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Abstract

We establish an analogue of the Bochner theorem for first order operators of Dunkl type, that is we

classify all such operators having polynomial solutions. Under natural conditions it is seen that the only

families of orthogonal polynomials in this category are limits of little and big q-Jacobi polynomials as q = −1.
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1. Introduction

We have introduced recently new families of “classical“ polynomials [12], [13] through limits of little and big

q-Jacobi polynomials when q goes to -1. The term ”classical” is taken to mean that the polynomials Pn(x) are

eigenfunctions of some differential or difference operator L

LPn(x) = λnPn(x). (1.1)

In the case of the novel classes of polynomials that we have identified, the operator L is of first order in the

derivative operator ∂x and contains moreover the reflection operator R defined by Rf(x) = f(−x). In other

words the operator L can then be said to be a first order differential-difference operator of Dunkl type [5].

The purpose of the present paper is to examine in general the eigenvalue problem (1.1) for such operators

and hence to classify the families of polynomials that are eigenfunctions of first order operators of Dunkl type.

As a result, under the natural condition that the operator L is potentially self-adjoint, we show that the big

-1 Jacobi polynomials (and their little -1 Jacobi polynomials limit) exhaust the list of orthogonal polynomials

with that property.

2. Dunkl-type operators of first order and their polynomial solutions

Consider the most general form of linear differential operators L of first order which contain also the reflection

operator R:

L = F0(x) + F1(x)R +G0(x)∂x +G1(x)∂xR, (2.1)

where F0(x), F1(x), G0(x), G1(x) are arbitrary functions.

We are seeking polynomial eigensolutions of the operator L, i.e. for every n we assume that there exists a

monic polynomial Pn(x) = xn +O(xn−1) which is an eigenfunction of the operator L with eigenvalue λn (1.1).

In what follows we will assume that

λn 6= 0 for n = 1, 2, . . . , λn 6= λm for n 6= m. (2.2)

We first establish the necessary conditions for the existence of such eigensolutions.

Consider the monomials xn, n = 0, 1, 2, . . .. If condition (1.1) holds for all n, the operator L must preserve

the space of polynomials of any dimension, i.e. for any polynomial π(x) of degree n, we have Lπ(x) = π̃(x),

where π̃(x) is a polynomial of the same degree as π(x). Indeed, since π(x) can be expanded as a finite linear

combination of the polynomials Pi(x), i = 0, 1, . . . , n, the condition λn 6= 0 guarantees that the polynomial

π̃(x) = Lπ(x) and π(x) have the same degree.

Hence condition (1.1) is equivalent to the condition

Lxn = Qn(x), n = 0, 1, 2, . . . (2.3)
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where Qn(x) are polynomials of degree n. Obviously

Qn(x) = λnx
n +O(xn−1) (2.4)

We shall thus proceed to verify condition (2.3) for the first values of n, i.e. n = 0, 1, 2, 3. This will provide

necessary conditions for the functions Fi(x), Gi(x) to satisfy.

Consider the case n = 0. Without loss of generality we can assume that

L{1} = 0 (2.5)

Indeed, by condition (2.3) we have L{1} = c for some constant c. Since this constant can be incorporated

additively into the function F0(x), we can assume that c = 0. Then, from (2.3) we find that necessarily

F1(x) = −F0(x), i.e. that the operator L must have the form

L = F (x)(I −R) +G0(x) +G1(x)∂xR, (2.6)

where F (x) = F0(x) and I is the identity operator. In what follows we will use the form (2.6) for the operator

L.

Consider now the case n = 1. We have L{x} = Q1(x) with Q1(x) a linear function. Hence, we obtain the

condition

2xF (x) +G0(x) −G1(x) = Q1(x). (2.7)

Analogously, for n = 2, 3 we obtain the conditions

2x(G0(x) +G1(x)) = Q2(x) (2.8)

and

2x3F (x) + 3x2(G0(x) −G1(x)) = Q3(x). (2.9)

We thus have 3 equations (2.7), (2.8), (2.9) for the 3 unknown functions F (x), G0(x), G1(x). Solving these

equations, we can present their general solution in the form

G0(x) =
µ

x2
+

ν0
x

+ ρ0 + τ0x, G1(x) = −
µ

x2
+

ν1
x

+ ρ1 + τ1x,

F (x) = −
µ

x3
+

ν1 − ν0
2x2

+
ξ

x
+ η, (2.10)

where µ, ν0, ν1, ρ0, ρ1, τ0, τ1, ξ, η are arbitrary constants. In what follows we will assume the restrictions

τ1 6= ±τ0, 2η + (2N + 1)(τ0 − τ1) 6= 0, N = 0, 1, 2, . . . (2.11)

We thus have

Theorem 1 Let µ, ν0, ν1, ρ0, ρ1, τ0, τ1, ξ, η be arbitrary complex parameters subjected to conditions (2.11). Con-

struct the operator L using formulas (2.6) and (2.10). Then, for any n, condition (2.3) holds with

λn =

{

(τ0 + τ1)n if n is even

2η + (τ0 − τ1)n if n is odd
(2.12)
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and the operator L has a complete set of polynomial eigenfunctions LPn(x) = λnPn(x), n = 0, 1, 2, . . . with the

nondegeneracy conditions (2.2).

The proof of the theorem follows from the simple observation that for any n = 1, 2, 3, . . . we have

Lxn = λnx
n + κ(1)

n xn−1 + κ(2)
n xn−2 + κ(3)

n xn−3 = Qn(x)

where the coefficients κ
(i)
n , i = 1, 2, 3 are straightforwardly found from the explicit expression of the operator L.

Hence the operator L preserves the space of polynomials. The nondegeneracy conditions (2.2) are equivalent to

the conditions (2.11).

3. Symmetrizable operators L

In the previous section we identified the most general form of first-order operators L of Dunkl-type that have

nondegenerate polynomial eigensolutions Pn(x). Assume now that the polynomials Pn(x) are orthogonal, i.e.

that there exists a nondegenerate linear functional σ such that

〈σ, Pn(x)Pm(x)〉 = hnδnm (3.1)

with some nonzero normalization constants hn.

This condition means that the operator L is symmetric with respect to the functional σ:

〈σ, L{V (x)}W (x)〉 = 〈σ, L{W (x)}V (x)〉 (3.2)

where V (x),W (x) are arbitrary polynomials. Property (3.2) trivially follows from (1.1) and the completeness

of the system of polynomials Pn(x).

In the case of a positive definite functional, i.e. hn > 0, there is a realization of (3.1) in terms of an integral

〈σ, Pn(x)Pm(x)〉 =

∫ b

a

Pn(x)Pm(x)dσ(x) (3.3)

with respect to a measure dσ(x), where σ(x) is a nondecreasing function of bounded variation [7]. The limits

a, b of integration may be finite or infinite.

We restrict ourselves to the case where there is a positive weight function w(x) = dσ(x)/dx > 0 inside the

interval [a, b] (we do not exclude the existence of concentrated masses at the endpoints a, b of the interval).

Under such restrictions we have the following necessary condition for the operator L:

(w(x)L)∗ = w(x)L, (3.4)

where M∗ stands for the Lagrange adjoint operator with respect to the operator M . Moreover, in what follows

we will assume that all functions F (x), G0(x) and G1(x) are real for the real values of the argument x. Recall

that if the operator M is a differential operator

M =

N
∑

k=0

Ak(x)∂
k
x ,
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with real-valued functions Ak(x) then the Lagrange adjoint operator is defined by

M∗ =

N
∑

k=0

(−1)k∂k
xAk(x)

In the presence of the reflection operator R, i.e. in the case where the operator M has the form

M =

N
∑

k=0

Ak(x)∂
k
x +

N
∑

k=0

Bk(x)∂
k
xR

with some real-valued functions Ak(x), Bk(x), we define the Lagrange adjoint operator by

M∗ =

N
∑

k=0

(−1)k∂k
xAk(x) +

N
∑

k=0

(−1)kR∂k
xBk(x) =

N
∑

k=0

(−1)k∂k
xAk(x) +

N
∑

k=0

∂k
xBk(−x)R, (3.5)

where we used the following formal rules

R∂x = −∂xR, R∗ = R, RB(x) = B(−x)R.

These formulas assume that the interval of orthogonality is necessarily symmetric, i.e. b = −a (note that this

includes possible situations where the interval of orthogonality is the union of several intervals; in such a case,

pairs of corresponding intervals should be symmetric with respect to the reflection x → −x).

We thus restrict our considerations to operators L which possess property (3.4) with some positive function

w(x) inside the symmetric interval (or intervals) of orthogonality. Such operators are called symmetrizable with

respect to the function w(x) [6].

It is easy to see that this symmetrizability property excludes the existence of the term G0(x)∂x in (2.1).

Hence we restrict ourselves in the following, to operators of the form

L = F (x)(1 −R) +G1(x)∂xR, (3.6)

with G0(x) = 0.

This implies µ = ν0 = ρ0 = τ0 = 0 and from (2.10), we obtain the following expressions for the functions

G1(x) and F (x):

G1(x) =
ν1
x

+ ρ1 + τ1x, F (x) =
ν1
2x2

+
ξ

x
+ η (3.7)

with 5 arbitrary parameters ν1, ρ1, τ1, ξ, η.

Note that we can multiply the operator L by an arbitrary nonzero constant L → κ0L. A scaling transforma-

tion of the independent variable x → κ1x with an arbitrary nonzero constant κ1 can also be performed. Using

this freedom, without loss of generality, we can always reduce the number of arbitrary parameters to 3.

Assume that ν1τ1 6= 0. We can then rewrite G1(x) in the form

G1(x) =
g1(x− d)(x + c)

x
, (3.8)
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where g1, d, c are real constants. Under the condition that d 6= c, we can set g1 = 2 and d = 1 by an appropriate

choice of the parameters κ0, κ1 so as to have

G1(x) =
2(x− 1)(x+ c)

x
(3.9)

with one arbitrary real parameter c. We will assume that 0 < c < 1. (The cases c > 1 or c < −1 can be

analyzed analogously). For the function F (x) we have

F (x) = −
c

x2
+

β − αc

x
− α− β − 1 (3.10)

with two arbitrary real parameters α, β, c.

In [13] it was shown that the operator L with the coefficients G1(x), F (x) given by (3.8) and (3.10) have big

-1 Jacobi polynomials as eigensolutions. In the limiting c = 0 the little -1 Jacobi polynomials are obtained.

Hence we have

Theorem 2 The functions G1(x) and F (x) given by (3.8) and (3.10) thus provide the most general first order

operator of Dunkl-type under our hypotheses. They define the operator L that has the big -1 Jacobi polynomials

as eigenfunctions

Note that we have considered the generic (nondegenerate) choice of real parameters in the functions G1(x) and

F (x). In the next section we will examine the symmetrizability property of the operator L and consider also

the degenerate cases with respect to the parameters.

4. Pearson-type equation for the weight function

It is instructive to derive directly the expression for the weight function w(x) from condition (3.4).

Denote M = w(x)L = w(x)F (x)(1 − R) + w(x)G1(x)∂xR. Assuming that all parameters of the functions

F (x), G1(x), w(x) are real, we have

M∗ = w(x)F (x) − w(−x)F (−x)R − ∂xRw(x)G1(x) =

w(x)F (x) − w(−x)F (−x)R +
d(w(−x)G1(−x))

dx
R+ w(−x)G1(−x)∂xR.

condition M∗ = M thus means that the following two equations hold:

w(x)G1(x) = w(−x)G1(−x) (4.1)

and

w(−x)F (−x) − w(x)F (x) =
d

dx
w(−x)G1(−x) =

d

dx
w(x)G1(x) (4.2)

With G1(x) given by (3.9), we have from (4.1)

w(x) = θ(x)(x + 1)(x− c)W (x2), (4.3)
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where θ(x) = x/|x| is the standard sign function and W (x2) is an arbitrary even function of x. We will suppose

that W (x2) > 0 inside the interval [c, 1]. Assume that α > −1, β > −1. Then from (4.3) it follows that the

function w(x) is positive inside the two symmetric intervals [−1,−c] and [c, 1].

Substituting expression (4.3) into the second condition of (4.2) and using the explicit expression (3.10), we

obtain a differential equation for the function W (y):

2(y − 1)(y − c2)W ′(y) +
(

(2− α− β)y + β − 1 + c2(α − 1)
)

W (y) = 0

which has the following general solution

W (y) = C(1− y)(α−1)/2(y − c2)(β−1)/2.

with an arbitrary constant C. Thus the function w(x) has the expression

w(x) = Cθ(x)(x + 1)(x− c)(1− x2)(α−1)/2(x2 − c2)(β−1)/2. (4.4)

Assuming C > 0 and α > −1, β > −1, we see that w(x) > 0 inside the two symmetric intervals [−1,−c] and

[c, 1]. This coincides with the weight function w(x) corresponding to the big -1 Jacobi polynomials which was

derived in [13] from a completely different approach.

Consider now possible degenerate cases of the function G1(x).

(i) Assume that ν1 = 0 but ρ1τ1 6= 0. Then using scaling transformations, we can always reduce the functions

G1(x) and F (x) to

G1(x) = 2(1− x), F (x) = α+ β + 1− β/x.

From (4.1) we get w(x) = (x+ 1)W (x2) with some function W (y). Then from (4.3) we obtain a Pearson-type

differential equation for the function W (y):

W ′(y) + ((1 − α− β) + β)W (y) = 0 (4.5)

Its general solution is

W (y) = Cyβ/2(1− y)(α−1)/2. (4.6)

Hence we obtain for the weight function

w(x) = C(x + 1)|x|β(1− x2)(α−1)/2. (4.7)

This weight function corresponds to the one of the little -1 Jacobi polynomials which are orthogonal on the

interval [−1, 1] [12]. Equivalently, this case corresponds to setting c = 0 in formulas (3.9) and (3.10).

(ii) Assume that ν1 = ρ1 = 0 but τ1 6= 0. Then we can write without loss of generality

G1(x) = 2x, F (x) = α+ β + 1− β/x

From (4.1) we now have w(x) = θ(x)W (x2) and from (4.2) follows Pearson type equation

2yW ′(y) = (α+ β)W (y)
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with solution W (y) = Cy(α+β)/2. Whence

w(x) = Cθ(x)|x|(α+β)/4. (4.8)

The function w(x) of (4.8) is not positive however, in any symmetric interval [−a, a] (or any union of symmetric

intervals). Hence, this case does not lead to orthogonal polynomials with positive measure on the real axis.

(iii) Consider the degenerate case when the numerator in expression (3.8) has coinciding zeros. Using scaling

transformations, G1(x) and F (x) can be cast in the form

G1(x) =
2(x− 1)2

x
, F (x) = x−2 + ax−1 + b (4.9)

with arbitrary constants a, b.

From condition (4.1) we find

w(x) = θ(x)(x + 1)2W (x2) (4.10)

with an arbitrary even function W (x2). From condition (4.2) we then obtain a differential equation for the

function W (y):

2(y − 1)2W ′(y) + ((b + 3)y + 2a+ b− 1)W (y) = 0

with general solution

W (y) = C(y − 1)−(b+3)/2 exp

(

a+ b + 1

y − 1

)

(4.11)

with an arbitrary constant C. Thus the weight function can be presented in the form

w(x) = Cθ(x)(x − 1)2 (x2 − 1)−(b+3)/2 exp

(

a+ b+ 1

x2 − 1

)

. (4.12)

It is easily seen that due to presence of the sign function θ(x) there are no symmetric intervals [−d, d] (or pairs

of symmetric intervals) inside which the function w(x) can be positive. Hence in this (degenerate) case the

operator L is not symmetrizable.

(iv) Consider the case τ1 = 0, ν1ρ1 6= 0. We can here posit G1(x) = 2(1− x−1) and F (x) = −x−2 −αx−1 −

β − 1. This leads to G(x) = θ(x)(x + 1)W (x2) and for the function W (y) we have the equation

2(y − 1)W ′(y) + (α+ 2)W (y) = 0

whence

w(x) = Cθ(x)(x + 1)(1− x2)(α+β)/2.

Again it is impossible to realize the condition w(x) > 0 on a symmetric interval.

(v) Finally consider the case when τ1 = ρ1 = 0. Then G1(x) = −2/x, F (x) = −x−2 − αx−1 − β This case

corresponds to the weight function

w(x) = Cθ(x) exp

(

−
β

2
x2

)

and here also it is impossible to have a positive weight function on a symmetric interval.
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We see that in all cases, the function w(x) possesses a factorization w(x) = π(x)W (x2), where π(x) is a

polynomial of first or second degree, and the function W (y) obeys a Pearson-type equation that we have derived.

Roughly speaking, the function W (y) resembles the corresponding weight function for the classical orthogonal

polynomials [10]. But, in contrast to the classical case, no analogs of Laguerre or Hermite polynomials appear

in the case q = −1.

5. Conclusions

We showed that the symmetrizability property of the Dunkl operator L with a positive weight function w(x) on

a symmetric interval (or a union of symmetric intervals) leads to very strong restrictions upon the associated

“classical” orthogonal polynomials. Namely, only big and little -1-Jacobi polynomials admit Dunkl analogs. A

number of generalizations offer themselves.

For example it was shown in [2] that the generalized Hermite polynomials H
(µ)
n (x) and the generalized

Gegenbauer polynomials S
(ξ,η)
n (x) (see, e.g. [3], [11], [1] for their definition and properties) are eigenfunctions

LµPn((x) = λnPn(x)

of an operator L which is quadratic

L = σ(x)T 2
µ + τ(x)Tµ (5.1)

with respect to the Dunkl operator

Tµ = ∂x + µx−1(I −R).

Here σ(x) is a polynomial of degree not exceeding 2 and deg(τ(x)) = 1.

Hence the generalized Hermite and Gegenbauer polynomials can be considered as ”classical”, but in con-

tradistinction to the general situation considered here, they satisfy an eigenvalue equation of second order in

the Dunkl operator. The classification of all second-order Dunkl-type operators having orthogonal polynomials

as solutions is a more involved problem.

Note that the operator L defined by (5.1) is a direct generalization of the classical hypergeometric operators

L = σ(x)∂2
x + τ(x)∂x

leading to the classical orthogonal polynomials as eigensolutions [10].

Let us mention also that operators of Dunkl-type have also been used in [8] and [4] to construct some

polynomial eigenvalue solutions. In these cases however, the Dunkl operators are not symmetrizable, and the

solutions therefore do not belong to the class of ordinary orthogonal polynomials.
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