THE DEHN FUNCTIONS OF $\operatorname{Out}\left(F_{n}\right)$ AND $\operatorname{Aut}\left(F_{n}\right)$

MARTIN R. BRIDSON AND KAREN VOGTMANN

Abstract. For $n \geq 3$, the Dehn functions of $\operatorname{Aut}\left(F_{n}\right)$ and $\operatorname{Out}\left(F_{n}\right)$ are exponential.

Dehn functions provide upper bounds on the complexity of the word problem in finitely presented groups. They are examples of filling functions: if a group G acts properly and cocompactly on a simplicial complex X, then the Dehn function of G is asymptotically equivalent to the function that provides the optimal upper bound on the area of least-area discs in X, where the bound is expressed as a function of the length of the boundary of the disc. This article is concerned with the Dehn functions of automorphism groups of finitely-generated free groups.

Much of the contemporary study of $\operatorname{Out}\left(F_{n}\right)$ and $\operatorname{Aut}\left(F_{n}\right)$ is based on the deep analogy between these groups, mapping class groups, and lattices in semisimple Lie groups, particularly $\operatorname{SL}(n, \mathbb{Z})$. The Dehn functions of mapping class groups are quadratic [9], as is the Dehn function of $\operatorname{SL}(n, \mathbb{Z})$ if $n \geq 5$ (see [10]). In contrast, Epstein et al. [6] proved that the Dehn function of $\mathrm{SL}(3, \mathbb{Z})$ is exponential. Building on their result, we proved in [3] that $\operatorname{Aut}\left(F_{3}\right)$ and $\operatorname{Out}\left(F_{3}\right)$ also have exponential Dehn functions. Hatcher and Vogtmann [8] established an exponential upper bound on the Dehn function of $\operatorname{Aut}\left(F_{n}\right)$ and $\operatorname{Out}\left(F_{n}\right)$ for all $n \geq 3$. The comparison with $\operatorname{SL}(n, \mathbb{Z})$ might lead one to suspect that this last result is not optimal for large n, but in fact it is.

Theorem 1. For $n \geq 3$, the Dehn functions of $\operatorname{Aut}\left(F_{n}\right)$ and $\operatorname{Out}\left(F_{n}\right)$ are exponential.
This theorem answers Questions 35 and 37 of [4]. The lower bound needed to complete the proof is contained in a recent paper of Handel and Mosher [7]: they used their general results on quasi-retractions to reduce to the case $n=3$. We learned of this work from Lee Mosher at Luminy in June 2010 and realized that one one can also reduce Theorem 1 to the case $n=3$ using a simple observation about natural maps between different-rank Outer spaces and Auter spaces (Lemma 3). The purpose of this note is record this observation and the resulting proof of Theorem 1.
0.1. Definitions. Let A be a 1-connected simplicial complex. We consider simplicial loops $\ell: S \rightarrow A^{(1)}$, where S is a simplicial subdivision of the circle. A simplicial filling of ℓ is a simplicial map $L: D \rightarrow A^{(2)}$, where D is a triangulation of the 2-disc and $\left.L\right|_{\partial D}=\ell$. Such

[^0]fillings always exist, by simplicial approximation. The filling area of ℓ, denoted $\operatorname{Area}_{A}(\ell)$, is the least number of triangles in the domain of any simplicial filling of ℓ. The Dehn function $\sqrt[1]{1}$ of A is the least function $\delta_{A}: \mathbb{N} \rightarrow \mathbb{N}$ such that $\operatorname{Area}_{A}(\ell) \leq \delta_{A}(n)$ for all loops of length $\leq n$ in $A^{(1)}$. The Dehn function of a finitely presented group G is the Dehn function of any 1-connected 2-complex on which it acts simplicially with finite stabilizers and compact quotient. This is well-defined up to \simeq equivalence and can be rephrased in terms of the complexity of the word problem for G - see [2]. (Two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ are \simeq equivalent if $f \preceq g$ and $g \preceq f$, where $f \preceq g$ means that there is a constant $a>1$ such that $f(n) \leq a g(a n+a)+a n+a$.)

Lemma 1. If A and B are 1-connected simplicial complexes, $F: A \rightarrow B$ is a simplicial map, and ℓ is a loop in the 1-skeleton of A, then $\operatorname{Area}_{A}(\ell) \geq \operatorname{Area}_{B}(F \circ \ell)$.
Proof. If $L: D \rightarrow A$ is a simplicial filling of ℓ, then $F \circ L$ is a simplicial filling of $F \circ \ell$, with the same number of triangles in the domain D.

Corollary 1. Let A, B and C be 1-connected simplicial complexes with simplicial maps $A \rightarrow B \rightarrow C$. Let ℓ_{n} be a sequence of simplicial loops in A whose length is bounded by a linear function of n, let $\bar{\ell}_{n}$ be the image loops in C and let $\alpha(n)=\operatorname{Area}_{C}\left(\bar{\ell}_{n}\right)$. Then the Dehn function of B satisfies $\delta_{B}(n) \succeq \alpha(n)$.
0.2. Simplicial complexes associated to $\operatorname{Aut}\left(F_{n}\right)$ and $\operatorname{Out}\left(F_{n}\right)$. Let K_{n} denote the spine of Outer space, as defined in [5], and L_{n} the spine of Auter space, as defined in 8 . (We allow marked graphs representing the points of these complexes to have separating edges.)

A vertex of K_{n} can be considered either as a marked graph (g, G) or as a free minimal action of F_{n} on a simplicial tree (namely the universal cover of G). A vertex of L_{n} has the same descriptions except that there is a chosen basepoint in the marked graph (respected by the marking) or in the simplicial tree. Both K_{n} and L_{n} are flag complexes, so to define them it suffices to describe what it means for vertices to be adjacent. In the marked-graph description, vertices of $K_{n}\left(\right.$ or $\left.L_{n}\right)$ are adjacent if one can be obtained from the other by a forest collapse (i.e. collapsing each component of a forest to a point).
0.3. Three Natural Maps. There is a forgetful map $\phi_{n}: L_{n} \rightarrow K_{n}$ which simply forgets the basepoint; this map is simplicial.

Let $m<n$. We fix an ordered basis for F_{n}, identify F_{m} with the subgroup generated by the first m elements of the basis, and identify $A u t\left(F_{m}\right)$ with the subgroup of $A u t\left(F_{n}\right)$ that fixes the last $n-m$ basis elements. We consider two maps associated to this choice of basis.

First, there is an equivariant augmentation map $\iota: L_{m} \rightarrow L_{n}$ which attaches a bouquet of $n-m$ circles to the basepoint of each marked graph and marks them with the last $n-m$ basis elements of F_{n}. This map is simplicial, since a forest collapse has no effect on the bouquet of circles at the basepoint.

[^1]Secondly, there is a restriction map $\rho: K_{n} \rightarrow K_{m}$ which is easiest to describe using trees. A point in K_{n} is a minimal free simplicial action of F_{n} on a tree T with no vertices of valence 2 . We define $\rho(T)$ to be the minimal invariant subtree for $F_{m}<F_{n}$; more explicitly, $\rho(T)$ is the union of the axes in T of all elements of F_{m}. (Vertices of T that have valence 2 in $\rho(T)$ are no longer considered to be vertices.)

One can also describe ρ in terms of marked graphs. The chosen embedding $F_{m}<F_{n}$ corresponds to choosing an m-petal subrose $R_{m} \subset R_{n}$. A vertex in K_{n} is given by a graph G marked with a homotopy equivalence $g: R_{n} \rightarrow G$ and the restriction of g to R_{m} lifts to a homotopy equivalence $\widehat{g}: R_{m} \rightarrow \widehat{G}$, where \widehat{G} is the covering space corresponding to $g_{*}\left(F_{m}\right)$. There is a canonical retraction r of \widehat{G} onto its compact core. Let \widehat{G}_{0} be the graph obtained by erasing all vertices of valence 2 from the compact core and define $\rho(g, G)=\left(r \circ \widehat{g}, \widehat{G}_{0}\right)$.
Lemma 2. For $m<n$, the restriction map $\rho: K_{n} \rightarrow K_{m}$ is simplicial.
Proof. Any forest collapse in G is covered by a forest collapse in \widehat{G} that preserves the compact core, so ρ preserves adjacency.

Lemma 3. For $m<n$, the following diagram of simplicial maps commutes :

L_{m}	$\xrightarrow{\iota}$	L_{n}
$\phi_{m} \downarrow$		$\downarrow \phi_{n}$
K_{m}		$\stackrel{\rho}{\rightleftarrows}$
K_{n}		

Proof. Given a marked graph with basepoint $(g, G ; v) \in L_{n}$, the marked graph $\iota(g, G ; v)$ is obtained by attaching $n-m$ loops at v labelled by the elements a_{m+1}, \ldots, a_{n} of our fixed basis for F_{n}. Then $\left(g_{n}, G_{n}\right):=\phi_{n} \circ \iota(g, G ; v)$ is obtained by forgetting the basepoint, and the cover of $\left(g_{n}, G_{n}\right)$ corresponding to $F_{m}<F_{n}$ is obtained from a copy of (g, G) (with its labels) by attaching $2(n-m)$ trees. (These trees are obtained from the Cayley graph of F_{n} as follows: one cuts at an edge labelled a_{i}^{ε}, with $i \in\{m+1, \ldots, n\}$ and $\varepsilon= \pm 1$, takes one component of the result, and then attaches the hanging edge to the basepoint v of G.) The effect of ρ is to delete these trees.
0.4. Proof of the Theorem. In the light of Corollary 1 and Lemma 3 it suffices to exhibit a sequence of loops ℓ_{i} in the 1 -skeleton of L_{3} whose lengths are bounded by a linear function of i and whose filling area when projected to K_{3} grows exponentially as a function of i. Such a sequence of loops is essentially described in [3]. What we actually described there were words in the generators of $\operatorname{Aut}\left(F_{3}\right)$ rather than loops in L_{3}, but standard quasiisometric arguments show that this is equivalent. More explicitly, the words we considered were $w_{i}=T^{i} A T^{-i} B T^{i} A^{-1} T^{-i} B^{-1}$ where

$$
T:\left\{\begin{array}{l}
x_{1} \mapsto x_{1}^{2} x_{2} \\
x_{2} \mapsto x_{1} x_{2} \\
x_{3} \mapsto x_{3}
\end{array} \quad A:\left\{\begin{array}{l}
x_{1} \mapsto x_{1} \\
x_{2} \mapsto x_{2} \\
x_{3} \mapsto x_{1} x_{3}
\end{array} \quad B:\left\{\begin{array}{l}
x_{1} \mapsto x_{1} \\
x_{2} \mapsto x_{2} \\
x_{3} \mapsto x_{3} x_{2}
\end{array}\right.\right.\right.
$$

To interpret these as loops in the 1 -skeleton of L_{3} (and K_{3}) we note that $A=\lambda_{31}$ and $B=$ ρ_{32} are elementary transvections and T is the composition of two elementary transvections:
$T=\lambda_{21} \circ \rho_{12}$. Thus w_{i} is the product of $8 i+4$ elementary transvections. There is a (connected) subcomplex of the 1 -skeleton of L_{3} spanned by roses (graphs with a single vertex) and Nielsen graphs (which have $(n-2)$ loops at the base vertex and a further trivalent vertex). We say roses are adjacent if they have distance 2 in this graph.

Let $I \in L_{3}$ be the rose marked by the identity map. Each elementary transvection τ moves I to an adjacent rose τI, which is connected to I by a Nielsen graph N_{τ}. A composition $\tau_{1} \ldots \tau_{k}$ of elementary transvections gives a path through adjacent roses $I, \tau_{1} I, \tau_{1} \tau_{2} I, \ldots, \tau_{1} \tau_{2} \ldots \tau_{k} I$; the Nielsen graph connecting σI to $\sigma \tau I$ is σN_{τ}. Thus the word w_{i} corresponds to a loop ℓ_{i} of length $16 i+8$ in the 1 -skeleton of L_{3}. Theorem A of [3] provides an exponential lower bound on the filling area of $\phi \circ \ell_{i}$ in K_{3}.

The square of maps in Lemma 3 ought to have many uses beyond the one in this note (cf. [7). We mention just one, for illustrative purposes. This is a special case of the fact that every infinite cyclic subgroup of $\operatorname{Out}\left(F_{n}\right)$ is quasi-isometrically embedded [1].
Proposition 1. The cyclic subgroup of $\operatorname{Out}\left(F_{n}\right)$ generated by any Nielsen transformation (elementary transvection) is quasi-isometrically embedded.
Proof. Each Nielsen transformation is in the image of the map $\Phi: \operatorname{Aut}\left(F_{2}\right) \rightarrow \operatorname{Aut}\left(F_{n}\right) \rightarrow$ $\operatorname{Out}\left(F_{n}\right)$ given by the inclusion of a free factor $F_{2}<F_{n}$. Thus it suffices to prove that if a cyclic subgroup $C=\langle c\rangle<\operatorname{Aut}\left(F_{2}\right)$ has infinite image in $\operatorname{Out}\left(F_{2}\right)$, then $t \mapsto \Phi\left(c^{t}\right)$ is a quasi-geodesic. This is equivalent to the assertion that some (hence any) C-orbit in K_{n} is quasi-isometrically embedded, where C acts on K_{n} as $\Phi(C)$ and K_{n} is given the piecewise Euclidean metric where all edges have length 1.
K_{2} is a tree and C acts on K_{2} as a hyperbolic isometry, so the C-orbits in K_{2} are quasi-isometrically embedded. For each $x \in L_{2}$, the C-orbit of $\phi_{2}(x)$ is the image of the quasi-geodesic $t \mapsto c^{t} . \phi_{2}(x)=\phi_{2}\left(c^{t} . x\right)$. We factor ϕ_{2} as a composition of C-equivariant simplicial maps $L_{2} \xrightarrow{\iota} K_{n} \xrightarrow{\phi_{n}} K_{2}$, as in Lemma 3, to deduce that the C-orbit of $\phi_{n} \iota(x)$ in K_{n} is quasi-isometrically embedded.

A slight variation on the above argument shows that if one lifts a free group of finite index $\Lambda<\operatorname{Out}\left(F_{2}\right)$ to $\operatorname{Aut}\left(F_{2}\right)$ and then maps it to $\operatorname{Out}\left(F_{n}\right)$ by choosing a free factor $F_{2}<F_{n}$, then the inclusion $\Lambda \hookrightarrow \operatorname{Out}\left(F_{n}\right)$ will be a quasi-isometric embedding.

References

[1] Emina Alibegovic. Translation lengths in $\operatorname{Out}\left(F_{n}\right)$. Geom. Dedicata, 92:87-93, 2002.
[2] Martin R Bridson. The geometry of the word problem. in Invitations to Geometry and Topology (M.R. Bridson, S.M. Salamon, editors.) Oxford University Press, 2001.
[3] Martin R Bridson and Karen Vogtmann. On the geometry of the automorphism group of a free group. Bull. London Math. Soc., 27(6):544-552, 1995.
[4] Martin R Bridson and Karen Vogtmann. Automorphism groups of free groups, surface groups and free abelian groups. In Problems on mapping class groups and related topics (B. Farb, editor), Proceedings of symposia in pure mathematics, vol 74. American Math. Soc., Providence RI, 2006, pp. 301-316.
[5] M Culler and K Vogtmann. Moduli of graphs and automorphisms of free groups. Invent. Math., 84(1):91119, 1986.
[6] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston. Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA, 1992.
[7] Michael Handel and Lee Mosher. Lipschitz retraction and distortion for subgroups of $\operatorname{Out}\left(F_{n}\right)$. arXiv, math.GR, Sep 2010. 47 pages.
[8] A Hatcher and K Vogtmann. Isoperimetric inequalities for automorphism groups of free groups. Pacific J. Math, Jan 1996.
[9] Lee Mosher. Mapping class groups are automatic. Ann. of Math. (2), 142(2):303-384, 1995.
[10] Robert Young. The Dehn function of SL(n;Z). arXiv, math.GR, Dec 2009. 46 pages, 8 figures.
Martin R. Bridson, Mathematical Institute, 24-29 St Giles', Oxford OX1 3LB, U.K. E-mail address: bridson@maths.ox.ac.uk

Karen Vogtmann, Department of Mathematics, Cornell University, Ithaca NY 14853
E-mail address: vogtmann@math.cornell.edu

[^0]: 1991 Mathematics Subject Classification. 20F65, 20F28, 53C24, 57S25.
 Key words and phrases. Automorphism groups of free groups, Dehn functions.
 Bridson is supported by an EPSRC Senior Fellowship and Vogtmann is supported by NSF grant DMS0204185.

[^1]: ${ }^{1}$ The standard definition of area and Dehn function are phrased in terms of singular discs, but this version is \simeq equivalent.

