Schur polynomials s_{π}, referring the reader to Macd for more information. In the next section, we will use these polynomials to define the notion of Schur-finite elements in a λ-ring.

The ring Λ is defined as the ring of symmetric polynomials in variables x_{i}; a major role is played by the elementary symmetric polynomials $e_{i} \in \Lambda$ and the homogeneous power sums $h_{n}=\sum x_{i_{1}} \cdots x_{i_{n}}$ (where the sum being taken over $i_{1} \leq \cdots \leq i_{n}$). Their generating functions $E(t)=\sum e_{n} t^{n}$ and $H(t)=\sum h_{n} t^{n}$ are $\prod\left(1+x_{i} t\right)$ and $\Pi\left(1-x_{i} t\right)^{-1}$, so that $H(t) E(-t)=1$. In fact, Λ is a graded polynomial ring in two relevant ways (with e_{n} and h_{n} in degree n):

$$
\Lambda=\mathbb{Z}\left[e_{1}, \ldots, e_{n}, \ldots\right]=\mathbb{Z}\left[h_{1}, \ldots, h_{n}, \ldots\right]
$$

Given a partition $\pi=\left(n_{1}, \ldots, n_{r}\right)$ of n (so that $\sum n_{i}=n$), we let $s_{\pi} \in \Lambda_{n}$ denote the Schur polynomial of π. The elements e_{n} and h_{n} of Λ are identified with $s_{(1, \ldots, 1)}$ and $s_{(n)}$, respectively. The Schur polynomials also form a \mathbb{Z}-basis of Λ by Macd, 3.3]. By abuse, we will say that a partition π contains a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ if $n_{i} \geq \lambda_{i}$ and $r \geq s$, which is the same as saying that the Young diagram for π contains the Young diagram for λ.

Here is another description of Λ, taken from $[\mathrm{Kn}: \Lambda$ is isomorphic to the direct $\operatorname{sum} R_{*}$ of the representation rings $R\left(\Sigma_{n}\right)$, made into a ring via the outer product $R\left(\Sigma_{m}\right) \otimes R\left(\Sigma_{n}\right) \rightarrow R\left(\Sigma_{m+n}\right)$. Under this identification, $e_{n} \in \Lambda_{n}$ is identified with the class of the trivial simple representation V_{n} of Σ_{n}. More generally, s_{π} corresponds to the class [V_{π}] in $R\left(\Sigma_{n}\right)$ of the irreducible respesentation corresponding to π. (See [Kn, III.3].)

Proposition 3.1. Λ is a graded Hopf algebra, with coproduct Δ and antipode S determined by the formulas

$$
\Delta\left(e_{n}\right)=\sum_{i+j=n} e_{i} \otimes e_{j}, \quad S\left(e_{n}\right)=h_{n} \text { and } S\left(h_{n}\right)=e_{n}
$$

Proof. The graded bialgebra structure is well known and due to Burroughs Bu , who defined the coproduct on R_{*} as the map induced from the restriction maps $R\left(\Sigma_{m+n}\right) \rightarrow R\left(\Sigma_{m}\right) \otimes R\left(\Sigma_{n}\right)$, and established the formulas $\Delta\left(e_{n}\right)=\sum_{i+j=n} e_{i} \otimes e_{j}$. The fact that there is a ring involution S interchanging e_{n} and h_{n} is also well known. The fact that S is an antipode does not seem to be well known, but it is immediate from the formula $\sum(-1)^{r} e_{r} h_{n-r}$ of [Macd, (2.6)].

Remark 3.2. Atiyah shows in [A, 1.2] that Λ is isomorphic to the graded dual $R^{*}=\oplus \operatorname{Hom}\left(R\left(\Sigma_{n}\right), \mathbb{Z}\right)$. That is, if $\left\{v_{\pi}\right\}$ is the dual basis in R^{n} to the basis $\left\{\left[V_{\pi}\right]\right\}$ of simple representations in R_{n} and the restriction of $\left[V_{\pi}\right]$ is $\sum c_{\pi}^{\mu \nu}\left[V_{\mu}\right] \otimes\left[V_{\nu}\right]$ then $v_{\mu} v_{\nu}=\sum_{\pi} c_{\pi}^{\mu \nu} v_{\pi}$ in R^{*}. Thus the product studied by Atiyah on the graded dual R^{*} is exactly the algebra structure dual to the coproduct Δ.

Let π^{\prime} denote the conjugate partition to π. The Jacobi-Trudi identities $s_{\pi}=$ $\operatorname{det}\left|h_{\pi_{i}+j-i}\right|=\operatorname{det}\left|e_{\pi_{i}^{\prime}+j-i}\right|$ show that the antipode S interchanges s_{π} and $s_{\pi^{\prime}}$. (Jacobi conjectured the identities, and his student Nicoló Trudi verified them in 1864; they were rediscovered by Giovanni Giambelli in 1903 and are sometimes called the Giambelli identities).

Let $I_{e, n}$ denote the ideal of Λ generated by the e_{i} with $i \geq n$. The quotient $\Lambda / I_{e, n}$ is the polynomial ring $\Lambda_{n-1}=\mathbb{Z}\left[e_{1}, \ldots, e_{n-1}\right]$. Let $I_{h, n}$ denote $S\left(I_{e, n}\right)$, i.e., the ideal of Λ generated by the h_{i} with $i \geq n$.

Proposition 3.3. The Schur polynomials s_{π} for partitions π containing (1^{n}) (i.e., with at least n rows) form a \mathbb{Z}-basis for the ideal $I_{e, n}$. The Schur polynomials with at most n rows form a \mathbb{Z}-basis of Λ_{n}.

Similarly, the Schur polynomials s_{π} for partitions π containing (n) (i.e., with $\pi_{1} \geq n$) form $a \mathbb{Z}$-basis for the ideal $I_{h, n}$.

Proof. We prove the assertions about $I_{e, n}$; the assertion about $I_{h, n}$ follows by applying the antipode S. By Macd, 3.2], the s_{π} which have fewer than n rows project onto a \mathbb{Z}-basis of $\Lambda_{n-1}=\Lambda / I_{e, n}$. Since the s_{π} form a \mathbb{Z}-basis of Λ, it suffices to show that every partition $\pi=\left(\pi_{1}, \ldots, \pi_{r}\right)$ with $r>n$ is in $I_{e, n}$. Expansion along the first row of the Jacobi-Trudi identity $s_{\pi}=\operatorname{det}\left|e_{\pi_{i}^{\prime}+j-i}\right|$ shows that s_{π} is in the ideal $I_{e, r}$.

Corollary 3.4. The ideal $I_{h, m} \cap I_{e, n}$ of Λ has a \mathbb{Z}-basis consisting of the Schur polynomials s_{π} for partitions π containing the hook $\left(m, 1^{n-1}\right)=(m, 1, \ldots, 1)$.
Definition 3.5. For any partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, let I_{λ} denote the subgroup of Λ generated by the Schur polynomials s_{π} for which π contains λ, i.e., $\pi_{i} \geq \lambda_{i}$ for $i=1, \ldots, r$. We have already encountered the special cases $I_{e, n}=I_{(1, \ldots, 1)}$ and $I_{h, n}=I_{(n)}$ in Proposition 3.3, and $I_{(m, 1, \ldots, 1)}=I_{h, m} \cap I_{e, n}$ in Corollary 3.4,
Example 3.6. Consider the partition $\lambda=(2,1)$. Since $I_{\lambda}=I_{h, 2} \cap I_{e, 2}$ by Corollary 3.4. Λ_{λ} is the pullback of $\mathbb{Z}[a]$ and $\mathbb{Z}[b]$ along the common quotient $\mathbb{Z}[a] /\left(a^{2}\right)=$ $\Lambda /\left(I_{(1,1)}+I_{(2)}\right)$. The universal element of Λ_{λ} is $x=(a, b)$ and if we set $y=\left(0, b^{2}\right)$ then $\Lambda_{(2,1)} \cong \mathbb{Z}[x, y] /\left(y^{2}-x^{2} y\right)$. Since $\lambda^{n}(b)=b^{n}$ for all n, it is easy to check that $\lambda^{2 i}(x)=y^{i}$ and $\lambda^{2 i+1}(x)=x y^{i}$.
Lemma 3.7. The I_{λ} are ideals of Λ, and $\left\{I_{\lambda}\right\}$ is closed under intersection.
Proof. The Pieri rule writes $h_{p} s_{\pi}$ as a sum of s_{μ}, where μ runs over partitions containing π. Thus I_{λ} is closed under multiplication by the h_{p}. As every element of Λ is a polynomial in the h_{p}, I_{λ} is an ideal.

If $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ is another partition, then s_{π} is in $I_{\lambda} \cap I_{\mu}$ if and only if $\pi_{i} \geq$ $\max \left\{\lambda_{i}, \mu_{i}\right\}$ Thus $I_{\lambda} \cap I_{\mu}=I_{\lambda \cup \mu}$.
Remark 3.8. The λ-ideal $I_{\lambda}+I_{\mu}$ need not be of the form I_{ν} for any ν. For example, $I=I_{(2)}+I_{(1,1)}$ contains every Schur polynomial except 1 and $s_{1}=e_{1}$.

We conclude this section by connecting Λ with λ-rings. Recall from [Ber, 4.4], [G57, I.4] or [AT, §2] that the universal λ-ring on one generator $a=a_{1}$ is the polynomial ring $\mathbb{Z}\left[a_{1}, \ldots, a_{n}, \ldots\right]$, with $\lambda^{n}(a)=a_{n}$. This ring is naturally isomorphic to the ring of natural operations on the category of λ-rings, with a_{n} corresponding to the operation λ^{n}; an operation ϕ corresponds to $\phi(a) \in \Lambda$.

Following [A] and [Kn], we may identify this universal λ-ring with Λ, where the a_{i} are identified with the $e_{i} \in \Lambda$. The operation σ^{n}, defined by $\sigma^{n}(x)=(-1)^{n} \lambda^{n}(-x)$, corresponds to h_{n}; this may be seen by comparing the generating functions $H(t)=$ $E(-t)^{-1}$ and $\sigma_{t}(x)=\lambda_{-t}(x)^{-1}$.
Proposition 3.9. If ϕ is an element of Λ, and $\Delta(\phi)=\sum \phi_{i}^{\prime} \otimes \phi_{i}^{\prime \prime}$ then the corresponding natural operation on λ-rings satisfies $\phi(x+y)=\sum \phi_{i}^{\prime}(x) \phi_{i}^{\prime \prime}(y)$.
Proof. Consider the set Λ^{\prime} of all operations in Λ satisfying the condition of the proposition. Since Δ is a ring homomorphism, Λ^{\prime} is a subring of Λ. Since $\Delta\left(e_{n}\right)=$ $\sum e_{i} \otimes e_{n-i}$ and $\lambda^{n}(x+y)=\sum \lambda^{i}(x) \lambda^{n-i}(y), \Lambda^{\prime}$ contains the generators e_{n} of Λ, and hence $\Lambda^{\prime}=\Lambda$.

The Littlewood-Richardson rule states that $\Delta\left(\left[V_{\pi}\right]\right)$ is a sum $\sum c_{\pi}^{\mu \nu}\left[V_{\mu}\right] \otimes\left[V_{\nu}\right]$, where $\mu \subseteq \pi$ and π is obtained from μ by concatenating ν in a certain way. By Proposition 3.9, we then have

Corollary 3.10. $s_{\pi}(x+y)=\sum c_{\pi}^{\mu \nu} s_{\mu}(x) s_{\nu}(y)$.

4. Schur-Finite λ-RINGS

In this section we introduce the notion of a Schur-finite element in a λ-ring R, and show that these elements form a subring of R containing the subring of finite-dimensional elements. We conjecture that they are the elements for which the virtual splitting principle holds.

Definition 4.1. We say that an element x in a λ-ring R is Schur-finite if there exists a partition λ such that $s_{\mu}(x)=0$ for every partition μ containing λ. That is, I_{λ} annihilates x. We call such a λ a bound for x.

By Remark 3.8, $x \in R$ may have no unique minimal bound λ. By Example 4.5 below, $s_{\lambda}(x)=0$ does not imply that λ is a bound for x.
Proposition 4.2. Each I_{λ} is a λ-ideal, and $\Lambda_{\lambda}=\Lambda / I_{\lambda}$ is a λ-ring. Thus every Schur-finite $x \in R$ with bound λ determines a λ-ring map $f: \Lambda_{\lambda} \rightarrow R$ with $f(a)=x$.

Moreover, if λ is a rectangular partition then I_{λ} is a prime ideal, and Λ_{λ} is a subring of a polynomial ring in which a becomes finite-dimensional.

Proposition 4.2 verifies Conjecture 3.9 of KKT.
Proof. Fix a rectangular partition $\beta=\left((m+1)^{n+1}\right)=(m+1, \ldots, m+1)$, and set $a=\sum_{1}^{m} a_{i}, b=\sum_{1}^{n} b_{j}$. Consider the universal λ-ring map

$$
f: \Lambda \rightarrow \Lambda_{m} \otimes \Lambda_{-n} \cong \mathbb{Z}\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right]
$$

sending e_{1} to the finite-dimensional element $a+b$ (see Definition 1.2). We claim that the kernel of f is I_{β}. Since $\operatorname{Ker}(f)$ is a λ-ideal, this proves that I_{β} is a λ ideal and that Λ / I_{β} embeds into the polynomial ring $\mathbb{Z}\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right]$. Since any partition λ can be written as a union of rectangular partitions β_{i}, Lemma 3.7 implies that $I_{\lambda}=\cap I_{\beta_{i}}$ is also a λ-ideal.

By the Littlewood-Richardson rule 3.10 $s_{\pi}(a+b)=\sum c_{\pi}^{\mu \nu} s_{\mu}(a) s_{\nu}(b)$, where π is obtained from μ by concatenating ν in a certain way. If π contains β then $s_{\pi}(a+b)=0$, because either the length of μ is $>m$ or else $\nu_{1}>n$; by Proposition 3.3, $s_{\mu}(a)=0$ in the first case and $s_{\nu}(b)=0$ in the second case. Thus $I_{\lambda} \subseteq \operatorname{Ker}(f)$.

If π does not contain β then the length of μ is at most m and $\nu_{1} \leq n$. By Proposition 3.3, $s_{\mu}(a) \neq 0$ in Λ_{m} and $s_{\nu}(b) \neq 0$ in Λ_{-n}. As the $s_{\mu}(a)$ run over a basis of Λ_{m} and the $s_{\nu}(b)$ run over a basis of Λ_{-n}, by Proposition 3.3, we have $f\left(s_{\pi}\right)=s_{\pi}(a+b) \neq 0$. Thus $I_{\lambda}=\operatorname{Ker}(f)$, as claimed.
Corollary 4.3. $\Lambda_{(2,2)}$ is the subring $\mathbb{Z}+x \mathbb{Z}[a, b]$ of $\mathbb{Z}[a, b]$, where $x=a+b$.
Proof. By Proposition 4.2, $\Lambda_{(2,2)}$ is the subring of $\mathbb{Z}[a, b]$ generated $x=a+b$ and the $\lambda^{n}(x)$. Since

$$
\lambda^{n+1}(x)=a \lambda^{n}(b)+\lambda^{n+1}(b)=a b^{n}+b^{n+1}=x b^{n}
$$

we have $\Lambda_{(2,2)}=\mathbb{Z}\left[x, x b, x b^{2}, \ldots, x b^{n}, \ldots\right]=\mathbb{Z}+x \mathbb{Z}[a, b]$.
Remark 4.4. The ring $\Lambda_{(2,2)}$ was studied in KKT, 3.8], where it was shown that $\Lambda_{(2,2)}$ embeds into $\mathbb{Z}[x, y]$ sending e_{n} to $x y^{n-1}$. This is the same as the embedding in Corollary 4.3 up to the change of coordinates $(x, y)=(a+b, b)$.

Example 4.5. Let I be the ideal of $\Lambda_{(2,2)}$ generated by the $\lambda^{2 i}(x)(i>0)$ and set $R=\Lambda_{(2,2)} / I$. Then R is a λ-ring and x is a nonzerodivisor such that $\lambda^{2 i}(x)=0$ but $\lambda^{2 i+1}(x) \neq 0$. In particular, $\lambda^{2}(x)=0$ yet $\lambda^{3}(x) \neq 0$.

To see this, we use the embedding of Corollary 4.3 to see that I contains $x\left(x b^{2 i-1}\right)$ and $(x b)\left(x b^{2 i-1}\right)$ and hence the ideal J of $\mathbb{Z}[a, b]$ generated by $x^{2} b$. In
fact, I is additively generated by J and the $\left\{x b^{2 i-1}\right\}$. It follows that R has basis $\left\{1, x^{n}, x b^{2 n} \mid n \geq 1\right\}$. Since $\lambda^{n}\left(\lambda^{2 i}(x)\right)$ is equivalent to $\lambda^{2 i n}(x)=x b^{2 i n-1}$ modulo J (by 1.6), it lies in I. Hence I is a λ-ideal of $\Lambda_{(2,2)}$.
Lemma 4.6. If x and y are Schur-finite, so is $x+y$.
Proof. Given a partition λ, there is a partition π_{0} such that whenever π contains π_{0}, one of the partitions μ and ν appearing in the Littlewood-Richardson rule 3.10 must contain λ. If x and y are both killed by all Schur polynomials indexed by partitions containing λ, we must therefore have $s_{\pi}(x+y)=0$.
Corollary 4.7. Finite-dimensional elements are Schur-finite.
Proof. Proposition 3.3 shows that even and odd elements are Schur-finite.
Example 4.8. If R is a binomial ring containing \mathbb{Q}, then every Schur-finite element is finite-dimensional. This follows from Example 1.1 and [Macd, Ex. I.3.4], which says that $s_{\pi}(r)$ is a rational number times a product of terms $r-c(x)$, where the $c(x)$ are integers.

Example 4.9. The universal element x of $\Lambda_{(2,1)}$ is Schur-finite but not finite-dimensional. To see this, recall from Example 3.6 that $\Lambda_{(2,1)} \cong \mathbb{Z}[x, y] /\left(y^{2}-x^{2} y\right)$. Because $\Lambda_{(2,1)}$ is graded, if x were finite-dimensional it would be the sum of an even and odd element in the degree 1 part $\{n x\}$ of $\Lambda_{(2,1)}$. If $n \in \mathbb{N}, n x$ cannot be even because the second coordinate of $\lambda^{k}(n x)$ is $\binom{-n}{k} b^{k}$ by 1.2. And $n x$ cannot be odd, because the first coordinate of $\sigma^{k}(n x)$ is $(-1)^{k}\binom{-n}{k} a^{k}$.
Lemma 4.10. Let $R \subset R^{\prime}$ be an inclusion of λ-rings. If $x \in R$ is Schur-finite in R^{\prime}, then x is Schur-finite in R. In particular, if x is finite-dimensional in R^{\prime}, then x is Schur-finite in R.

Proof. Since $s_{\pi}(x)$ may be computed in either R or R^{\prime}, the set of partitions π for which $s_{\pi}(x)=0$ is the same for R and R^{\prime}. The final assertion follows from Lemma 4.7.

Lemma 4.11. If π is a partition on $n, s_{\pi^{\prime}}(-x)=(-1)^{n} s_{\pi}(x)$.
Proof. Write s_{π} as a homogeneous polynomial $f\left(e_{1}, e_{2}, \ldots\right)$ of degree n. Applying the antipode S in Λ, we have $s_{\pi^{\prime}}=f\left(h_{1}, h_{2}, \ldots\right)$. It follows that $s_{\pi^{\prime}}(-x)=$ $f\left(\sigma^{1}, \sigma^{2}, \ldots\right)(-x)$. Since $\sigma^{i}(-x)=(-1)^{i} \lambda^{i}(x)$, and f is homogeneous, we have

$$
s_{\pi^{\prime}}(-x)=f\left(-\lambda^{1},+\lambda^{2}, \ldots\right)(x)=(-1)^{n} f\left(\lambda^{1}, \lambda^{2}, \ldots\right)(x)=s_{\pi}(x) .
$$

Theorem 4.12. The Schur-finite elements form a subring of any λ-ring, containing the subring of finite-dimensional elements.
Proof. The Schur-finite elements are closed under addition by Lemma 4.6. Since π contains λ just in case π^{\prime} contains λ^{\prime}, Lemma 4.11 implies that $-x$ is Schur-finite whenever x is. Hence the Schur-finite elements form a subgroup of R. It suffices to show that if x and y are Schur-finite in R, then $x y$ and all $\lambda^{i}(x)$ are Schur-finite.

Let x be Schur-finite with rectangular bound μ, so there is a map from the λ-ring Λ_{μ} to R sending the generator e to x. Embed Λ_{μ} in $R^{\prime}=\mathbb{Z}\left[a_{1}, \ldots, b_{1}, \ldots\right]$ using Proposition 4.2. Since every element of R^{\prime} is finite-dimensional, $\lambda^{n}(e)$ is finitedimensional in R^{\prime}, and hence Schur-finite in Λ_{μ} by Lemma 4.10. It follows that the image $\lambda^{n}(x)$ of $\lambda^{n}(e)$ in R is also Schur-finite.

Let x and y be Schur-finite with rectangular bounds μ and ν, and let $\Lambda_{\mu} \rightarrow R$ and $\Lambda_{\nu} \rightarrow R$ be the λ-ring maps sending the generators e_{μ} and e_{ν} to x and y. Since the induced map $\Lambda_{\mu} \otimes \Lambda_{\nu} \rightarrow R$ sends $e_{\mu} \otimes e_{\nu}$ to $x y$, we only need to show that $e_{\mu} \otimes e_{\nu}$ is Schur-finite. But $\Lambda_{\mu} \otimes \Lambda_{\nu} \subset \mathbb{Z}\left[a_{1}, \ldots, b_{1}, \ldots\right] \otimes \mathbb{Z}\left[a_{1}, \ldots, b_{1}, \ldots\right]$, and in
the larger ring every element is finite-dimensional, including the tensor product. By Lemma 4.10, $e_{\mu} \otimes e_{\nu}$ is Schur-finite in $\Lambda_{\mu} \otimes \Lambda_{\nu}$.

Conjecture 4.13 (Virtual Splitting principle). Let x be a Schur-finite element of a λ-ring R. Then R is contained in a larger λ-ring R^{\prime} such that x is finite-dimensional in R^{\prime}, i.e., there are line elements $\ell_{i}, \ell_{j}^{\prime}$ in R^{\prime} so that

$$
x=\left(\sum \ell_{i}\right)-\left(\sum \ell_{j}^{\prime}\right)
$$

Example 4.14. The virtual splitting principle holds in the universal case, where $R_{0}=\Lambda_{\beta}$. Indeed, we know that x is $\sum a_{i}+\sum b_{j}$ in $R_{0}^{\prime}=\mathbb{Z}\left[a_{1}, \ldots, b_{1}, \ldots\right]$. Since $\ell_{j}=-b_{j}$ is a line element, x is a difference of sums of line elements in R_{0}^{\prime}.

Unfortunately, although the induced map $f: R \rightarrow R \otimes_{R_{0}} R_{0}^{\prime}$ sends a Schurfinite element x to a difference of sums of line elements, the map f need not be an injection.

As partial evidence for Conjecture 4.13 we show that the virtual splitting principle holds for elements bounded by the hook $(2,1)$.

Theorem 4.15. Let x be a Schur-finite element in a λ-ring R. If x has bound $(2,1)$, then R is contained in a λ-ring R^{\prime} in which x is a virtual sum $\ell_{1}+\ell_{2}-a$ of line elements.

Proof. The polynomial ring $R[a]$ becomes a λ-ring once we declare a to be a line element. Set $y=x+a$, and let I be the ideal of $R[a]$ generated by $\lambda^{3}(y)$.

For all $n \geq 2$, the equation $s_{n, 1}(x)=0$ yields $\lambda^{n+1}(x)=x \lambda^{n}(x)=x^{n-1} \lambda^{2}(x)$ in R, and therefore $\lambda^{n+1}(y)=(a+x) x^{n-2} \lambda^{2}(x)=x^{n-2} \lambda^{3}(y)$. It follows from Scholium 1.6 that $\lambda^{m}\left(\lambda^{3} y\right) \in I$ for all $m \geq 1$ and hence that

$$
\lambda^{n}\left(f \cdot \lambda^{3} y\right)=P_{n}\left(\lambda^{1}(f), \ldots, \lambda^{n}(f) ; \lambda^{1}\left(\lambda^{3} y\right), \ldots, \lambda^{n}\left(\lambda^{3} y\right)\right)
$$

is in I for all $f \in R[a]$. Thus I is a λ-ideal of $R[a], A=R[a] / I$ is a λ-ring, and the image of y in A is even of degree 2. By the Splitting Principle 1.4 the image of $x=y-a$ in some λ-ring A^{\prime} containing A is a virtual sum $\ell_{1}+\ell_{2}-a$ of line elements.

To conclude, it suffices to show that R injects into $A=R[a] / I$. If $r \in R$ vanishes in A then $r=f \lambda^{3}(y)$ for some $f=f(a)$ in $R[a]$. We may take f to have minimal degree $d \geq 0$. Writing $f(a)=c a^{d}+g(a)$, with $c \in R$ and $\operatorname{deg}(g)<d$, the coefficient of a^{d+1} in $f \lambda^{3}(y)$, namely $c \lambda^{2}(x)$, must be zero. But then $c \lambda^{3} y=0$, and $r=g \lambda^{3} y$, contradicting the minimality of f.

Remark 4.16. The rank of a Schur-finite object with bound π cannot be well defined unless π is a rectangular partition. This is because any rectangular partition $\mu=$ $(m+1)^{n+1}$ contained in π yields a map $R \rightarrow R^{\prime}$ sending x to an element of rank $m-n$. If π is not rectangular there are different maximal rectangular subpartitions with different values of $m-n$.

Example 4.16.1. Let x be the element of Theorem 4.15. By Lemma 4.11, $-x$ also has bound $(2,1)$. Applying Theorem 4.15 to $-x$ shows that R is also contained in a λ-ring $R^{\prime \prime}$ in which x is a virtual sum $a-\ell_{1}-\ell_{2}$ of line bundles. Therefore x has rank 1 in R^{\prime}, and has rank -1 in $R^{\prime \prime}$.

Let R be a λ-ring and $x \in R$. One central question is to determine when the power series $\lambda_{t}(x)$ is a rational function. (See A05], LL04, [H1, Gul, [B1, B2, KKT for example.) For concreteness, we consider the question of being determinentally rational (see 2.6). This is connected to Schur-finiteness.

Proposition 4.17. If x is Schur-finite, then $\lambda_{t}(x)$ is determinentally rational.
Conversely, if $\lambda_{t}(x)$ is determinentally rational, there is an m such that the sequence $s_{\left(1^{m}\right)}(x), \ldots, s_{\left(n^{m}\right)}(x), \ldots$ is eventually 0 .

The first assertion of this proposition was proven in [KKT, 3.10] for λ-rings of the form $K_{0}(\mathcal{A})$ using categorical methods.

Proof. By definition, $\lambda_{t}(x)$ is determinentally rational if and only if for some m the determinants of the $m \times m$ matrices $A_{n}=\left(\lambda^{n+i+j}(x)\right)$ are 0 for all large n. Reversing the rows in A_{n-m} yields the matrix in the Jacobi-Trudi identity for $s_{\pi}(x)$, $\pi=\left(n^{m}\right)=(n, n, \ldots, n)$. Since $\operatorname{det}\left(A_{m-n}\right)= \pm s_{\pi}(x), \lambda_{t}(x)$ is determinentally rational if and only if for some m the sequence $\left\{s_{\left(n^{m}\right)}(x)\right\}$ is eventually 0 .

If x is Schur-finite, some bound for x is a rectangular partition $\left(N^{m}\right)$. Then $s_{\left(n^{m}\right)}(x)=0$ for all $n \geq N$, because the partition $\left(n^{m}\right)$ contains $\left(N^{m}\right)$.

We conclude by connecting our notion of Schur-finiteness to the notion of a Schur-finite object in a \mathbb{Q}-linear tensor category \mathcal{A}, given in Mz). By definition, an object A is Schur-finite if some $S_{\lambda}(A) \cong 0$ in \mathcal{A}. By [Mz, 1.4], this implies that $S_{\mu}(A)=0$ for all μ containing λ. It is evident that if A is a Schur-finite object of \mathcal{A} then $[A]$ is a Schur-finite element of $K_{0}(\mathcal{A})$. However, the converse need not hold. For example, if \mathcal{A} contains infinite direct sums then $K_{0}(\mathcal{A})=0$ by the Eilenberg swindle, so $[A]$ is always Schur-finite.

Here are two examples of Schur-finite objects whose class in $K_{0}(\mathcal{A})$ is finitedimensional even though they are not finite-dimensional objects.

Example 4.18. Let \mathcal{A} denote the abelian category of positively graded modules over the graded ring $A=\mathbb{Q}[\varepsilon] /\left(\varepsilon^{2}=0\right)$. It is well known that \mathcal{A} is a tensor category under $\otimes_{\mathbb{Q}}$, with the λ-ring $K_{0}(\mathcal{A}) \cong \Lambda_{-1}=\mathbb{Z}[b] ; 1=[Q]$ and $b=[\mathbb{Q}[1]]$. The graded object A is Schur-finite but not finite-dimensional in \mathcal{A} by [Mz, 1.12]. However, $[A]$ is a finite-dimensional element in $K_{0}(\mathcal{A})$ because $[A]=[\mathbb{Q}]+[\mathbb{Q}[1]]$.
Example 4.19 (O'Sullivan). Let X a Kummer surface; then there is an open subvariety U of X, whose complement Z is a finite set of points, such that $M(U)$ is Schur-finite but not finite-dimensional in the Kimura-O'Sullivan sense [Mz, 3.3]. However, it follows from the distinguished triangle

$$
M(Z)(2)[3] \rightarrow M(U) \rightarrow M(X) \rightarrow M(Z)(2)[4]
$$

that $[M(U)]=[M(Z)(2)[3]]+[M(X)]$ in $K_{0}\left(\mathbf{D M}_{g m}\right.$ and hence in $K_{0}(\mathcal{M})$. Since both $M(X)$ and $M(Z)(2)[3]$ are finite-dimensional, $[M(U)]$ is a finite-dimensional element of $K_{0}(\mathcal{M})$.

Acknowledgements. The authors would like to thank Anders Buch, Alessio Del Padrone and Christophe Soulé for valuable discussions.

References

[1894] E. Borel, Sur une application d'un théorème de M. Hadamard, Bull. Sciences Math. 18 (1894), 22-25.
[A] M. Atiyah, Power operations in K-theory, Quart. J. Math. Oxford 17 (1966), 165-193.
[AT] M. Atiyah and D. Tall, Group representations, λ-rings and and the J-homomorphism, Topology 8 (1969), 253-297.
[A05] Y. André, Motifs de dimension finie (d'aprés S.-I. Kimura, P. O'Sullivan ...), Astérisque 299 (2005), 115-145.
[Ber] P. Berthelot, Generalites sur les λ-anneaux, Exposé V (pages 297-364) in SGA6, Lecture Notes in Math. 225, Spinger, 1971.
[B1] S. Biglari, On finite dimensionality of mixed Tate motives J. K-Theory 4 (2009), 145-161
[B2] S. Biglari, Lambda ring structure on the Grothendieck ring of mixed motives, preliminary version, 2009. Available at http://www.math.uni-bielefeld.de/~biglari/manuscripts/lrsmm.pdf
[B3] S. Biglari, On rings and categories of general representations, preprint, 2010. Available at http://arxiv.org/abs/1002.2801
[Bo] M. Bondarko, Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky versus Hanamura. J. Inst. Math. Jussieu 8 (2009), no. 1, 39-97.
[Bu] J. Burroughs, Operations in Grothendieck rings and the symmetric group, Canad. J. Math XXVI (1974), 543-550.
[Dav] A. A. Davidov, Monoidal Categories, Journal of Mathematical Asciences 88(4) (1998), 457519.
[dBN] S. del Baño Rollin and V. Navarro Aznar, On the motive of a quotient variety, Collecteana Math. 49 (1998), no. 2-3, 203-226.
[G57] A. Grothendieck, Classes de Faisceaux et Théorème de Riemann-Roch, Exposé 0-App (pages 20-77) in SGA6, Lecture Notes in Math. 225, Spinger, 1971. Original preprint dated November 1957.
[G64] A. Grothendieck, Letter to Serre, August 16, 1964, pp.172-175 in Correspondance Grothendieck-Serre, Ed. P. Colmez and J.-P. Serre, Soc. Math. France, 2001.
[GS] H. Gillet and C. Soulé, Descent, motives and K-theory, J. Reine Angew. Math. 478 (1996), 127-176.
[GN] F. Guillén and V. Navarro Aznar, Un critère d'extension des foncteurs définis sur les schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1-91.
[Gul] V. Guletskii, Zeta-functions in triangulated categories, Mathematical Notes. 87 (2010), 369381.
[Hl] F. Heinloth, A note on functional equations for zeta functions with values in Chow motives, Ann. Inst. Fourier (Grenoble) 57 (2007), 927-1945.
[Kap] M. Kapranov, The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, preprint, 2000. Available at math.AG/0001005
[Kim] S. Kimura, Chow groups are finite dimensional, in some sense, Math. Annalen 331 (2005), 173-201.
[KKT] K. Kimura, S. Kimura and N. Takahashi, Motivic Zeta functions in additive monoidal categories, preprint, 2009.
[Kn] D. Knutson, λ-rings and the Representation Theory of the Symmetric Group, Lecture Notes in Math. 308 (1973)
[LL03] M. Larsen and V. Lunts, Motivic measures and stable birational geometry, Mosc. Math. J. 3 (2003), 85-95, 259.
[LL04] M. Larsen and V. Lunts, Rationality criteria for motivic zeta functions, Compositio 140 (2004), 1537-1560.
[Macd] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, 1979
[Mz] C. Mazza, Schur functors and motives, K-Theory 33 (2004), 89-106.
[MVW] C. Mazza, V. Voevodsky, and C. Weibel, Lecture notes on motivic cohomology, Clay Math. Monographs, vol. 2, AMS, 2006.
[Q] D. Quillen, Higher algebraic K-theory I, pages 85-147 in Lecture Notes in Math. 341, Spinger, 1973.
[Sw] R. G. Swan, A splitting principle in algebraic K-theory. Proc. Sympos. Pure Math., Vol. XXI, (1971), pp. 155-159.
[WHA] C. A. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994.
DIMA - Università di Genova, Genova, Italy
E-mail address: mazza@dima.unige.it
Dept. of Mathematics, Rutgers University, New Brunswick, NJ 08901, USA
E-mail address: weibel@math.rutgers.edu

[^0]: Date: November 8, 2010.
 Weibel's research was supported by NSA and NSF grants.

