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Abstract

We settle a long standing issue concerning the traditional derivation
of non-compact non-linear sigma models in the theory of disordered elec-
tron systems: the hyperbolic Hubbard-Stratonovich (HS) transformation
of Pruisken-Schäfer type. Only recently the validity of such transfor-
mations was proved in the case of U(p, q) (non-compact unitary) and
O(p, q) (non-compact orthogonal) symmetry. In this article we give a
proof for general non-compact symmetry groups. Moreover, we show that
the Pruisken-Schäfer type transformations are related to other variants
of the HS transformation by deformation of the domain of integration.
In particular we clarify the origin of surprising sign factors which were
recently discovered in the case of orthogonal symmetry.

1 Introduction

Non-compact non-linear sigma models are an important and extensively used
tool in the study of disordered electron systems. The relevant formalism was
pioneered by Wegner [1], Schäfer & Wegner [2], and Pruisken & Schäfer [3].
Efetov [4] improved the formalism by developing the supersymmetry method
to derive non-linear sigma models. Many applications of the supersymmetry
method can be found in the textbook by Efetov [5].

There exist different ways to derive non-linear sigma models from micro-
scopic models; for an introduction see [6]. One step in the traditional approach
uses a Hubbard-Stratonovich transformation, i.e., a transformation of the form

c0 e
−TrA2

=

∫

D

e−TrQ2−2iTrQA|dQ|, (1)

where c0 ∈ C and the domain of integration D is left unspecified for now. |dQ|
denotes Lebesgue measure of a normed vector space.

For the case of compact symmetries the transformation is just a trivial Gaus-
sian integral. To give an indication of the difficulty which arises in the case of a
non-compact symmetry (also known as the boson-boson sector of Efetov’s super-
symmetry formalism) let us briefly discuss the example of orthogonal symmetry

O(p, q). There, A is given by Aij =
∑N

a=1 Φa,iΦa,jsjj with s = Diag(1p,−1q)
and Φa,j ∈ R. The Φa,j represent the microscopic degrees of freedom. Using
equation (1) and integrating out Φ gives a description in terms of the effective
degrees of freedom Q. The task is to find a domain of integration D for which
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identity (1) holds and the term exp(−2iTrQA) stays bounded. The latter con-
dition is imposed in order for Fubini’s theorem to apply, as further execution of
the Wegner-Efetov formalism calls for the Φ and Q integrals to be interchanged.
Note that the real matrices A obey the symmetry relation A = sAts. A naive
choice of integration domain D keeping the term exp(−2iTrQA) bounded would
be the domain of all real matrices satisfying Q = sQts. Unfortunately, this
choice of D is not a valid choice in the context of the integral (1) as it renders
the quadratic form TrQ2 = TrQsQts of indefinite sign.

Schäfer and Wegner (SW) [2] suggested a domain and showed that it solves
the difficulty. Yet, a different domain was proposed in later work by Pruisken
and Schäfer (PS) [3]. Until recently the mathematical status of identity (1) for
the PS domain was unclear. The main obstacle in proving (1) for the PS domain
is the existence of a boundary. This precludes an easy proof by completing the
square and shifting the contour (as is possible for the standard Gauss integral
and for the SW domain). Nevertheless, the PS domain was used in most ap-
plications worked out by the mesoscopic and disordered physics community; an
early and influential paper of this kind is [10]. Most likely, the reason is that
it is easier to do calculations with, as it is invariant under the full symmetry
group of the domain of matrices A.

Recently Fyodorov, Wei and Zirnbauer in a series of papers [7, 8, 9] proved
the PS variant of the HS transformation for the special cases of unitary and
orthogonal symmetry. In this article we extend the results to more general
symmetry groups. Moreover, our proof clarifies the relation between the PS
transformation, the SW transformation and the standard Gaussian integrals.
It is shown that the different integrals can be transformed into each other by
deforming the domain of integration without changing the value of the integral.

Here is a guide to reading: In section 2 we define the setting and state our
main result in the form of a theorem. In addition, we give two corollaries which
relate more directly to previous results. In section 3 we apply our results to
three different symmetry classes. In particular, previous results concerning the
cases of unitary and orthogonal symmetry are reproduced. The proof of the
theorem is contained in section 4, which is divided into three subsections. For
the convenience of the reader each subsection is preceded by a short introduction
of notation, essential structures, and a lemma containing the results of the
pertinent part of the proof. The last subsection of section 4 deals with the two
corollaries.

2 Statement of result

All constructions take place in gl(n,C), the Lie algebra of complex n×n matri-
ces. [Please be advised however that the following results also apply to the case
where gl(n,C) is replaced by a complex reductive Lie subalgebra of gl(n,C).]
Let s ∈ gl(n,C) be hermitian with the property s2 = 1. This matrix s gives rise
to two involutions θ(X) = sXs−1 and γ(X) = −sX†s−1 on gl(n,C). ‘Involu-
tion’ here means an involutive Lie algebra automorphism. For greater generality
we allow for further involutions τi to be present on gl(n,C). Two requirements
have to be fulfilled: Firstly, all involutions have to commute with each other and
secondly, s has to be in the plus or minus eigenspace of each τi, i.e. s = ηiτi(s)
with ηi ∈ {±1}.
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The fixed point set of γ and the τi’s is the real Lie algebra

g = {X ∈ gl(n,C) | X = γ(X) and ∀i : X = τi(X)}.

We also introduce the real vector space

Q = {Q ∈ gl(n,C) | Q = −γ(Q) and ∀i : Q = ηiτi(Q)},

which is an R-module for the adjoint (or commutator) action by g.
Due to (θ ◦ γ)(X) = −X†, the decompositions of g and Q into the plus and

minus one eigenspaces of θ are decompositions into hermitian and antihermi-
tian parts. We write these decompositions as g = k ⊕ p and Q = Q+ ⊕ Q−,
where k and Q+ are in the plus one eigenspace and p and Q− are in the mi-
nus one eigenspace. k and Q− consist of antihermitian matrices whereas p and
Q+ consist of hermitian matrices. The commutation relations among all these
spaces,

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k, [Q+ ,Q−] ⊂ p,
[Q± ,Q±] ⊂ k, [k,Q±] ⊂ Q± , [p,Q±] ⊂ Q∓ ,

imply that g ⊕ Q is a Lie algebra. (This Lie subalgebra of gl(n,C) could have
served as the starting point of our setting.) By the definition of Q the matrix
As is hermitian for all A ∈ Q. Note that s ∈ Q+. To preclude any pathologies
that might otherwise occur, we demand that the Lie group exp(k) be closed.

The parametrization of the Pruisken-Schäfer domain is given by

PS : p⊕Q+ → Q,

(Y,X) 7→ eYXe−Y . (2)

The standard domain for a Gaussian integral is called ‘Euclidean’ in the follow-
ing. It is parametrized by

Euclid : Q− ⊕Q+ → QC,

(Ỹ , X) 7→ X + iỸ ,

where QC = Q⊕ iQ. Finally, the parametrization of the one-parameter family
of Schäfer-Wegner domains is given by

SW : p⊕Q+ → QC,

(Y,X) 7→ X − ibeY se−Y ,

where b is any positive real number.
The following statement relies on making a choice of orientation for the PS

domain. (Note that no such choice is made for D in (1).) Once and for all we
now fix an orientation for each of the vector spaces Q+, p, and Q−. By viewing
PS, Euclid, and SW as orientation-preserving maps, we then have orientations
on the corresponding domains of integration.

Theorem 2.1. Let A ∈ Q in the setting above. If As > 0 one has

lim
ǫ→0

∫

PS

e−Tr(Q2)−2iTr(QA)χǫ(Q)dQ = c e−Tr(A2).

Here, χǫ(Q) = exp( ǫ4 Tr[Q−θ(Q)]2) ≤ 1 is a regulating function (ǫ > 0) and dQ
denotes a constant volume form (i.e. a constant differential form of top degree)
on Q. The normalization constant c ∈ C \ {0} does not depend on A.
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The main idea of the proof is to show that the PS domain can be extended
by a nulldomain (of holomorphic continuation of dQ) and then deformed into
a Euclidean domain without changing the value of the integral. Appendix B
shows that one can also deform the SW domain into this Euclidean domain.
Thus the PS and SW domains are deformations of the same Euclidean domain.

Now we formulate two corollaries. For that purpose let h be a maximal
Abelian subalgebra h ⊂ Q+ ⊂ gl(n,C). We require that s ∈ h. Let Σ+(k⊕Q+, h)
denote a set of positive roots of the adjoint action of h on k ⊕ Q+. Similarly
Σ+(p⊕Q−, h) denotes a set of positive roots of the adjoint action of h on p⊕Q−.
The multiplicity of a root α is denoted by dα.

The following corollary is the analogue of corollary 1 in [9].

Corollary 2.1. Let |dg| denote Haar measure of the closed analytic subgroup
G ⊂ GL(n,C) with Lie algebra g. We then have

lim
ǫ→0

∫

h

(∫

G

e−2iTr(gλg−1A)χǫ(gλg
−1)|dg|

)

e−Trλ2

J ′(λ)|dλ| = c̃ e−Tr(A2),

where |dλ| denotes Lebesgue measure on the vector space h and

J ′(λ) =
∏

α∈Σ+(k⊕Q+,h)

|α(λ)|dα

∏

α∈Σ+(p⊕Q−,h)

α(λ)dα .

The constant c̃ ∈ C \ {0} does not depend on A.

Remark 2.1. It is particularly noteworthy that for odd multiplicities dα of roots
α ∈ Σ+(p⊕Q−, h) the ‘Jacobian’ J ′(λ) is not positive but has alternating sign.

The following corollary is the analogue of theorem 1 in [9]:

Corollary 2.2. If the parametrization PS is nearly everywhere injective and
regular, then

lim
ǫ→0

∫

ImPS

e−Tr(Q2)−2iTr(QA)χǫ(Q) sgn(J ′(λ))|dQ| = c̃′e−Tr(A2).

Here ImPS = PS denotes the non-oriented image of PS. The mapping from
ImPS to h sending Q to λ is well defined up to a set of measure zero. |dQ|
denotes Lebesgue measure on Q, and c̃′ ∈ C \ {0} is a constant which does not
depend on A.

Remark 2.2. While we believe that the assumptions on PS in corollary 2.2
follow from the general setting, we have not been able to find a proof thereof.

3 Examples

First we reproduce the examples of unitary and orthogonal symmetry. For this
we calculate J ′ and apply corollary 2.1.

4



3.1 U(p, q) symmetry

This case has been handled by Fyodorov [7] using different methods. To apply
the general theorem (2.1) we work in the complex Lie algebra gl(p + q,C) and
define s = Diag(1p,−1q). No additional involutions τi are needed. We have

k⊕Q+ = {x ∈ gl(n,C) | X = sXs}, p⊕Q− = {x ∈ gl(n,C) | X = −sXs}.

The maximal Abelian subalgebra h ⊂ Q+ is spanned by the real diagonal matri-
ces. Let λ := Diag(λ1, . . . , λp+q) ∈ h be such a matrix. The roots Σ+(gl(p+q), h)
are given by fi − fj where i < j and fi(λ) = λi. For i ≤ p < j ≤ p + q the
roots fi − fj are elements of Σ+(p ⊕ Q−, h), otherwise they are elements of
Σ+(k⊕Q+, h).

The root space corresponding to fi−fj is CEij where Eij is the matrix with
unity in the ij position and zero elsewhere. Thus every root space has complex
dimension one, or real dimension two. Hence

J ′(λ) =
∏

i<j

|λi − λj |
2.

With this expression for J ′(λ) the formula of corollary 2.1 agrees with that of
Fyodorov [7].

3.2 O(p, q) symmetry

This case has been dealt with by Fyodorov, Wei and Zirnbauer [9]. In addition
to the involutions of the unitary setting we need an involution τ1(X) = −sXts
and η1 = −1. The additional presence of this involution requires all matrices to
be real. In consequence, all root spaces are now one dimensional, and they give
rise to non-trivial signs:

J ′(λ) =
∏

α∈Σ+(p⊕Q−,h)

α(λ)
∏

α∈Σ+(k⊕Q+,h)

|α(λ)|

=
∏

i≤p<j≤p+q

(λi − λj)
∏

i<j≤p,p<i<j≤p+q

|λi − λj |

=
∏

i<j

|λi − λj |

p
∏

i=1

p+q
∏

j=p+1

sgn(λi − λj),

which is precisely corollary 1 in [9].

3.3 Sp(2p, 2q) symmetry

Now we consider the case of symplectic symmetry which arises for random
matrix ensembles of class AII in the language of [14]. Let σi (i = 1, 2, 3) denote
the three Pauli matrices and let σ0 = 12. Introducing σ

i
p = 1p ⊗ σi, we choose

s = Diag(σ0
p,−σ

0
q) and define Ω = Diag(σ2

p,−σ
2
q). The involution τ1(X) =

−ΩXtΩ−1 together with η1 = −1 leads to

k⊕Q+ =
{(A 0

0 D

) ∣
∣
∣A = σ2

pĀσ
2
p , D = σ2

qD̄σ
2
q

}

,

p =
{( 0 B

B† 0

) ∣
∣
∣B = −σ2

pB̄σ
2
q

}

, Q− = {sY | Y ∈ p}.
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A maximal Abelian subalgebra of h ⊂ Q+ is

h = {Diag(λ1, . . . , λp+q)⊗ σ0 | λk ∈ R}.

Note s ∈ h. Let λ := Diag(λ1, . . . , λp+q) ⊗ σ0 and let fi ∈ h∗ be defined by
fi(λ) = λi. Then we have

Σ+(k⊕Q+, h) = {fk − fl | 1 ≤ k < l ≤ p or p < k < l ≤ p+ q},

Σ+(p⊕Q−, h) = {fk − fl | 1 ≤ k ≤ p and p < l ≤ p+ q}.

To determine the root multiplicities we note that the quaternions {σ0, iσ1, iσ2, iσ3}
constitute a basis of the space r := {X ∈ gl(2,C) | X = σ2X̄σ2}. The root
spaces corresponding to fk − fl then are

1 ≤ k < l ≤ p :
{(

Ekl ⊗X 0
0 0

) ∣
∣
∣X ∈ r

}

,

p < k < l ≤ p+ q :
{(0 0

0 Ek−p,l−p ⊗X

) ∣
∣
∣X ∈ r

}

,

1 ≤ k ≤ p < l ≤ p+ q :
{(

0 Ek,l−p ⊗X
0 0

) ∣
∣
∣X ∈ r

}

.

Thus all root spaces have dimension four and J ′ is given by

J ′(λ) =
∏

1≤k<l≤p+q

(λk − λl)
4.

4 Proof

In the proof we use some standard results of Lie theory, all of which can be found
in the literature, e.g. in [11]. Since g is closed under hermitian conjugation (†)
we know that g is reductive, i.e. the direct sum of an Abelian and a semisimple
Lie algebra. For simplicity we first restrict ourselves to the case where g is
semisimple. The extension to the reductive case will be straightforward.

The proof of the theorem is divided into three parts. The first part, in section
4.1, contains the derivation of a new parametrization of the PS domain, which
makes it possible to deal with its boundary. The second part, in 4.2, is concerned
with the extension of the PS domain to a domain without boundary. First we
identify good directions into which to extend the PS domain. Then we give an
extension of PS which does not change the value of the integral. Although much
of it is unnecessary for the formal proof, section 4.2 is an important prerequisite
to understanding the third part, 4.3, where we give a homotopy EPS connecting
the extended PS domain to the Euclidean domain. The main point is to make
rigorous the following schematic application of Stokes’ theorem:

∫

PS

g(Q,A)dQ = −

∫

EPS

d(g(Q,A)dQ)
︸ ︷︷ ︸

=0

+

∫

Euclid

g(Q,A)dQ,

where we have introduced g(Q,A) := e−Tr(Q2)−2iTr(QA). The first term on the
right hand side is identically zero because g(Q,A) is holomorphic in Q. In the
final subsection 4.4 we deduce the corollaries 2.1 and 2.2.
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At this point a warning is in order. In the given form the expressions above
do not make sense. In order for the integrals over PS and EPS to exist we
have to include some regularization. This delicate issue is discussed in detail in
the last part of subsection 4.3. That discussion also entails that the extension
of PS does not contribute to the left hand side of the equation.

4.1 A suitable parametrization of the PS domain

We now invest some effort in order to derive a parametrization of the domain
of integration which gives full control over its boundary. To guide the reader,
we first define and explain all objects that are necessary to formulate a lemma
stating the parametrization.

In order to evaluate eYXe−Y in (2) explicitly, we need to compute multiple
commutators of Y ∈ p with X ∈ Q+. Therefore we now choose a maximal
Abelian subalgebra a in p and diagonalize the commutator action of a on Q.
This diagonalization process gives rise to a root space decomposition

Q = Q0 ⊕
⊕

α∈Σ+(Q,a)

(Qα ⊕Q−α),

where Σ+(Q, a) denotes a set of positive roots. Each root space in turn is
decomposed into a hermitian (Q+) and an antihermitian (Q−) part:

Q±,α := Fix±θ(Qα ⊕Q−α) ⊂ Q± .

We also let Q±,0 := Fix±θ(Q0) ⊂ Q±. Hence we have the decompositions

Q± = Q±,0 ⊕
⊕

α∈Σ+(Q,a)

Q±,α . (3)

For future reference we observe that

ad(s) : p → Q− , Y 7→ [s, Y ],

is an isomorphism. This fact will be used several times in the proof.
For the following constructions we review the notion of pointed polyhedral

cone and triangulations thereof [12, 13]. A pointed polyhedral cone is a subset
of a vector space. By definition it is an intersection of finitely many half spaces
where the intersection of all hyperplanes bounding the half spaces contains only
the zero vector. The word pointed reflects the fact that there exists a hyperplane
which intersects the cone only at zero, with the rest of the cone lying strictly
on one side of that hyperplane. For example, if Σ+(g, a) denotes a system of
positive roots for the adjoint action of a on g, the positive Weyl chamber

a+ =
⋂

β∈Σ+(g,a)

{H ∈ a | β(H) ≥ 0}

is a pointed polyhedral cone. In the following we refer to a pointed polyhedral
cone as a cone for short.

Let E ⊂ a be a vector space of codimension one such that a+ lies entirely
on one side of E. A face of a+ is a set of the form a+ ∩ E. The zero vector is
the unique zero dimensional face. It is convenient also to include the empty set
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as a face. The one dimensional faces are called edges. Note that each nontrivial
face is again a cone.

It is a fact [12] that any cone a+ admits a different representation: there
exist m elements H ′

i ∈ a such that

a+ =

{
m∑

i=1

hiH ′
i | h

i ≥ 0

}

.

The H ′
i are called generators of the cone. They can be chosen in such a way

that each H ′
i generates an edge of the cone. In the case of a positive Weyl

chamber a+ a set of generators is furnished by the simple co-roots. A cone is
called simplicial if its generators are linearly independent. A d-cone is a cone of
dimension d. It is a known fact of Lie theory that a+ is a simplicial dim(a)-cone.

A finite collection T of dim(a)-cones is called a subdivision of a+ if a+ =
∪S∈TS and S1 ∩ S2 is a face of both S1 and S2 for all S1, S2 ∈ T . If each cone
in a subdivision T is simplicial, then T is called a triangulation.

Bearing these facts in mind we proceed to describe a decomposition of a+

which, as we shall see below, is directly related to the boundary of the PS
domain. Note, first of all, that a root α ∈ Σ+(Q, a) may change sign on a+

since a+ is defined with respect to the root system Σ+(g, a). The closures of the
connected components of a+\(a+ ∩ (∪α ker(α))) can be obtained as appropriate
intersections of half spaces and hence are again cones. Let {Hi}i=1,...,M denote
the collection of generators of these cones [the cardinality M exceeds m if a+ ∩
(∪α ker(α)) 6= ∅]. By construction the intersection of two such cones is a face
common to both. Put differently, the generators common to two such cones
generate a joint face. Thus the decomposition we have just described yields a
subdivision of a+. It is a fact [12, 13] that every subdivision of a cone can be
refined to a triangulation without introducing any new generators.

For the rest of the article we fix a triangulation

a+ =
⋃

c∈C

a+c (4)

which refines the subdivision of a+ described above. Let Ic ⊂ {1, . . . ,M} be
such that {Hi}i∈Ic is the set of generators for the simplicial cone indexed by
c ∈ C, i.e., let

a+c =
{∑

i∈Ic
hiHi | h

i ≥ 0
}

.

Note that |Ic| = dim a and that the generators {Hi}i∈Ic form a basis of a. The
latter fact implies that each H ∈ a+c is represented uniquely as

H =
∑

i∈Ic

hiHi (5)

with coefficients hi ∈ R+. The intersection a+c ∩ a+c′ of two simplicial cones is
again a simplicial cone; indeed, the set of generators of the latter is {Hi}i∈Ic∩Ic′ .
A key property of the decomposition (4) is that the sign of each α ∈ Σ+(Q, a)
stays constant on any given simplicial cone a+c . However it may still happen
that α vanishes on the boundary of a+c .
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H1

H2

L = ∅

L = {2}

L = {1}

L = {1, 2}

Figure 1: This figure shows a+ for g = su(2, 2). The index c has been omitted
since there exists only one simplicial cone in this case. The possible L’s are
subsets of {1, 2}.

Next we introduce a subdecomposition of each cone a+c . Let L ⊂ Ic and
define

a+L,c :=
{∑

i∈Ic

hiHi ∈ a+c | ∀i ∈ L : hi ≥ 1 and ∀i /∈ L : hi ≤ 1
}

.

An example of this decomposition is shown in figure 1. It may be a helpful
observation to note that the decomposition

a+ =
⋃

c∈C

⋃

L⊂Ic

a+L,c

carries the structure of a simplicial complex.
With these definitions understood we introduce for each index pair (α, c) a

function on a by

Tα,c : a → R,

H =
∑

i∈Ic

hiHi 7→

{

tanh
(
∑

i∈Ic
hi

1−hiα(Hi)
)

, ∀i ∈ Ic :
(
hi < 1 or α(Hi) = 0

)
,

sgn(α(Hi)), else,

where H =
∑

i∈Ic
hiHi is meant in the sense of (5) with coefficients hi ∈ R. In

order for this function Tα,c to be well-defined it is crucial that the decomposition
of a+ into simplicial cones is such that for fixed c and fixed α the sign of α(Hi)
is the same for all i ∈ Ic with α(Hi) 6= 0.

We are now going to formulate a lemma which summarizes what we are
aiming at in this section. For that purpose we introduce K := exp(k) and let
ZK(a) be the centralizer of A = exp(a) in K. Fixing some H ∈ a with α(H) 6= 0
for all α ∈ Σ+(Q, a) we define

φ : Qα ⊕Q−α → Qα ⊕Q−α ,

Z + Z ′ 7→ α(H)−1[H,Z + Z ′] = Z − Z ′.

Note that φ satisfies

φ ◦ φ = id and φ(Q±,α) = Q∓,α .
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In addition we define orthogonal projections

π±,α : Q → Q±,α .

The following lemma contains a parametrization of the domain of integration
which gives direct control over its boundary.

Lemma 4.1. The mappings

PSc : a
+
∅,c ×

(
K ×ZK(a) Q+

)
→ Q, (6)

(H, [k;X ]) 7→ Ad(k)
(

X0 +
∑

α∈Σ+(Q,a)

(Xα + Tα,c(H)φ(Xα))
)

,

with Xα := π+,α(X) and [k;X ] = [kz−1; zXz−1] for z ∈ ZK(a) have the follow-
ing properties:

i) The boundary ∂PSc (in the sense of integration chains) is obtained by
applying the boundary operator ∂ to a+∅,c.

ii) A choice of orientation on a+ ×
(
K ×ZK(a) Q+

)
induces an orientation

for each PSc. There exists a particular choice of orientation for which
PS =

∑

c∈C PSc holds, where the equality sign is meant in the sense of
integration chains.

iii) The contributions to the boundary of PSc which come from ∂a+∅,c ∩ ∂a+

are of codimension at least two and can be neglected.

To prove lemma 4.1 we perform a sequence of four reparametrizations of the
original parametrization PS. The first three reparametrizations are preparatory
and do not relate directly to lemma 4.1. Each reparametrization is discussed in
a separate subsection for clarity.

4.1.1 Reparametrization I: Decomposition of p

The goal of the next three reparametrizations is to evaluate PS(Y,X) = Ad(eY )X
in more detail. Key to this is a choice of maximal Abelian subalgebra a ⊂ p

whose adjoint action on Q = Q+ ⊕ Q− is diagonalizable. To get started, we
parametrize p using K/ZK(a) and the interior (a+)o of a+:

RI : (a+)o ×K/ZK(a) → p,

(H, [k]) 7→ kHk−1.

RI is obviously well defined, and it is a standard fact that RI is injective for
semisimple Lie algebras with Cartan decomposition g = k ⊕ p. Hence RI is a
diffeomorphism onto Im(RI). Note that p\ Im(RI) is a set of measure zero since
p = ∪k∈Kka

+k−1 (see e.g. [11]) and

Im(RI) = ∪k∈Kk
(
a+ \ (a+ ∩ (∪α kerα))

)
k−1,

where α runs over the roots in Σ+(g, a).
Precisely speaking, we are going to use the parametrization

PS ◦RI : a+ ×K/ZK(a)×Q+ → Q,

(H, [k], X) 7→ ekHk−1

Xe−kHk−1

.
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Recall that the PS domain is oriented by an orientation of p ⊕ Q+. Declaring
RI to be orientation preserving induces an orientation on a+ ×K/ZK(a)×Q+.

Further reparametrizations of the PS domain are introduced below. To avoid
an overload of notation, we will denote each new parametrization still by PS.

4.1.2 Reparametrization II: Twisting K/ZK(a) and Q+

In this section we prepare the further evaluation of the ad(a) action in the next
subsection. Consider the reparametrization

RII : K ×ZK(a) Q+ → K/ZK(a)×Q+ ,

[kz−1; zXz−1] 7→ ([k], kXk−1),

where the expression [k;X ] ≡ [kz−1; zXz−1] (for z ∈ ZK(a)) stands for an
equivalence class of the group action of ZK(a) on K × Q+. This group action
defines the trivial bundle K ×ZK(a) Q+. The inverse of RII is

R−1
II : K/ZK(a)×Q+ → K ×ZK(a) Q+ ,

([k], X) 7→ [k; k−1Xk].

RII is a diffeomorphism and can therefore be used as a reparametrization to
obtain the new parametrization

PS ◦RII : a+ ×K ×ZK(a) Q+ → Q,

(H, [kz; zXz−1]) 7→ ekHk−1

kXk−1e−kHk−1

= keHXe−Hk−1 = Ad(k)(ead(H)X). (7)

4.1.3 Decomposition of Q+

Since ZK(a) is a subgroup of K and, by definition, commutes with the ad(a)
action on Q, the parametrization (7) is compatible with the decomposition (3)
of Q. In particular we have

π+,α ◦Ad(z) = Ad(z) ◦ π+,α

for z ∈ ZK(a) and α ∈ Σ+(Q, a). A short calculation for Xα ∈ Q+,α gives

ead(H)Xα = cosh(α(H))Xα + sinh(α(H))φ(Xα).

Hence the parametrization (7) can be rewritten as

PS : a+ ×K ×ZK(a) Q+ → Q,

(H, [k;X ]) 7→ Ad(k)
(

X0 +
∑

α∈Σ+(Q,a)

(
cosh(α(H))Xα + sinh(α(H))φ(Xα)

))

, (8)

where Xα = π+,α(X).

11



Q+,α

Q
−,α

Q+,α

Q
−,α

Figure 2: Motivation for the third reparametrization step. The dashed lines
are the images of straight lines through the origin in a+ before (left) and after
(right) the reparametrization RIII.

4.1.4 Reparametrization III: Rectification

As a motivation for the next reparametrization we note that (X,Y ) 7→ Tr(XY )
is an Ad(K)-invariant scalar product on Q and that all the different spaces
Q±,α are orthogonal to each other. For the moment, we fix α ∈ Σ+(Q, a) and
consider only the part

cosh(α(H))Xα + sinh(α(H))φ(Xα)

of the parametrization (8). The corresponding two-dimensional picture is shown
in figure 2, where we see the image of a straight line through the origin in a+ as
a hyperbola. We are going to change the parametrization in such a way that the
hyperbola is rectified to a straight line; see figure 2. Such a reparametrization
gives us a handle on the boundary of the PS domain, as is discussed in the next
subsection. Accordingly, the third reparametrization we use is given by

RIII : a+ ×K ×ZK(a) Q+ → a+ ×K ×ZK(a) Q+ ,

(H, [k;X ]) 7→
(

H,
[

k;X0 +
∑

α∈Σ+(Q,a)

1

cosh(α(H))
Xα

])

.

This is another orientation preserving diffeomorphism. We thus obtain

PS ◦RIII : a
+ ×K ×ZK(a) Q+ → Q,

(H,[k;X ]) 7→ Ad(k)
(

X0 +
∑

α∈Σ+(Q,a)

(
Xα + tanh(α(H))φ(Xα)

))

, (9)

which is renamed to PS in the following.

4.1.5 Reparametrization IV: Making the boundary visible

From the parametrization (9) (see also figure 2) it is clear that the boundary
is reached when some α(H) goes to ±∞ and hence tanh goes to ±1. Put
differently, the boundary of the domain of integration can be reached through a
limit in the parameter space a+. To obtain control over the boundary we have

12



to make sense of the expression limH→∞ tanh(α(H)). This limit is encoded in
the functions Tα,c. Recall that

Tα,c

(
∑

i∈Ic

hiHi

)

=

{

tanh
(
∑

i∈Ic
hi

1−hiα(Hi)
)

, ∀i : hi < 1 or α(Hi) = 0,

sgn(α(Hi)), else,

where the index c refers to the decomposition (4) of a+ into the simplicial cones
a+c . Fix α ∈ Σ+(Q, a) and j ∈ Ic such that α(Hj) 6= 0. Then

lim
hj→1

Tα,c

(
∑

i∈Ic

hiHi

)

= sgn(α(Hj)).

This shows that Tα,c is continuous. Tα,c is also differentiable since

lim
hj→1

∂hj tanh

(
∑

i∈Ic

hi

1− hi
α(Hi)

)

= 0

generalizes to all higher (and mixed) partial derivatives.
To put the functions Tα,c to use we define for each cone c ∈ C the mapping

RIV,c : (a+∅,c)
o ×K ×ZK(a) Q+ → a+c ×K ×ZK(a) Q+ ,
(
∑

i∈Ic

hiHi, [k;X ]

)

7→

(
∑

i∈Ic

hi

1− hi
Hi, [k;X ]

)

,

where (a+∅,c)
o denotes the interior of a+∅,c. For each simplicial cone, this is an

(orientation preserving) diffeomorphism onto its image. The mapping is visual-
ized in figure 3. We use it to reparametrize PS on each cone. We thus obtain
PSc = PS ◦RIV,c , which is the parametrization defined in lemma 4.1, eq. (6).

In the following we want to give the notion ‘boundary of the PS domain’ a
precise meaning. In the case of integration cells, i.e., differentiable mappings
defined on a cube, the boundary operator ∂ is defined as usual. ∂ can also
be applied to integration chains, i.e. formal linear combinations of cells. In
principle the correct procedure would be to decompose each PSc into cells in
order to apply ∂. However, in the following we argue that we can treat each
PSc effectively as single cell with the boundary operator ∂ acting just on the
a+∅,c part of the domain of definition. Note that a+∅,c by the decomposition (5)
is diffeomorphic to an n-dimensional cube.

First note that PSc extends as a differentiable mapping to a neighborhood of
a+∅,c since the Tα,c are differentiable functions defined on a. Thus it is possible
to define the orientation of the boundary. Furthermore, since K is a closed
compact manifold it suffices to discuss boundary contributions arising from a
decomposition of Q+ into cells. By inspecting our parametrization we see that
going to infinity on Q+ implies going to infinity in the domain of integration.
In section 4.3 we show that the integrand goes to zero exponentially on this
domain and hence all possible boundary contributions vanish. Thus we obtain
part i) of lemma 4.1

Part ii) of lemma 4.1 follows immediately by noting that the mappings RIV,c

are diffeomorphisms onto.
Since similar arguments are needed in several other parts of section 4, the

proof of part iii) of lemma 4.1 is presented in appendix A.
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RIV

Figure 3: su(2, 2) example for RIV mapping a+∅ on the left hand side to a+ on
the right side. In this example there is only one simplicial cone.

4.2 Extending the PS domain

In this section we construct an extension of the PS domain which has no bound-
ary other than the irrelevant boundary at infinity. The idea is to connect each
boundary point to infinity by attaching one halfline. The directions of these
halflines should be such that the attached domain does not contribute to the in-
tegral of g(Q,A)χǫ(Q) dQ. We first determine such a direction for each bound-
ary point, and then give a parametrization of the attached domains. In the
following let

B(X,Y ) := Tr(XY )

denote the trace form on QC.
Some care must be exercised in order to guarantee the convergence of the

integral on the extended PS domain. The positivity requirement As > 0 in the
theorem already gives a hint that the matrix s plays a prominent role in the
discussion of convergence. Owing to s ∈ Q+ we have the decomposition

s = s0 +
∑

α∈Σ+(Q,a)

sα , (10)

where s0 ∈ Q+,0 and sα = π+,α(s) ∈ Q+,α.
The next lemma introduces the convergent directions which are used to

extend PS in such a way that convergence is maintained.

Lemma 4.2. The matrices

Ej := 2 lim
t→∞

Ad(etHj )s

maxα∈Σ+(Q,a) e|α(tHj)|
(11)

are well defined and non-zero. The following properties hold for all 1 ≤ i, j ≤M :

i) Tr(Ei Ad(k)
−1A) > 0.

ii) There exist numbers eαj ∈ {0, 1} such that the matrices Ej decompose as

Ej =
∑

α(Hj) 6=0

eαj
(
sα + sgn(α(Hj))φ(sα)

)
. (12)

iii) For i, j ∈ Ic one has B(Ei, Ej) = 0. In particular, B(Ei, Ei) = 0.
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Before we come to the proof of lemma 4.2, we formulate another lemma
which suggests how to extend the PS domain. Note however that an integral
over PS needs a regulating function and that we postpone the discussion of
convergence to section 4.3. Strictly speaking, the next lemma is not necessary
for the proof of theorem 2.1. It is included as a preparation for the more involved
definition of the homotopy introduced in section 4.3.

Lemma 4.3. For c ∈ C and L ⊂ Ic the mappings

PSL,c : a
+
L,c ×K ×ZK(a) Q+ → QC,

(H, [k;X ]) 7→ Ad(k)
(

X0 +
∑

α∈Σ+(Q,a)

(

Xα + Tα,c(H)φ(Xα)
)

− i
∑

j∈L

(hj − 1)Ej

)

,

are well defined as integration chains and one has

∂

(
∑

c∈C

∑

L⊂Ic

PSL,c

)

= 0, (13)

as long as the sum of chains is integrated against forms with sufficiently rapid
decay at infinity.

4.2.1 Proof of lemma 4.2

To see that the matrices Ei are well defined, we express them in a more explicit
fashion. A short calculation using (10) gives

Ad(eH)s = s0 +
∑

α∈Σ+(Q,a)

(
cosh(α(H))sα + sinh(α(H))φ(sα)

)
.

This shows that the limit in (11) exists and that the matrices Ej decompose as
shown in equation (12). Thus we obtain ii). Recalling that ad(s)|p is injective
we conclude that each of the matrices Ej is non-zero.

For property i) we note that As > 0 and

s−1Ej = 2 lim
t→∞

e−2tHj

maxα∈Σ+(Q,a) e|α(tHj)|
≥ 0.

Thus Tr((Ad(k)s−1Ej)As) is the trace of the product of the non-zero positive
semidefinite hermitian matrix s−1 Ad(k)Ej and the positive hermitian matrix
As. By inserting the eigenvalue representation

∑

n pnπn of s−1Ad(k)Ej we get

Tr(s−1 Ad(k)EjAs) =
∑

n

pnTr(πnAs).

Since As is positive we have Tr(πnAs) > 0. Property i) then follows because
s−1 Ad(k)Ej 6= 0 implies that there exists some pn > 0.

To prove property iii) we use ii) and note that for all α, β ∈ Σ+(Q, a) we
have the orthogonality relations

B(sα, sβ) = −B(φ(sα), φ(sβ)) = δα,βB(sα, sα)

and B(sα, φ(sβ)) = 0. We also recall that a fixed root α does not change sign
on a fixed simplicial cone a+c . The desired result B(Ei, Ej) = 0 for i, j ∈ Ic then
follows directly.
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4.2.2 Proof of lemma 4.3

In this section we show that the mappings PSL,c in lemma 4.3 have the stated
properties. First of all, the mappings are well defined since ZK(a) acts trivially
on the matrices Ei. We recall that the situation is visualized in figure 1.

PSL,c can be extended as a mapping to a since Tα,c makes sense on a and
so does (hj − 1). Thus PSL,c is well defined as an integration chain. By the
same argument as for the PS∅,c case, a boundary can arise only by the action
of the boundary operator ∂ on the factor a+L,c.

In the following we always neglect possible boundary contributions from
infinity, since the integrals under consideration are convergent by assumption.

To see that the different integration cells PSL,c and PSL′,c′ fit together in a
seamless way, we recall that a+c ∩a+c′ is again a simplicial cone which is generated
by the set {Hi}i∈Ic∩Ic′ . In particular each H ∈ a+L,c ∩ a+L′,c′ can be represented

in the form H =
∑

i∈Ic∩Ic′
hiHi, which implies that Tα,c(H) = Tα,c′(H). We

have hi ≥ 1 for i ∈ L and hi ≤ 1 for i ∈ Ic \L. Together with similar conditions
from L′ this yields

∑

i∈L

(hi − 1)Ei =
∑

i∈L′

(hi − 1)Ei

on the intersection a+L,c∩a
+
L′,c′ . Hence we obtain the equality PSL,c(H, [k;X ]) =

PSL′,c′(H, [k;X ]) on the joint domain of definition.
Moreover, the induced orientations on the boundaries between two neighbor-

ing cells are opposites of each other. Together with the fact (shown in appendix
A) that the contributions from ∂a+ are of codimension no less than two, these
results yield (13).

To get some intuition for the situation it is useful to observe that the halflines
which are glued to boundary points of the PS domain, point into directions
within ⊕α∈Σ(Q,a)iQα, and hence cannot coincide with vectors tangent to PS,
which live in Q.

4.3 Equivalence of PS and Euclid

Finally, we show that the integral over PS equals the integral over Euclid. The
idea is to deform the extended PS domain into the subspace Q+ ⊕ i[p, s] of QC

where B is positive. Recall that [p, s] = Q−. We have to show that the integral
remains convergent along the path of deformation and no boundary terms at
infinity are generated. To that end we prefer to proceed in the reverse order
and deform Euclid into PS to the extent that this is allowed by convergence of
the integral. Recall that ZK(a) acts trivially on Hi ∈ a and the matrices Ei.
It also acts trivially on [Hi, s] for all i = 1, . . . ,M because k ∈ K is fixed by
conjugation with s. For these reasons the mapping defined as

EPSǫ
L,c : [ǫ, 1]×a+L,c ×K ×ZK(a) Q+ → QC,

(t,H, [k;X ]) 7→Ad(k)
(

X0 +
∑

α∈Σ+(Q,a)

(
Xα + (1− t)Tα,c(H)φ(Xα)

))

− iAd(k)
∑

j∈L

(hj − 1)
(
(1− t)Ej + 2t[Hj, s]

)
(14)
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is well defined. By reasoning similar to that for PSL,c each parametrization
EPSǫ

L,c (c ∈ C) can be seen as an integration cell with boundary coming only

from the [ǫ, 1]× a+L,c part. To simplify the notation we define

EPSǫ :=
∑

c∈C

∑

L⊂Ic

EPSǫ
L,c ,

EPSL,c := EPS0
L,c and similarly EPS := EPS0.

Lemma 4.4. The mappings EPSǫ
L,c have the following properties:

i) The boundary of the sum EPSǫ is given by

∂(EPSǫ) = Euclid−
∑

c∈C

∑

L⊂Ic

EPSL,c(t = ǫ).

ii) Let g(Q,A) := e−Tr(Q2)−2iTr(QA). Then the integrals

∫

EPSL,c(t=ǫ)

g(Q,A)dQ

exist for ǫ > 0.

iii) For each c ∈ C and L ⊂ Ic with cardinality |L| > 0 we have

lim
ǫ→0

∫

EPSL,c(ǫ)

g(Q,A)dQ = 0.

iv) Let PS(ǫ) :=
∑

c∈C EPS∅,c(ǫ). The integral over PS(ǫ) in the limit ǫ→ 0
may be computed as an integral over PS with regularized integrand:

lim
ǫ→0

∫

PS(ǫ)

g(Q,A)dQ = lim
ǫ→0

∫

PS

g(Q,A)χǫ(Q)dQ.

The proof of the lemma is spelled out in the next four subsections. Here we
anticipate that once the lemma has been established, we can do the following
series of manipulations:

∫

Euclid

g(Q,A)dQ =

∫

Euclid

g(Q,A)dQ− lim
ǫ→0

∫

EPSǫ

d(g(Q,A)dQ)
︸ ︷︷ ︸

=0

,

=
i),ii)

lim
ǫ→0

∫

EPS(ǫ)

g(Q,A)dQ

=
ii),iii),iv)

lim
ǫ→0

∫

PS(ǫ)

g(Q,A)dQ

=
iv)

lim
ǫ→0

∫

PS

g(Q,A)χǫ(Q)dQ,

which yields the statement of our theorem 2.1.
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4.3.1 Proof of i): Deformation of PS into Euclid

Next we prove statement i) of lemma 4.4. By an argument similar to that in
the proof of lemma 4.3 we obtain

∂(EPSǫ) ≡
∑

c∈C

∑

L⊂Ic

∂(EPSǫ
L,c) = EPS(t = 1)− EPS(t = ǫ).

We will now deal with the summand EPS(1).
For L ( Ic the mapping EPSL,c(t) degenerates in the limit t → 1. More

precisely, for i ∈ Ic \ L we have ∂hiEPSL,c(1) = 0 and thus a reduction in
dimension. Hence we have the following identity relating integration chains:

EPS(1) =
∑

c∈C

EPSIc,c(1).

In the following we establish the connection between EPS(1) and Euclid.
For c ∈ C and H =

∑

i∈Ic
hiHi ∈ a+Ic,c we have

EPSIc,c(1, H, [k;X ]) = Ad(k)
(

X − 2i
∑

j∈Ic

(hj − 1)[Hj , s]
)

.

To facilitate the interpretation of the expression on the right hand side, we now
change the left factor of the domain of definition of EPSIc,c(1) from a+Ic,c to a+c .
This is done by introducing the diffeomorphism

ψc : a+Ic,c → a+c ,

H 7→
∑

i∈Ic

(hi − 1)Hi .

By inserting it into the previous formula we get

EPSIc,c(1, ψ
−1
c (H), [k;X ]) = Ad(k)

(
X − 2i[H, s]

)
.

Note that while the composition with ψ−1
c does alter the mapping EPSIc,c(1),

the effect is not a change of image but only a reparametrization.
The right hand side of the expression above does not have any explicit depen-

dence on the simplicial cone c any more. Therefore, by recalling
⋃

c∈C a+c = a+

and noting that the diffeomorphisms ψc are orientation preserving, it is clear
that our mappings EPSIc,c combine to a smooth mapping

∑

c∈C

EPSIc,c(1) ◦ (ψ
−1
c , id) : a+ ×K ×ZK(a) Q+ → QC,

(H, [k;X ]) 7→ Ad(k)
(
X − 2i[H, s]

)
,

where id stands for the identity on K ×ZK(a) Q+.
The final step is to undo the reparametrizations RII and RI to obtain

(∑

c∈C

EPSIc,c(1) ◦ (ψ
−1
c , id)

)

◦R−1
II ◦R−1

I (Y,X) = X − 2i[Y, s],

where X ∈ Q+ and Y ∈ p. Since [p, s] = Q− we conclude that EPS(1) is the
same as Euclid as an integration chain.

18



4.3.2 Proof of ii): Existence of the integral for ǫ > 0

In this subsection we prove statement ii) of lemma 4.4. Let us first make some
general remarks and definitions which allow a simpler discussion of the integrals
to be considered. For this purpose let idL,c be the identity on a+L,c and recall that
RII yields a global factorization of the bundle K ×ZK(a) Q+ as K/ZK(a)×Q+.
Let dµ([k]) be a left invariant volume form on K/ZK(a) and let dH and dQ+

denote constant volume forms on a+ and Q+ respectively. Then there exist
functions PL,c such that

(
EPSL,c(t = ǫ) ◦ (idL,c, R

−1
II )
)∗
dQ = PL,c dH ∧ dµ([k]) ∧ dQ+ .

By inspection of EPSL,c and R−1
II we see that PL,c depends polynomially on ǫ,

[k], the matrix entries of X ∈ Q+, h
i, and on ∂rTα,c, where ∂

r represents any
number of partial derivatives with respect to hi. For the rest of the proof it
is more convenient to switch to a formulation in terms of measures instead of
volume forms. In that respect we have

∫

a
+
L,c

×K/ZK(a)×Q+

(

EPSL,c(t = ǫ) ◦ (idL,c, R
−1
II )
)∗

(g(·, A)dQ)

=

∫

a
+
L,c

×K/ZK (a)×Q+

g
(

EPSL,c(t = ǫ) ◦ (idL,c, R
−1
II ), A

)

PL,c |dH ||dµ([k])||dQ+|, (15)

where |dH | and |dQ+| are Lebesgue measures on a+ and on Q+ and |dµ([k])|
denotes Haar measure on K/ZK(a). To prove statement ii) it is enough to show
the existence of

∫

K/ZK(a)

∫

a
+
L,c

∫

Q+

∣
∣
∣g
(

EPSL,c(t = ǫ) ◦ (idL,c, R
−1
II ), A

)∣
∣
∣

× |PL,c| |dQ+||dH ||dµ([k])|. (16)

Indeed, the Fubini-Tonelli theorem then asserts that the original integral exists
and that Fubini’s theorem can be applied to (15).

We now deal with the integral (16). Note that replacing K/ZK(a) by K in
(16) introduces only a constant factor which can be absorbed in the polynomial
PL,c. The mapping R−1

II extends naturally from K/ZK(a) × Q+ to K × Q+

and, similarly, EPSL,c(t) extends from a+L,c ×K ×ZK(a) Q+ to a+L,c ×K ×Q+.
Furthermore we can apply for k ∈ K the transformation

Q+ → Q+ , X 7→ kXk−1,

in the inner integral over Q+. The corresponding Jacobian is unity. Hence (16)
equals

∫

K

∫

a
+
L,c

∫

Q+

∣
∣
∣g
(

EPSL,c(ǫ), A
)∣
∣
∣ |PL,c| |dQ+||dH ||dµ(k)|, (17)

where |dµ(k)| is a Haar measure on K.
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Let us now concentrate on the exponential function g
(
EPSL,c(ǫ), A

)
which

is responsible for the convergence of the integral. Referring to the second and
third lines in (14), we define

Ξ := Ad(k)
(

X0 +
∑

α∈Σ+(Q,a)

(

Xα + (1− ǫ)Tα,c(H)φ(Xα)
))

,

Υ := −iAd(k)
∑

j∈L

(hj − 1)
(

(1− ǫ)Ej + 2ǫ[Hj, s]
)

,

which lets us write the integrand in the form

g
(

EPSL,c(ǫ,H, k,X), A
)

= e−B(Ξ+Υ,Ξ+Υ)−2iB(Ξ+Υ,A).

Due to A,Ξ ∈ Q and Υ ∈ iQ, the terms B(Ξ,Υ) and iB(Ξ, A) are imaginary.
Therefore, they do not contribute to (17). To evaluate the remaining terms we
note some useful relations. For Xα ∈ Q+,α and X,X ′ ∈

⊕

α∈Σ+(Q,a) Q+,α we
have

B(Xα, Xβ) = δα,βB(Xα, Xα), (18)

B(X,X ′) = −B(φ(X), φ(X ′)), B(φ(X), X ′) = 0. (19)

B(Ξ,Ξ) can be re-expressed as

B(Ξ,Ξ) =
(18)

Tr(X2
0 ) +

∑

α∈Σ+(Q,a)

Tr
(
Xα + (1− ǫ)Tα,c(H)φ(Xα)

)2

=
(19)

B(X0, X0) +
∑

α∈Σ+(Q,a)

B(Xα, Xα)
(

1− (1 − ǫ)2T 2
α,c(H)

)

. (20)

B is positive on Q+, and for all H ∈ a+ and 0 < ǫ < 1 we have

0 < ǫ(2− ǫ) ≤ 1− (1− ǫ)2T 2
α,c(H) ≤ 1. (21)

Thus B(Ξ,Ξ) is positive definite. Since all dependence on X ∈ Q+ occurs in
B(Ξ,Ξ) this guarantees the convergence of the inner integral in (17) for ǫ > 0.

We turn to B(Υ,Υ). Statement iii) of lemma 4.2 asserts that B(Ei, Ej) = 0
for i, j ∈ L ⊂ Ic. Hence we have

B(Υ,Υ) = B(Υ0,Υ0) + 4ǫ(1− ǫ)
∑

i,j∈L

(hi − 1)(hj − 1)B(−[Hj , s], Ei),

where Υ0 = −2iǫAd(k)
∑

j(h
j − 1)[Hj , s]. Note that B(Υ0,Υ0) ≥ 0 since

Υ0 ∈ iQ−. The remaining terms of B(Υ,Υ) are non-negative since

B(−[Hj , s], Ei) =
(10)

B
(

−
∑

α∈Σ+(Q,a)

α(Hj)φ(sα), Ei

)

=
(12)

−
∑

α,β∈Σ+(Q,a)

eβi sgn(β(Hi))α(Hj)B(φ(sα), φ(sβ))

= −
∑

α∈Σ+(Q,a)

eαi |α(Hj)|B(φ(sα), φ(sα)) ≥ 0.
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Since Ei is non-zero, identity (12) ensures that there exists some α ∈ Σ+(Q, a)
such that eαi 6= 0, α(Hi) 6= 0 and sα 6= 0. Thus we have

B(−[Hi, s], Ei) > 0.

Together with (21) this shows that the second (or middle) integral in (17) exists.
This conclusion is not changed by the factor e−2iB(Υ,A) as B(Υ, A) is linear in
the variables hj whereas B(Υ,Υ) is quadratic. The result depends continuously
on k ∈ K and we hence conclude that the outer integral over the compact group
K exists. It follows that all integrals

∫

EPSL,c(ǫ)
g(·, A)dQ exist for ǫ > 0.

4.3.3 Proof of iii): The limit limǫ→0

Recall from section 4.3.2 that Fubini’s theorem applies to the integral (15). We
repeat the steps which led to (17) except that now we do not take the absolute
value of the integrand. Thus we obtain

∫

EPSL,c(ǫ)

g(Q,A) dQ =

∫

K

∫

a+
L,c

∫

Q+

g(EPSL,c(ǫ), A)PL,c |dQ+||dH ||dµ(k)|. (22)

The reason why statement iii) of lemma 4.4 holds true is a very general one: the
convergence of the integral to zero is brought about by cancelations due to an
oscillatory term. More specifically, by integrating along one special direction in
Q+ we obtain essentially a regularized delta distribution. Our parametrization
is well suited to exhibit this mechanism explicitly. We will show that it is
possible to perform the limit ǫ→ 0 after doing the inner Gaussian integrations.

In the following, Einstein’s summation convention is in place. We can choose
a basis of Q+ with coordinates xl such that the quadratic form Q 7→ TrQ2

is diagonal. The choice of basis will be made explicit below. Schematically
speaking, the Gaussian integrations over Q+ in (22) are of the form

IL,c,ǫ(H, k) := e−hig̃i

∫

R
dim Q+

e−(xl)2fl−2ixlglPL,c

∏

l

dxl,

where g̃i(ǫ, k), fl(ǫ, h
i, k) and gl(ǫ, h

i, k) are functions of k ∈ K, ǫ ∈ [0, 1] and
H ∈ a+L,c. These functions will be specified as we go along. Now it is possible

to introduce sources jl for x
l and perform the integral:

IL,c,ǫ(H, k) = e−hig̃iP ′
L,c(∂jl , . . . )

∫

e−fl(x
l)2−2ixl(gl+jl)

∏

l

dxl
∣
∣
∣
jl=0

= e−hig̃iP ′
L,c(∂jl , . . . )

∏

l

√
π

fl
e
−

(gl+jl)
2

fl

∣
∣
∣
jl=0

= e−hig̃iP ′′
L,c(

1

fl
, gl, . . . )

∏

l

√
π

fl
e
−

g2
l

fl , (23)

where primes just indicate that these are different polynomials, and the dots
represent a dependence on ǫ, hi, k and ∂rTα,c. Assuming that |L| > 0, we will
show that for ǫ → 0 we have f1 → 0 and g1 6= 0 for a suitable choice of basis
of Q+. We also show that fl ≥ 0 and gl ∈ R for all l and ǫ ∈ [0, 1]. The
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exponential then dominates the polynomial and (23) converges to zero in the
limit of ǫ → 0. In addition, we show that g̃i > 0, which has the consequence
that the remaining integrals over a+L,c are convergent (since hi > 0).

Thus the issue of convergence is reduced to a discussion of the functions g̃i,
fl and gl. We start with g̃i. Reading it off from its definition by

2iB(Υ, A) = (hi − 1)g̃i,

we find that it has the expression

g̃i = 2B(Ad(k)((1 − ǫ)Ei + 2ǫ[Hi, s]), A).

From inequality i) of lemma 4.2 we infer that 2B(Ad(k)Ei, A) ≥ c > 0, since
k ∈ K and K is compact. (Recall that A is fixed.) We thus see that g̃i > 0 for
small enough ǫ.

To discuss the functions fl and gl we have to choose a basis of Q+. For this
purpose we fix some j ∈ L, recalling that L 6= ∅ in the situation at hand. We
then consider the decomposition

Q+ = Q+,0 ⊕
⊕

α(Hj) 6=0

Q+,α ⊕
⊕

α(Hj)=0

Q+,α .

We define m := dim⊕α(Hj) 6=0Q+,α and m′ := dim⊕α(Hj)=0Q+,α. Denoting by
ΠQ+ the orthogonal projection onto Q+ we introduce

X1 := ΠQ+(Ej) =
∑

α(Hj) 6=0

eαj sα 6= 0.

We extend X1 to an orthogonal basis {Xl}l=1,...,m of ⊕α(Hj) 6=0Q+,α. We also
fix an orthogonal basis {Xl}l=m+1,...,m+m′ of ⊕α(Hj)=0Q+,α which respects the
root decomposition. For the basis vectors {Xl}l=1,...,m+m′ we have identities
like those in (18) and (19).

Recall that on a+L,c we have h
j ≥ 1 and therefore |Tα,c(H)| = 1 if α(Hj) 6= 0.

As is shown by

B(Ξ,Ξ) =
(20)

B(X0, X0) + (1− (1− ǫ)2)
∑

α(Hj) 6=0

B(Xα, Xα)

+
∑

α(Hj)=0

(

1− (1− ǫ)2T 2
α,c(H)

)

B(Xα, Xα)

= B(X0, X0) +

m+m′

∑

l=1

(xl)2fl , (24)

our choice of basis diagonalizes the quadratic form B(Ξ,Ξ). We also see that
fl ≥ 0. In particular, for l = 1 we have

f1 = ǫ(2− ǫ)B(X1, X1).

Note that f1 → 0 for ǫ→ 0.
It is easy to check that the coefficients gl defined by

−2iB(Ξ, A)− 2B(Ξ,Υ) = −2ixlgl (25)
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are real. By using the statements ii) and i) of lemma 4.2 we have

lim
ǫ→0

g1 = B(Ej ,Ad(k
−1)A) > 0.

Thus we obtain the result

lim
ǫ→0

∫

Q+

g(EPSL,c(ǫ), A)PL,c |dQ+| = 0. (26)

Since the dependence onH ∈ a+L,c in (26) is governed by the exponential function

exp(−hig̃i) with g̃i > 0 and the dependence on k ∈ K is continuous, the limit
ǫ→ 0 is uniform. Thus, taking the limit commutes with the outer integrals and
we obtain the third part of lemma 4.4.

4.3.4 Proof of iv): Reaching PS

It remains to prove statement iv) of lemma 4.4. To that end, for any c ∈ C we
introduce on a+∅,c ×K the two functions

Ic,ǫ :=

∫

Q+

g(EPS∅,c(ǫ), A)P∅,c|dQ+|,

I ′c,ǫ :=

∫

Q+

g(PS∅,c, A)χǫ(PS∅,c)P∅,c(ǫ = 0, ·)d|Q+|. (27)

To prove the desired statement, it is sufficient to show that

lim
ǫ→0

∫

K

∫

a
+
∅,c

Ic,ǫ|dH ||dµ(k)| = lim
ǫ→0

∫

K

∫

a
+
∅,c

I ′c,ǫ|dH ||dµ(k)| (28)

holds for all c ∈ C. We will do so by using Lebesgue’s dominated convergence
theorem on both sides of (28).

Let us first establish that the two functions defined in (27) converge pointwise
to the same function in the limit of ǫ → 0. For that, we have to distinguish
between two situations for H ∈ a+∅,c: there either exists a non-trivial L ⊂ Ic

such that H ∈ a+L,c ∩ a+∅,c, or there does not. In the first situation we can apply

the result of the previous section to see that limǫ→0 Ic,ǫ(H, k) = 0 for all k ∈ K.
A similar argument yields the same result for the function I ′c,ǫ. In the second
situation there are no problems of convergence with the Q+-integral (see (20))
and we can directly set ǫ = 0, in which case the two functions coincide by
definition. Thus we always have Ic,0 = I ′c,0.

From now on, for brevity, we discuss only the left hand side of (28), as the
discussion of the right hand side is completely analogous. Our strategy is to show
that the function (ǫ,H, k) 7→ Ic,ǫ(H, k) on the compact domain [0, 1]× a+∅,c ×K
is continuous and hence integrable. The property of continuity on a compact
domain implies that the function Ic,ǫ is dominated by a constant function, which
in turn is integrable as well. Thus we will be able to draw the desired conclusion
by applying Lebesgue’s dominated convergence theorem.

Following the line of reasoning of the last subsection we choose for Q+ an
orthogonal basis {X ′

l}l=1,...,dimQ+ compatible with the decomposition ⊕αQ+,α.
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This means that for each l there exists a unique root αl (possibly the zero root)
such that Xl ∈ Q+,αl

. Moreover, whenever a root α is such that s has non-zero
projection sα = π+,α(s), then we take sα ∈ Q+,α to be an element of our basis
set {X ′

l}. We arrange for these non-zero vectors sα to be the first m1 vectors of
the set {X ′

l}.
By adaptation (due to the change of basis {Xl} → {X ′

l}) of the definitions
(24) and (25) we obtain new coefficient functions

f ′
l =

(
1− (1− ǫ)2T 2

αl,c

)
B(X ′

l , X
′
l),

g′l = Tr
((
X ′

l + (1− ǫ)Tαl,c φ(X
′
l)
)
k−1Ak

)
,

superseding the earlier functions fl and gl. If αl is the zero root we set T0,c = 0.
Note that g′l is still real and f ′

l ≥ 0. By recalling the dependence on H ∈ a+∅,c
of the functions Tα,c defined in section 4.1, we see that if ǫ → 0 and if hj → 1
for at least one index j ∈ Ic, then we have f ′

l → 0 for all l with αl(Hj) 6= 0.
In view of this behavior, the set of problematic points where continuity of the
function (ǫ,H, k) 7→ Ic,ǫ(H, k) is not obvious is the set

{0} ×
{∑

i∈Ic

hiHi ∈ a+∅,c | ∃i ∈ Ic : h
i = 1

}

×K,

as will be clear presently. To be precise, the limit function Ic,0 is not even
defined on this set. Our main work in the rest of this subsection will be to show
that it extends continuously as zero. We will do so by constructing a continuous
function which dominates |Ic,ǫ| and is zero at the problematic points.

In the following we restrict the discussion to the case of only one summand
of the polynomial in (23). Its modulus is certainly smaller than

C
∏

l

exp(−g′2l /f
′
l )

f
′nl/2
l

,

with a constant C > 0 and natural numbers nl. Here we have dropped the
factors corresponding to zero roots, as these are of no relevance for our present
purpose. Fixing some regular element H̃ ∈ a+∅,c, so that α(H̃) 6= 0 for all

α ∈ Σ+(Q, a), we introduce the functions

g′′l := Tr
((
X ′

l + sgn(αl(H̃))φ(X ′
l )
)
k−1Ak

)

.

By a short computation, these have the convenient property that

g′2l − g′′2l
fl

=−
(
Trφ(X ′

l )k
−1Ak

)2
− 2

Tr(X ′
lk

−1Ak)Tr
(
φ(X ′

l )k
−1Ak

)

sgn(αl(H̃))(1 + (1− ǫ)|Tαl,c|)

is a continuous function on the compact space [0, 1]× a+∅,c ×K and there exists

a constant C′ > 0 for which we have the upper bound

C
∏

l

exp(−g′2l /f
′
l )

f
′nl/2
l

< C′
∏

l

exp
(
−g′′2l /f ′

l

)

f
′nl/2
l

. (29)
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For the next step, we recall the constancy on a+∅,c of the sign function

sgn(α(H̃)) = sgn(αl(Hj)) for αl(Hj) 6= 0. By parts i) and ii) of lemma 4.2
and our choice of basis elements X ′

l = sαl
for l = 1, . . . ,m1 we then have

∑

l≤m1 and αl(Hj) 6=0

eαl

j g
′′
l = Tr(Ejk

−1Ak) > 0 (30)

for every j ∈ Ic. For the following discussion we let k ∈ K be arbitrary but
fixed. Inequality (30) guarantees that there exists a neighborhood Uk of k so
that for each j ∈ {1, . . . , dim a} there exists an lj ∈ {1, . . . , dimQ+} with the
property that g′′lj > 0 on Uk. By inspection of the right hand side of (29) one

can see that its behavior (in the limit ǫ→ 0 and close to the set of problematic
points) is very similar to that of exp(−1/x)/xa for x→ 0 and positive exponent
a. To make this observation more tangible we now show how to simplify the
dependence of f ′

l on H ∈ a+∅,c. As a first step, we note that only the first factor
on the right hand side of

f ′
l = (1− (1− ǫ)|Tαl,c|)(1 + (1 − ǫ)|Tαl,c|)B(X ′

l , X
′
l)

is relevant for the discussion of the limit behavior. Now let H1, H2 ∈ a+∅,c and

write Tj ≡ |Tαl,c(Hj)| and bl ≡ B(X ′
l , X

′
l) for short. By invoking the addition

formula for the hyperbolic tangent,

tanh(x+ y) =
tanh(x) + tanh(y)

1 + tanh(x) tanh(y)
,

and observing that this formula carries over to our functions Tα,c, we obtain

1− (1− ǫ)|Tαl,c(H1 +H2)| =
(1− (1− ǫ)T1)(1− (1 − ǫ)T2) + ǫ(2− ǫ)T1T2

1 + T1T2
.

We claim that this identity yields the following bounds:

1

2

∏

i=1,2

(1 − (1− ǫ)Ti) ≤ b−1
l f ′

l (ǫ,H1 +H2) ≤ 6
∏

i=1,2

√

1− (1− ǫ)Ti , (31)

of which the left one is immediate. To verify the right inequality we observe
that, by the identity preceding it, a stronger statement is

(1 − (1− ǫ)T1)(1− (1− ǫ)T2) + ǫ(2− ǫ)T1T2 ≤ 3
∏

i=1,2

√

1− (1− ǫ)Ti .

Owing to 0 ≤ Ti ≤ 1 this inequality is obviously true if ǫ = 0. So let 0 < ǫ ≤ 1.
Then the two square root factors on the right hand side never vanish and we
may divide by them. Since the resulting first term on the left hand side is never
greater than one, the remaining job is to show that

ǫ(2− ǫ)T1T2
√

1− (1 − ǫ)T1
√

1− (1− ǫ)T2
≤ 2.

This follows from T1T2 ≤ 1 and
√

1− (1− ǫ)T1
√

1− (1− ǫ)T2 ≥ ǫ, which con-
cludes our proof of (31). As an easy consequence of (31) we have

1

8bl
f ′
l (H1)f

′
l (H2) ≤ f ′

l (H1 +H2) ≤ 6
√

f ′
l (H1)f ′

l (H2).

25



We now use these bounds to simplify the dependence on H =
∑
hiHi ∈ a+∅,c

on the right hand side of (29). Iteration gives

exp
(
−g′′2l /f ′

l

)

f
′nl/2
l

≤
exp(−C̃g′′2l /

∏

i∈Ic
(1 − (1− ǫ)|Tαl,c(h

iHi)|)ni,c)
∏

i∈Ic
(1 − (1− ǫ)|Tαl,c(h

iHi)|)
n′
i,c

. (32)

On the right hand side hiαl(Hi) is meant without summation convention and
C̃, ni,c and n

′
i,c are positive constants. By (11) and (12) it follows that |αlj (Hj)| =

maxα|α(Hj)|. This property can be used to see that (32) is bounded by

exp(−C̃g′′2l /
∏

i∈Ic
(1− (1 − ǫ)|Tαl,c(h

iHi)|)ni,c )
∏

i∈Ic
(1− (1− ǫ)|Tαli

,c(hiHi)|)
n′
i,c

.

The exponential part of the right hand side is continuous and hence we have
the bound

C

dimQ+∏

l=1

exp(−g′2l /f
′
l )

f
′nl/2
l

< C̃′
dima∏

i=1

exp(−C̃g′′2li /(1− (1− ǫ)|Tαli
,c(h

iHi)|)ni,c)

(1 − (1− ǫ)|Tαli
,c(hiHi)|)

m′
i,c

where C̃′ and m′
i,c are positive constants. Now it is easy to see that the

right hand side is essentially a product of continuous functions of the form
exp(−c/xa)/xb (with a, b, c > 0) which are composed with continuous functions
of the form (1 − (1 − ǫ)|Tαli

,c(h
iHi)|). Thus we obtain a dominating function

for Ic,ǫ on a neighborhood of k. In particular this yields continuity of Ic,ǫ in
each point of the set {0} × {

∑

i∈Ic
hiHi ∈ a+∅,c | ∃i ∈ Ic : hi = 1} × {k}. Since

k was taken to be arbitrary we obtain that Ic,ǫ is a continuous function on
[0, 1]× a+∅,c ×K. Thus Ic,ǫ attains a maximum. The maximum is a dominating
function and hence Lebesgue’s dominated convergence theorem can be applied.
This finishes the proof of statement iv) in lemma 4.4, which was the last step
needed to complete the proof of Theorem 2.1 .

Remark 4.1. To obtain the theorem when g = k ⊕ p is the direct sum of
an Abelian and a semisimple Lie algebra, let a′ ⊕ a denote the corresponding
decomposition of a maximal Abelian subalgebra of p and replace a+ by a′ × a+

and H by H ′+H everywhere in the proof. In addition let k̃ denote the semisimple
part of k and replace k by k̃ everywhere in the proof.

Remark 4.2. It is possible to choose different regularization functions χǫ. The
choice made here seems natural, as it has the highest invariance possible and
was also used in earlier work.

Remark 4.3. The convergence properties can be seen quite clearly in the discus-
sion of Ic,ǫ(ǫ,H, [k]). The convergence is not uniform in A. To have uniform
convergence, we need As ≥ δ > 0. In applications with As ≥ 0, one has to
replace A by A+ δs. For fixed δ > 0 this gives uniform convergence in A.

4.4 Different representations of the integral, and alternat-

ing signs

In this section we establish two different representations of the integral over the
PS domain. These are stated in corollaries 2.1 and 2.2.
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Recall that the ‘Jacobian’ J ′(λ) which appears in both representations may
have alternating sign. In the following proof of corollary 2.1 we pinpoint the
origin of these surprising signs. First we review the setting. Recall that the
elements of k are antihermitian and those of Q+ hermitian. Since g̃ = k ⊕ Q+

is closed under hermitian conjugation, it is the direct sum of an Abelian and a
semisimple Lie algebra. The semisimple part of g̃ is denoted by g̃s. We choose
a maximal Abelian subalgebra h of Q+ containing s. The decomposition of g̃
into an Abelian and a semisimple part induces a decomposition of h = ha ⊕ hs
and k = ka ⊕ ks. Here ha and ka lie in the Abelian part of g̃ while hs and ks lie
in the semisimple part of g̃. Let (h+s )

o denote a positive open Weyl chamber in
hs with respect to the semisimple Lie algebra g̃s. We also define Ks = exp ks.
Then we have the following reparametrization:

R̃ : p×Ks/ZKs
(hs)× (h+s )

o × ha → p⊕Q+ ,

(Y, [k], Hs, Ha) 7→ (Y, k(Hs +Ha)k
−1).

Recall that K = exp k is closed by assumption and G denotes the closed and
analytic subgroup of GL(n,C) with Lie algebra g = k⊕ p. The subgroup Ka =
exp ka ⊂ K is central and closed. By the diffeomorphism p → exp p and the
isomorphism Ks/ZKs

(hs) ∼= K/(KaZKs
(hs)) we have the reparametrization

R : exp(p)K/(KaZKs
(hs))× (h+s )

o × ha → p⊕Q+ ,

(eY [k], Hs, Ha) 7→ (Y, k(Hs +Ha)k
−1).

By KaZKs
(hs) = ZK(hs) and the Cartan decomposition G = exp(p)K (see [11])

we obtain yet another parametrization of the PS domain,

PS ◦R : G/ZK(hs)× (h+s )
o × ha → Q,

([g], Hs, Ha) 7→ g(Hs +Ha)g
−1,

which is the one most frequently used in the literature.
To proceed with the proof of corollary 2.1, we have to diagonalize the com-

mutator action of h on g̃ and on p⊕Q−. For this purpose we note that the values
α(Hs +Ha) of the roots α are real since [Hs +Ha, ·] is hermitian with respect
to the hermitian form Tr(X†Y ). Moreover α(Ha) = 0 for α ∈ Σ+(k⊕Q+, h).

The pullback of dQ by PS ◦R is then

(PS ◦R)∗dQ = ∆(Hs +Ha) dµ([g]) ∧ dH,

where dµ([g]) is a left invariant volume form on G/ZK(hs) and dH is a constant
volume form on h. Denoting by dα the dimension of the root space corresponding
to α, we get

∆(Hs +Ha) =
∏

α∈Σ+(k⊕Q+,h)

α(Hs)
dα

∏

β∈Σ+(p⊕Q−,h)

β(Hs +Ha)
dβ .

Note that ∆ differs from J ′ in corollary 2.1 only by taking the modulus of the
roots in Σ+(k ⊕ Q+, h). But these roots α ∈ Σ+(k ⊕ Q+, h) are positive when
evaluated on (h+s )

o. Therefore we have the following equality:
∫

PS◦R

f(Q) dQ =

∫

id

f(g(Hs +Ha)g
−1)J ′(Hs +Ha) dµ([g]) ∧ dH,
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where id denotes the identity on G/ZK(hs)× (h+s )
o × ha.

At this point a crucial difference between the roots in Σ+(k ⊕ Q+, h) and
those in Σ+(p⊕Q−, h) is detected: since the definition of the Weyl chamber ho+
refers only to the former roots, it is possible for the latter roots to change sign
on ho+. These sign changes are particulary evident in our approach as we are
integrating differential forms instead of densities (or measures).

Now it is convenient to replace the volume form dµ([g]) by the left invariant
measure |dµ([g])| and dH by Lebesgue measure |dH | on h :

∫

PS◦R

f(Q) dQ =

∫

G/ZK(hs)×(h+
s )o×ha

f(g(Hs +Ha)g
−1)J ′(Hs +Ha)|dµ([g])||dH |.

The replacement of G/(KaZKs
(hs)) by G simply leads to a change of normal-

ization constant c′ ∈ R \ {0}:

∫

PS◦R

f(Q) dQ = c′
∫

G×(h+
s )o×ha

f(g(Hs +Ha)g
−1)J ′(Hs +Ha)|dµ(g)||dH |,

where |dµ(g)| denotes Haar measure on G.
Let NKs

(hs) denote the normalizer of exp hs in Ks. In the following we
make use of the Weyl group NKs

(hs)/ZKs
(hs). This Weyl group acts on hs and

generates hs from h+s . To exploit this property we need that J ′ is invariant
under the action of the Weyl group. Recall that J ′ is given by

J ′(H) =
∏

α∈Σ+(k⊕Q+,h)

|α(H)dα |
∏

β∈Σ+(p⊕Q−,h)

β(H)dβ .

The first factor is trivially invariant, whereas for the second factor an additional
argument is needed. For that purpose we define a root β ∈ Σ(p ⊕Q−, h) to be
positive if β(s) > 0. This definition makes sense because β(s) 6= 0 for all roots
β ∈ Σ(p ⊕ Q−, h). Since s is Ad(K) invariant we conclude that the action of
the Weyl group does no more than permute the roots in Σ+(p⊕Q−, h). Hence
Σ+(p⊕Q−, h) is Weyl-invariant and so is J ′. Now the Haar measure |dµ(g)| is
G-bi-invariant and hence Weyl-invariant. Therefore, introducing another nor-
malization constant c′′ ∈ R \ {0} we have

∫

PS◦R

f(Q) dQ = c′′
∫

G×h

f(gHg−1)J ′(H)|dµ(g)||dH |.

By setting f = g · χǫ we obtain corollary 2.1.
Since PS is nearly everywhere injective and regular by assumption, so is

PS ◦R. Application of the change of variable theorem then yields corollary 2.2.

A Contributions from ∂a+

Here we give the detailed argument showing that for our purpose of integrat-
ing over PS and EPSǫ the contributions from the boundary ∂a+ of the Weyl
chamber a+ are irrelevant, as they are of codimension at least two.
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Without loss, we fix any c ∈ C and let Hi ∈ a+c ∩ ∂a+ be any one of the
generators of a+c which also lie in ∂a+ (if there is no such generator then there
is nothing to prove). By removing this generator we get a boundary component

a+i,c := ai,c ∩ a+ ⊂ ∂a+c ∩ ∂a+ , ai,c :=

{
∑

j∈Ic\{i}
hjHj | h

j ∈ R

}

.

Next recall the definition of PSc in (6). We now show that by restricting to
a+i,c in the leftmost factor of the domain of definition of PSc we get a domain
of codimension at least two. Here the main observation is that the dimension
of the isotropy group of a changes at the boundary of a+ and, in particular,
dimZK(ai,c) > dimZK(a). This is seen as follows. Each face of ∂a+ lies in the
zero locus kerα of some root α ∈ Σ(g, a) and we can arrange for ai,c ⊂ kerα. If
gα is the root space of α, the group generated by Fixθ(gα ⊕ g−α) 6⊂ LieZK(a)
leaves the face a+i,c invariant. When restricting PS ◦ RI in the first factor to

a+i,c we may replace the second factor K/ZK(a) by the lower dimensional space
K/ZK(ai,c) without changing the image of the parametrization. Thus the re-
duction dim a+i,c < dim a is accompanied by a reduction of dimension of the

K-orbits on H ∈ a+i,c. Altogether, the dimension is reduced by no less than
two. Moreover, the eigenspace decomposition of Q with respect to a is a re-
finement of the eigenspace decomposition w.r.t. the smaller abelian algebra ai,c.
Hence our further reparametrizations of PS (by RIII and RIV, which rely on an
eigenspace decomposition of Q) are compatible with the restriction of a to ai,c.
This completes the argument for PSc.

Turning to EPSǫ, we have to argue that the analogous restriction is still
well defined. For that, it is enough to note that for X ∈ ZK(ai,c) we have
[X,Ej ] = 0 if j 6= i. By this token we see that also for EPSǫ the contributions
from ∂a+ are of codimension at least two.

B Equivalence of SW and Euclid

A detailed discussion of the SW domain and the validity of the pertinent
Hubbard-Stratonovich transformation can be found in [14]. Here we give an-
other proof by deforming SW into Euclid. By using some of the constructions
of the proof for the PS domain, this deformation can be stated very explicitly.

We start with a brief discussion of the convergence of the Gaussian integral
(1) over

SW : p⊕Q+ → QC,

(Y,X) 7→ X − ibeY se−Y .

For X ∈ Q+ and Y ∈ p we have that B(X,X) ≥ 0 and

B(ibeY se−Y , ibeY se−Y ) = −b2B(s, s)

is constant. The cross term B(X, ibeY se−Y ) is purely imaginary, and

−iB(−ibeY se−Y , A) = −bTr(e−2YAs) < 0

for b > 0 yields convergence in the p directions.
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To see the properties of SW more explicitly, we use the reparametrization
RI and the decomposition of s to obtain

SW ◦RI : a+ ×K/ZK(a)×Q+ → QC,

(H, [k], X) 7→ X − ibAd(k)
(

s0 +
∑

α∈Σ+(Q,a)

(
cosh(α(H))sα + sinh(α(H))φ(sα)

))

.

From this parametrization we see that the image of the boundary of a+ is again
of codimension at least two, which clearly shows that ∂(SW ) = 0.

A homotopy from SW to Euclid is given by

ESW : [0, 1]× a+ ×K/ZK(a)×Q+ → QC,

(t,H, [k], X) 7→ X − ibAd(k)
[

(1− t)s0+

∑

α∈Σ+(Q,a)

[(cosh((1 − t)α(H)) − t)sα +
sinh((1− t)α(H))

1− t
φ(sα)]

]

.

Note that ESW (t = 0) = SW and ESW (t = 1, H, [k], X) = X − ib[kHk−1, s].
Since [p, s] = Q− we obtain ESW (1) = Euclid.

To complete the argument we show that the integral over ESW is conver-
gent. For this we note that for Qt = ESW (t,H, [k], X) we have

B(Qt, Qt) = B(X,X) +
∑

α∈Σ+(Q,a)

(2t− t2)
sinh2((1 − t)α(H))

(1− t)2
B(sα, sα) + . . . ,

where the dots represent unimportant terms; these are terms which are purely
imaginary, terms which are linear in sinh and all terms containing s0. Owing
to B(X,X) ≥ 0 and B(sα, sα) > 0 we obtain convergence for t > 0. For t = 0
convergence is ensured by the B(Q,A) term, as was discussed above for the SW
parametrization.
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