
ar
X

iv
:1

01
1.

13
90

v1
  [

m
at

h.
A

G
] 

 5
 N

ov
 2

01
0

Euler characteristic of the bifurcation set for a

polynomial of degree 2 or 3

Gleb G. Gusev∗

Abstract

Assume that the coefficients of a polynomial in a complex variable are Laurent
polynomials in some complex parameters. The parameter space (a complex torus)
splits into strata corresponding to different combinations of coincidence of the roots
of the polynomial. For generic Laurent polynomials with fixed Newton polyhedra
the Euler characteristics of these strata are also fixed. We provide explicit formulae
for the Euler characteristics of the strata in terms of the polyhedra of the Laurent
polynomials in the cases of degrees 2 and 3. We also obtain some corollaries in
combinatorial geometry, which follows from two different ways of computing the
Euler characteristic of the bifurcation set for a reduced polynomial of degree 2.

1 Introduction

Assume that the coefficients of a polynomial Pz(t) = p0(z)t
k + p1(z)t

k−1 + . . . +
pk(z) are Laurent polynomials in the complex variables (z1, z2, . . . , zn) = z . The
parameter space (C∗)n (C∗ = C \ 0 ) splits into strata corresponding to different
combinations of coincidence of the roots of the polynomial Pz. For generic polyno-
mials p0, p1, . . . , pk with fixed Newton polyhedra the Euler characteristics of these
strata are also fixed. We provide explicit formulae for the Euler characteristics of
the strata in terms of the polyhedra of the polynomials pi in the cases k = 2, 3.
This paper is an extension of [2] where the case k = 2 was studied. We remind
some usual notions first.

Definition. For a Laurent polynomial S =
∑

k∈Zn skz
k, its Newton polyhedron

∆S is the convex hull 〈 {k ∈ Z
n | sk 6= 0} 〉 ⊂ R

n of the set of integer points cor-
responding to nonzero coefficients.

Denote by δ0, δ1, . . . , δk the Newton polyhedra of the polynomials p1, p2, . . . , pk
respectively. Consider the (Laurent) polynomial P in (n + 1) variables that is
defined by P (z, t) = Pz(t). Denote by ∆ ⊂ R

n+1 the Newton polyhedron of the
polynomial P .
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Denote by Z
n the set of primitive integer covectors in the dual space (Rn)∗.

For a polyhedron ∆ and a covector α ∈ Z
n, define the face ∆α of the polyhe-

dron as the subset of ∆ where α|∆ reaches its minimal value: ∆α = {x ∈ ∆ |
α(x) = min(α|∆)}. For a Laurent polynomial S =

∑
k∈Zn skz

k, denote by Sα the
(Laurent) polynomial

∑
k∈∆α

S

skz
k.

Definition. A system of Laurent polynomials P1, P2, . . . , Pk in n complex vari-
ables is non-degenerate with respect to its Newton polyhedra ∆P1

,∆P2
, . . . ,∆Pk

if for each covector α ∈ Z
n and for each point z ∈ (C∗)n such that Pα

1 (z) =
Pα
2 (z) = . . . = Pα

k (z) = 0 the system of covectors dPα
i (z), i = 1, 2, . . . , k, is

linear-independent.

Let S1, S2, . . . , Sn ⊂ R
n be a set of convex bodies. The Minkovskian sum of

two bodies S1, S2 is defined by S1 + S2 := {x1 + x2 | xi ∈ Si, i = 1, 2}. The
Minkovskian mixed volume of the bodies S1, S2, . . . , Sn is

S1S2 · · ·Sn =
1

n!
[Voln(S1 + . . .+ Sn)−

∑

i1<...<in−1

Voln(Si1 + . . .+ Sin−1
)+

+
∑

i1<...<in−2

Voln(Si1 + . . .+ Sin−2
)− . . . + (−1)n−1

n∑

i=1

Voln(Si)],

where Voln stands for the usual volume in R
n. For a homogenous polynomial

T (x1, x2, . . . , xk) =
∑

αi1i2...in xi1xi2 · · · xin , of degree n we define T (S1, S2, . . . , Sk)
as

∑
αi1i2...in Si1Si2 · · ·Sin .

Consider a system of Laurent polynomials P1, P2, . . . , Pk in n variables and
the set V = {z ∈ (C∗)n | Pi(z) = 0, i = 1, 2, . . . , n}. The celebrating theorem
of A. Khovanski ([3]) claims the following. If the system P1, P2, . . . , Pk is non-
degenerate with respect to its Newton polyhedra ∆1,∆2, . . . ,∆k then the Euler
characteristic of V is

χ(V ) = n!(−1)n−kQn
k(∆1,∆2, . . . ,∆k), (1)

where Qn
k(x1, x2, . . . , xk) is the the homogenous part of degree n of the series∏k

i=1
xi

1−xi
. In particular,

Qn
2 (x, y) =

n−1∑

i=1

xiyn−i,

Qn
3 (x, y, z) =

∑

i,j,k≥1, i+j+k=n

xiyjzk,

Qn
4 (x, y, z, t) =

∑

i,j,k,l≥1, i+j+k+l=n

xiyjzktl.
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2 The case of a polynomial of degree two

In the case the degree of the polynomial P is k = 2 the parameter space (C∗)n

splits into 5 strata — K: deg(Pz) = 2 and the roots of the polynomial Pz are
distinct; L: deg(Pz) = 2 and the roots coincide; M : deg(Pz) = 1; N : deg(Pz) = 0;
O: Pz ≡ 0.

Theorem 1 For generic Laurent polynomials pi with fixed Newton polyhedra δi,
i = 0, 1, 2, the following equations hold:

χ(K) = (−1)nn! [δn0 + 2δn∗ +Qn
2 (δ0, δ∗) +Qn

2 (δ∗, δ2) +Qn
2 (δ0, δ1) +Qn

3 (δ0, δ1, δ2)],

χ(L) = (−1)n−1n! [2δn∗ +Qn
2 (δ0, δ∗) +Qn

2 (δ∗, δ2) +Qn
2 (δ0, δ1) +Qn

3 (δ0, δ1, δ2)],

χ(M) = (−1)n−1n! [δn0 +Qn
2 (δ0, δ1)],

χ(N) = (−1)nn! [Qn
2 (δ0, δ1) +Qn

3 (δ0, δ1, δ2)],

χ(O) = (−1)n−1n!Qn
3 (δ0, δ1, δ2),

where δ∗ = 〈δ1 ∪ 1/2(δ0 + δ2)〉, 〈·〉 denotes the convex hull, + stands for the

Minkovskian sum, Qn
k(x1, x2, . . . , xk) =

[∏k
i=1

xi

1−xi

]
n
, [·]n is the the homogenous

part of degree n of the series under consideration.

The generality condition of the system of Laurent polynomials pi consists of the
following sentences.

1. The systems of Laurent polynomials

{p0, p1, p2}, {p0, p1}, {p0}

are non-degenerate with respect to the systems of Newton polyhedra

{δ0, δ1, δ2}, {δ0, δ1}, and {δ0}

respectively.

2. The Laurent polynomial P is non-degenerate with respect to its Newton poly-

hedron ∆.

Proof . The sets O, N ⊔O, M ⊔N ⊔O correspond to the systems of polynomials
{p0, p1, p2}, {p0, p1}, {p0} respectively, which are non-degenerate by the assump-
tion of the theorem. We apply the equation (1) to these systems, use the additivity
of the Euler characteristic and obtain χ(M), χ(N), χ(O). The following idea is an
analogue of the proof of lemma 2 from [1] and provides χ(K), χ(L).

Let X be the subset of (C∗)n × C defined by the equation P = 0. Consider
the projection p : (C∗)n × C → (C∗)n onto the first factor. Denote by π = p|X
its restriction to X. The Euler characteristics of the strata K,L,M,N,O and the
one of X are related by two following linear equations. The first one

χ(K) + χ(L) + χ(M) + χ(N) + χ(O) = 0 (2)
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follows from the additivity of the Euler characteristic (the left-hand side of (2)
is the Euler characteristic of the torus (C∗)n). One obtains the second equation
computing the integral with respect to the Euler characteristic:

χ(X) =

∫

(C∗)n
χ(π−1(z)) dχ.

The pre-image of a point z ∈ K consists of two points, the one of a point z ∈ L⊔M
consists of one point, the pre-image of N is empty, and finally, for a point z ∈ O,
one has: π−1(z) ∼= C and χ(π−1(z)) = 1. Therefore, one obtains:

χ(X) = 2χ(K) + χ(L) + χ(M) + χ(O). (3)

Combining the linear equations (2), (3) one obtains:

χ(L) = −χ(X)− χ(M)− 2χ(N)− χ(O). (4)

Let us find χ(X). The set X consists of two strata X1 = X \ {(z, t) | t = 0}
and X2 = X ∩ {(z, t) | t = 0} . One has:

χ(X) = χ(X1) + χ(X2). (5)

The set X2 is given in (C∗)n by the non-degenerate equation p2 = 0, therefore
applying the equation (1) one obtains

χ(X2) = (−1)n−1n! δn2 . (6)

The stratum X1 is given in the torus (C∗)(n+1) by the equation P = 0. Applying
the equation (1) to the polynomial P , one obtains

χ(X1) = (−1)n(n+ 1)!∆n+1. (7)

Let us express the volume of ∆ ⊂ R
n+1 in terms of the polyhedra δi. Denote

by kt the coordinate in the space R
n+1 that corresponds to the variable t. Denote

by vt the vector in R
n+1 that has only one non-zero coordinate kt = 1. The

polyhedra δi lie in the hyperplane kt = 0, and the polyhedron ∆ is the convex hull
of their parallel shifts along the kt-axis: ∆ = 〈 (δ0 + 2vt) ∪ (δ1 + vt) ∪ δ2 〉 .

Claim. The intersection of the hyperplane {kt = 1} and the polyhedron ∆ is the
polyhedron δ∗ + vt, where δ∗ = 〈δ1 ∪ 1/2(δ0 + δ2)〉.

Proof . An arbitrary point (k, α) ∈ ∆ can be expressed as (k, α) = α0(k0, 2) +
α1(k1, 1) + α2(k2, 0), where ki ∈ δi, αi > 0, i = 1, 2, 3, and

∑
αi = 1. Assume

that the point (k, α) lie in the hyperplane {kt = 1}, other words, α = 1. Then
one has α0 = α2 and therefore the point (k, α) is a convex combination of the
points 1

2 ((k0, 2) + (k2, 0)) and (k1, 1) of the polyhedra 1
2(δ0 + δ2) + vt and δ1 + vt

respectively. �

The volumes of the parts 〈 (δ0 + 2vt) ∪ (δ∗ + vt) 〉 and 〈 (δ∗ + vt) ∪ δ2 〉, which
form the polyhedron ∆, can be obtained by the following formula.
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Lemma 1 Suppose that polyhedra Λ0, Λ1 ⊂ R
n+1 lie in the n-dimensional hyper-

planes given in the space R
n+1 by the equations x1 = 0, x1 = 1 respectively. Then

the (n+ 1)-dimensional volume of their convex hull Λ equals

Λn+1 =
1

n+ 1
(Λn

0 +Qn
2 (Λ0,Λ1) + Λn

1 ). (8)

Proof . For α ∈ [0, 1], the section Λα of the polyhedron Λ by the hyperplane
x1 = α consists of points of the form (1−α)x+αy, where x ∈ Λ0, and y ∈ Λ1 .
It follows that Λα = (1− α)Λ0 + αΛ1, and therefore

Λn+1 =

∫

[0,1]
(Λα)

ndα =

∫

[0,1]

[
n∑

i=0

Ci
nα

i(1− α)n−i(Λ1)
i(Λ0)

n−idα

]
.

Taking into account that

∫

[0,1]
(αi(1− α)n−i)dα = i! (n − i)!/(n + 1)! = 1/((n + 1)Ci

n),

one obtains the formula (8). �

Applying (8) to the parts of the polyhedron ∆ and using the invariance of the
mixed volume with respect to parallel translations of its arguments one obtains

∆n+1 = 1/(n + 1) (δn0 + 2δn∗ + δn2 +Qn
2 (δ0, δ∗) +Qn

2 (δ∗, δ2)). (9)

The equations of Theorem 1 for χ(K), χ(L) follows now from (2), (4), (5), (6),
(7), (9). �

2.1 The corollaries in combinatorial geometry.

For a reduced polynomial of degree two Pz(t) = t2 + p1(z) t + p2(z) the strata
M,N,O ⊂ (C∗)n are empty and thus their Euler characteristics are equal to zero.
This fact respects the formulae of Theorem 1 (taking into account that δ0 = {0}).
The stratum L is given by the equation p21 − 4p2 = 0. It follows from Theorem 1
that for generic p1, p2 the Euler characteristic of L is given by the formula:

χ(L) = (−1)n−1n! [2δn∗ +Qn
2 (δ∗, δ2)], (10)

where δ∗ = 〈δ1 ∪ 1/2δ2〉.
Using the method of toroidal compactifications that was provided by A. Kho-

vanski for studying the invariants of non-degenerate hypersurfaces in the torus
(C∗)n (see [3]), one can prove another formula for the Euler characteristic of the
stratum L by induction on n:

χ(L) = (−1)n−1n! [(2δ∗)
n −Qn

2 (2δ∗, δ1) +Qn
2 (δ1, δ2)]. (11)

The coexistence of the two formulae (10), (11) does not induce contradiction
because the polyhedra δ∗, δ1, δ2 are related.
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Proposition 1 Consider a pair of arbitrary convex bodies S1, S2 ⊂ R
n and the

convex hull of their union S0 = 〈S1 ∪ S2〉. Then one has

Rn(S0, S1, S2) = 0, (12)

where Rn(x0, x1, x2) = (2n − 2)xn0 +Qn
2 (x1, 2x2)−Qn

2 (2x0, x1)−Qn
2 (x0, 2x2).

Proof . Assume first, that S1, S2 are integer polyhedra. Consider a generic pair
of Laurent polynomials p1, p2 with fixed Newton polyhedra S1, 2S2 respectively.
There are the formulae (10), (11) for the Euler characteristic of the stratum
L ⊂ (C∗)n, that corresponds to the coincidence of the roots of the polynomial
Pz(t) = t2 + p1(z) t+ p2(z), and these formulae imply the equation (12).

Assume now, that S1, S2 are polyhedra with rational coordinates of all their
vertices. There exists a natural number k ∈ N such that kS1, kS2 are integer
polyhedra. One has: Rn(S0, S1, S2) = (1/kn)Rn(kS0, kS1, kS2) = 0.

Finally, let’s consider the general case of an arbitrary pair S1, S2 of convex
bodies. Consider a couple of consequences (Si

1), (S
i
2) of polyhedra with rational

coordinates of all their vertices such that Si
1 −−−→

i→∞
S1, S

i
2 −−−→

i→∞
S2 (one can choose

the n-dimensional volume of symmetric difference of two bodies as the metric on
the set of convex bodies in the space R

n). Let Si
0 = 〈Si

1 ∪ Si
2〉 Then one has:

Rn(S0, S1, S2) = limi→∞Rn(Si
0, S

i
1, S

i
2) = 0. �

Example. Let n = 2. Then Rn(x0, x1, x2) = 2x20 + 2x1x2 − 2x0x1 − 2x0x2 =
2(x0−x1)(x0−x2). Thus one obtains the following corollary: for any three convex
figures S0, S1, S2 ⊂ R

2 that are connected by the relation S0 = 〈S1∪S2〉 one has:

(S0 − S1)(S0 − S2) = 0.

3 The case of a polynomial of degree three

For k = 3, the parameter space (C∗)n splits into 8 strata. The strata K,L,M,N,O
are defined in the previous section, and one has 3 new strata in addition — H:
deg(Pz) = 3 and the roots of the polynomial Pz are distinct; I: deg(Pz) = 3 and
the polynomial has a double root; J : deg(Pz) = 3 and the polynomial has a triple
root.

Consider the inclusion R
n ⊂ R

n+1 ⊂ R
n+2, where the first space is equipped

by the coordinates k = (k1, k2 . . . , kn), the second one is equipped by the addi-
tional coordinate kt (see the previous section), and the third one has moreover the
additional coordinate kσ that corresponds to an additional complex variable σ.

Denote by vt the vector in R
n+2 that has only one non-zero coordinate kt = 1.

Denote by vσ the vector in R
n+2 that has only one non-zero coordinate vσ = 1. De-

note by ∆1,2,3 the Newton polyhedron of the Laurent polynomial p1t
2 + p2t+ p3.

Denote by Di the Newton polyhedron of the Laurent polynomial σ + pit
3−i

( i = 0, 1, 2, 3 ) in n + 2 variables. One has: ∆1,2,3 = 〈(δ1 + 2vt) ∪ (δ2 + vt) ∪ δ3〉,
Di = 〈vσ ∪ (δi + (3− i)vt)〉.
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Theorem 2 For generic Laurent polynomials pi with fixed Newton polyhedra δi,
i = 0, 1, 2, 3, one has:

χ(H) =(−1)nn! [(n+ 1)(n + 2)Qn+2
4 (D0,D1,D2,D3)+

+ (n+ 1)(∆n+1 +Qn+1
2 (δ0,∆123))−

− 2δn0 − δn3 −Qn
2 (δ0, δ3)−Qn

3 (δ1, δ2, δ3)−Qn
4 (δ0, δ1, δ2, δ3)],

χ(I) =(−1)n−1n! [2(n + 1)(n + 2)Qn+2
4 (D0,D1,D2,D3)+

+ (n+ 1)(∆n+1 +Qn+1
2 (δ0,∆123))−

− 3δn0 − δn3 −Qn
2 (δ0, δ3)− 2Qn

3 (δ1, δ2, δ3)− 2Qn
4 (δ0, δ1, δ2, δ3)],

χ(J) =(−1)nn! [(n+ 1)(n + 2)Qn+2
4 (D0,D1,D2,D3)−Qn

3 (δ1, δ2, δ3)−

−Qn
4 (δ0, δ1, δ2, δ3)],

χ(K) =(−1)n−1n! [(n+ 1)Qn+1
2 (δ0,∆123)− δn0 −Qn

2 (δ0, δ3)+

+Qn
3 (δ0, δ1, δ2) +Qn

4 (δ0, δ1, δ2, δ3)],

χ(L) =(−1)nn! [(n+ 1)Qn+1
2 (δ0,∆123)− 2δn0 −Qn

2 (δ0, δ3)−

−Qn
2 (δ0, δ1) +Qn

3 (δ0, δ1, δ2) +Qn
4 (δ0, δ1, δ2, δ3)],

χ(M) =(−1)nn! [Qn
2 (δ0, δ1) +Qn

3 (δ0, δ1, δ2)],

χ(N) =(−1)n−1n! [Qn
3 (δ0, δ1, δ2) +Qn

4 (δ0, δ1, δ2, δ3)],

χ(O) =(−1)nn!Qn
4 (δ0, δ1, δ2, δ3),

where the polynomials Qn
i are defined on the page 2.

The generality condition consists of the following requirements. The systems of

Laurent polynomials in n variables

{p0, p1, p2, p3}, {p0, p1, p2}, {p1, p2, p3} {p0, p1} {p0, p3} {p0}, {p3}

are non-degenerate with respect to its systems of Newton polyhedra

{δ0, δ1, δ2, δ3}, {δ0, δ1, δ2}, {δ1, δ2, δ3}, {δ0, δ1}, {δ0, δ3}, {δ0}, {δ3}

respectively. The systems of Laurent polynomials in n+ 1 variables

{p0, p1t
2 + p2t+ p3}, {P}

are non-degenerate with respect to its systems of Newton polyhedra

{δ0,∆123}, {∆}

respectively. Finally, the system of Laurent polynomials in n+ 2 variables {σ −
3p0t

3, σ+ p1t
2, σ− p2t, σ+3p3} is non-degenerate with respect to its Newton poly-

hedra {D0,D1,D2,D3}.

Proof . The equations of the Theorem 1 appear as the solution of a system of 8
independent linear equations. One obtains the first of them calculating the Euler
characteristic of the torus (C∗)n:

χ(H) + χ(I) + χ(J) + χ(K) + χ(L) + χ(M) + χ(N) + χ(O) = 0 (13)
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The sets O, N ⊔O, M ⊔N ⊔O, K ⊔L⊔M ⊔N ⊔O are given by the systems
of Newton polyhedra {p0, p1, p2, p3}, {p0, p1, p2}, {p0, p1}, and {p0} respectively.
Applying the equation (1) to these systems one obtains 4 equations:

χ(O) = (−1)nn!Qn
4 (δ0, δ1, δ2, δ3),

χ(N) + χ(O) = (−1)n−1n!Qn
3 (δ0, δ1, δ2),

χ(M) + χ(N) + χ(O) = (−1)nn!Qn
2 (δ0, δ1),

χ(K) + χ(L) + χ(M) + χ(N) + χ(O) = (−1)n−1n! δn0 .

(14)

One obtains two extra equations calculating the following integrals with re-
spect to the Euler characteristic. Consider the subsets Y,Z ⊂ (C∗)n × C, where
Y = {(z, t) | degPz ≤ 2, Pz(t) = 0}, Z = {(z, t) | Pz(t) = 0}. Let π1 : Y →
(C∗)n, π2 : Z → (C∗)n be the restrictions of the projection π : (C∗)n × C → (C∗)n

onto the first factor. Let us calculate the integrals with respect to the Euler char-
acteristic:

χ(Y ) =

∫

(C∗)n
χ(π−1

1 (z)) dχ, χ(Z) =

∫

(C∗)n
χ(π−1

2 (z)) dχ.

For z ∈ H ⊔ I ⊔ J, one has: π−1
1 (z) = ∅. The pre-image π−1

2 (z) consists of three
points for z ∈ H, consists of two points for z ∈ I, and consists of one point for
z ∈ J. For z ∈ K, the pre-images under both maps consist of two points; for
z ∈ L ⊔ M, consist of one point; for z ∈ N, the pre-images are empty; finally,
for z ∈ O, the pre-images are isomorphic to C, thus χ(π−1

i (z)) = 1, i = 1, 2.
Therefore, one has:

χ(Y ) = χ(O) + χ(M) + χ(L) + 2χ(K),

χ(Z) = χ(O) + χ(M) + χ(L) + 2χ(K) + χ(J) + 2χ(I) + 3χ(H).
(15)

Consider the decompositions Y = Y1⊔Y2, Z = Z1⊔Z2, where Y1 = Y ∩ (C∗)n+1,
Z1 = Z ∩ (C∗)n+1, Y2 = {(z, t) ∈ Y | t = 0}, Z2 = {(z, t) ∈ Z | t = 0}. The strata
Y1, Z1 are given in (C∗)n+1 by the systems {p0, p1t

2 + p2t + p3}, {P} respec-
tively. The strata Y2, Z2 are given in (C∗)n by the systems {p0, p3}, and {p3}
respectively. Applying the equations (1) one obtains the Euler characteristics of
the strata Y,Z. One substitutes the answers into the formulae (15) and obtains
the two linear equations:

χ(O) + χ(M) + χ(L) + 2χ(K) =

= (−1)n−1n! ((n+ 1)Qn+1
2 (δ0,∆123)−Qn

2 (δ0, δ3)), (16)

χ(O) + χ(M) + χ(L) + 2χ(K) + χ(J) + 2χ(I) + 3χ(H) =

= (−1)nn! ((n + 1)∆n+1 − δn3 ). (17)

The equations (14), (16) provide the characteristics of the strata K,L,M,N,O.
One obtains the characteristics of the strata H, I, J using the equations (13), (17),
and the following final (eigth) equation.
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Consider the set

W = {(z, t0) ∈ (C∗)n × C | Pz(t) = (∂Pz/∂t)(t0) = (∂2Pz/∂t
2)(t0) = 0}.

Arguments similar to the calculation of χ(Y ) and χ(Z) provide that

χ(W ) = χ(O) + χ(J). (18)

One has: W = W1 ⊔W2, where W1 = W ∩ (C∗)n+1, W2 = {(z, t) ∈ W | t = 0}.
The stratum W2 is given in (C∗)n by the system {p1, p2, p3}. Therefore,

χ(W2) = (−1)n−1n!Qn
3 (δ1, δ2, δ3). (19)

Let us find χ(W1). The setW1 is given in the torus (C∗)n+1 by the system {P =
∂P/∂t = ∂2P/∂t2 = 0}. This system of Laurent polynomials may be degenerate
with respect to its Newton polyhedra, thus one can not apply to it the equation (1).
One can see that the above system is equivalent to the following one, which may
be still degenerate: {3p0t

3 +3p3 = 3p0t
3 − p2t = 3p0t

3 + p1t
2 = 0}. Consider now

the system of Laurent polynomials in n+ 2 variables

{σ − 3p0t
3, σ + p1t

2, σ − p2t, σ + 3p3}. (20)

Denote the set of common zeroes of this system in the torus (C∗)n+2 by W̃ .
The projection s : (C∗)n+1 × Cσ → (C∗)n+1 onto the hyperplane of the coordi-

nates (z, t) embeds the set W̃ into the stratum W1. Namely, let us consider the
decomposition W1 = W ′

1 ⊔W ′′
1 , where W ′

1 = {(z, t) ∈ W1 | p0(z) 6= 0} and W ′′
1 =

{(z, t) ∈ W1 | p0(z) = 0}. Then one has: s(W̃ ) = W ′
1. The set W

′′
1 is given in C

n+1

by the following system of equations in n variables: {p0 = p1 = p2 = p3 = 0}.
Therefore, W ′′

1 is a fibration with the fibre C
∗ and χ(W ′′

1 ) = 0. It follows that:

χ(W1) = χ(W ′
1) = χ(W̃ ). (21)

Claim. For generic Laurent polynomials pi with fixed Newton polyhedra δi, i =
0, 1, 2, 3, the system of Laurent polynomials (20) is non-degenerate with respect
to its Newton polyhedra D0,D1,D2,D3.

Proof . Denote by Li the affine space of Laurent polynomials S in n+ 1 variables
such that ∆S ⊂ Di, i = 0, 1, 2, 3. The set of non-degenerate systems {S0, S1, S2, S3}
of Laurent polynomials with fixed Newton polyhedra D0,D1,D2,D3 form a Zariski
open subset U in the product Π =

∏3
i=0 P (Li) of projectivizations of the affine

spaces. The formulae (20) provide an inclusion of the set Ψ of systems {p0, p1, p2, p3}
of Laurent polynomials with fixed Newton polyhedra δ0, δ1, δ2, δ3 into the variety
Π. This inclusion realizes Ψ as an open subset of Π. The set of non-degenerate
systems of the form (20) is U ∩Ψ, and therefore, is a Zariski open subset in Ψ. �

Applying the equation (1) to the system (20), and taking into account (18),
(19), (21), one gets the last needed linear equation:

χ(O) + χ(J) = (−1)nn! [(n + 1)(n + 2)Qn+2
4 (D0,D1,D2,D3)−

−Qn
3 (δ1, δ2, δ3)]. (22)

�
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