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0 A symmetry result on submanifolds of space forms

and applications

Ali Maalaoui(1) & Vittorio Martino(2)

Abstract In this paper we prove a symmetry result on submanifolds of

codimension one in a n+ 1-dimensional space form, related to the geodesic

distance function and to the normal curvature of some fixed vector field. As

applications we will prove sphere characterization type theorems for Kähler

manifolds endowed with a toric group action.

1 Introduction

In this paper we will prove a symmetry result on submanifolds of codimen-

sion one (hypersurface type) in a n + 1-dimensional space form, related to

the geodesic distance function and to the normal curvature of some vector

field. We recall that a space form is by definition a complete Riemannian

manifold with constant sectional curvature K. Let then V := V n+1, n ≥ 1

be a smooth complete manifold of dimension n + 1 and let g be a Rieman-

nian metric on V and ∇ be the related Levi-Civita connection of g. Let us
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consider M := Mn a smooth, compact, orientable and with no boundary,

embedded manifold on V , of dimension n. We consider on M the metric

induced by g and the related induced Levi-Civita connection. Let us call N

the inner unit normal to M . The Second Fundamental Form h on M is the

symmetric tensor defined on TM , the tangent bundle of M , in the following

way:

h(X,Y ) = g(∇XY,N), ∀ X,Y ∈ TM

Definition 1.1. Let us consider a unit smooth vector field X ∈ TM . We

will call the Normal Curvature of M referred to the vector field X the coef-

ficient of the Second Fundamental Form related to the vector field X:

CX := h(X,X) = g(∇XX,N)

The distance function d on V , related to g, is defined as follows: let us

consider any two points p0, p1 ∈ V , then

d(p0, p1) =

∫ t1

t0

√
g
(
ṙ(t), ṙ(t)

)
dt

where

r : [t0, t1] → V, r(t0) = p0, r(t1) = p1

is a minimal geodesic in V connecting p0 and p1. For q ∈ V , if R > 0 is

such that expq (the exponential map at q) is a diffeomorphism on the ball

B(0, R) ⊂ TqV then the geodesic ball B(q,R) of center q and radius R is the

image set in V

B(q,R) = expq(B(0, R))

moreover if the closed ball B(0, R) is also contained in an open set U ⊂ TqV

where expq is a diffeomorphism, then the geodesic sphere is ∂B(q,R) =

expq(∂B(0, R)).

We can now state our result:
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Theorem 1.2. Let V be a n + 1-dimensional Riemannian manifold with

constant sectional curvature K and let M be a smooth, orientable, compact,

connected, with no boundary, embedded manifold on V , of dimension n.

Suppose there exist a point q /∈ M and a non-singular vector field X ∈ TM

such that

X(d(q, p)) = 0, ∀ p ∈ M (1)

Let CX be the Normal Curvature of M referred to the vector field X. We

have two cases:

i) K ≤ 0. If CX is constant on M , then M is a geodesic sphere in V ;

ii) K > 0. If M belong to B(q, π√
K
) and CX is constant on M , then M

is a geodesic sphere in V .

Remark 1.3. We recall that fixed a point q ∈ V then a conjugate point

to q is a point p ∈ V such that there is no uniqueness for minimal geodesic

connecting q and p; in particular expq fails to be a local diffeomorphism near

p. Then when K > 0 we need to assume that M is contained in the geodesic

ball B(q, π√
K
) in order to avoid conjugate points. In fact by a classical result

we have that if V has positive constant sectional curvature K, then the first

conjugate point along any geodesic starting from q occurs at distance at least

π√
K
. On the other hand when K ≤ 0 then there are no conjugate points to

any point of V .

We will give three applications of this result: the first one on almost sym-

plectic manifolds, with the Normal Curvature referred to the hamiltonian

vector field of the hypersurface M ; the second one on Kähler manifolds en-

dowed with a toric group action; finally we will specialize at the case of

Reinhardt domains in C
n+1 where we obtain as corollary the result in [11]:

in that paper the second author, motivated by two recent works by Hounie
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and Lanconelli ([8], [9]), proved an Alexandrov type theorems for Reinhardt

domains in C
n+1 using the Characteristic Curvature rather than the Levi

ones. Next we prove our result Theorem (1.2)

Proof. First of all, since the vector field X is non-singular we can always

normalize it such that g(X,X) = 1. For every p ∈ M let us consider an

integral curve γ of any vector field Y ∈ TM passing through p, namely: let

ε > 0, then γ : (−ε, ε) → M such that

γ(0) = p, and
d

ds
γ(s) = Yγ(s), ∀s ∈ (−ε, ε) (2)

Since there are no conjugate points to q on M , then the exponential map

expq has no singularities on M . We consider the smooth family r(s, t) of

unique minimal geodesics connecting q and γ, that is:

r(s, t) : (−ε, ε) × [0, 1] −→ V





D

∂t

∂

∂t
r(s, t) = ∇ṙ ṙ = 0

r(s, 0) = q, r(s, 1) = γ(s)

(3)

We will always denote by a dot · the derivative with respect to t. Moreover,

by setting

ℓγ(s) := d(q, γ(s))

then we have parametrized the geodesics such that they have constant speed

(with respect to t)

|ṙ(s, t)| = ℓγ(s), ∀ t ∈ [0, 1]

Let us define the following function defined on M

E : M → R, E(p) :=

(
d(q, p)

)2

2
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r(0,t) 

r(s,t) 

q=r(s,0) 

V 

p=r(0,1)=γ(0) 

r(s,1)=γ(s) 

M 

Thus we have

Y (E(p)) = d(q, p)Y
(
d(q, p)

)

for every Y ∈ TM , and in particular, as q /∈ M we have d(q, p) > 0, then

the critical points on M of E are the same of d(q, ·). We are going to take

the first variation of E along any Y ∈ TM . In order to do that we consider

the functional

ϕ := E ◦ γ : (−ε, ε) → R

ϕ(s) = E(γ(s)) =

(
d(q, γ(s))

)2

2
=

1

2

∫ 1

0
g
(
ṙ(s, t), ṙ(s, t)

)
dt

Therefore

Y (ϕ(s)) =
d

ds
ϕ(s) =

=
1

2

∫ 1

0

d

ds
g
(
ṙ(s, t), ṙ(s, t)

)
dt =

∫ 1

0
g
(D
ds

ṙ(s, t), ṙ(s, t)
)
dt

Now

g
(D
ds

ṙ(s, t), ṙ(s, t)
)
= g

(D
ds

d

dt
r(s, t), ṙ(s, t)

)
= g

(D
dt

d

ds
r(s, t), ṙ(s, t)

)
=
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=
d

dt
g
( d

ds
r(s, t), ṙ(s, t)

)
− g

( d

ds
r(s, t),

D

dt
ṙ(s, t)

)
=

and
D

dt
ṙ(s, t) = ∇ṙ ṙ = 0

therefore by (2) and (3) we have

Y (ϕ(s)) =

∫ 1

0

d

dt
g
( d

ds
r(s, t), ṙ(s, t)

)
dt =

=
[
g
( d

ds
r(s, t), ṙ(s, t)

)]1
0
= g

(
Yγ(s), ṙ(s, 1)

)

Let us suppose now that p0 ∈ M is a critical point for E, then we have

Y (ϕ(0)) = 0 for any vector field Y ∈ Tp0M and consequently

ṙ(0, 1) = −ℓγ(0)N = −d(q, p0)N

Moreover by the assumption (1) we have for every p ∈ M that

X(ϕ(s)) = g
(
Xγ(s), ṙ(s, 1)

)
= 0, ∀ s ∈ (−ε, ε)

Now we are going to take the second variation of E, twice along X, that is:

let

γ(0) = p, and
d

ds
γ(s) = Xγ(s), ∀s ∈ (−ε, ε)

then we obtain

0 = X2(ϕ(s)) =
d

ds
g
(
Xγ(s), ṙ(s, 1)

)
=

= g
(D
ds

Xγ(s), ṙ(s, 1)
)
+ g

(
Xγ(s),

D

ds
ṙ(s, 1)

)
=

= g
(
∇Xγ(s)

Xγ(s), ṙ(s, 1)
)
+ g

(
Xγ(s),

D

ds
ṙ(s, 1)

)
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Now if we evaluate the previous expression at a critical value p0 = γ(0) of

E, we get:

0 = g
(
∇XX, ṙ(0, 1)

)
p0

+ g
(
Xp0 ,

D

ds
ṙ(0, 1)

)
=

= −d(q, p0)g
(
∇XX,N

)
p0

+ g
(
Xp0 ,

D

ds
ṙ(0, 1)

)
=

= −d(q, p0)CX
p0

+ g
(
Xp0 ,

D

ds
ṙ(0, 1)

)
(4)

We need to compute

D

ds
ṙ(0, 1) =

D

ds
ṙ(s, t)

∣∣∣∣∣
s=0,t=1

=
D

ds

d

dt
r(s, t)

∣∣∣∣∣
s=0,t=1

=
D

dt

d

ds
r(s, t)

∣∣∣∣∣
s=0,t=1

(5)

Now we explicitly note that

J(t) :=
d

ds
r(s, t)

∣∣∣∣∣
s=0

is a Jacobi field along the geodesic r(0, ·), since it is a variation field through

geodesics of the geodesic r(0, ·). In particular J is normal along r(0, ·), in
fact:

d

dt
g
(
J(t), ṙ(0, t)

)
=

d

dt
g
( d

ds
r(s, t),

d

dt
r(s, t)

)
∣∣∣∣∣
s=0

=

= g
(D
dt

d

ds
r(s, t),

d

dt
r(s, t)

)
∣∣∣∣∣
s=0

+ g
( d

ds
r(s, t),

D

dt

d

dt
r(s, t)

)
∣∣∣∣∣
s=0

=

= g
(D
ds

d

dt
r(s, t),

d

dt
r(s, t)

)
∣∣∣∣∣
s=0

=
1

2

d

ds
g
( d

dt
r(s, t),

d

dt
r(s, t)

)
∣∣∣∣∣
s=0

=

=
1

2

d

ds
|ṙ(s, t)|2

∣∣∣∣∣
s=0

=
1

2

d

ds

(
ℓγ(s)

)2
∣∣∣∣∣
s=0

= 0

Therefore the function g
(
J(t), ṙ(0, t)

)
is constant along t, and for t = 1 we

have:

g
(
J(1), ṙ(0, 1)

)
= −d(q, p0)g

(
Xp0 , Np0

)
= 0

7



Now we will use the hypothesis on the constant sectional curvature in order

to write explicit formulas for the normal Jacobi fields. First we recall that

if K is the constant sectional curvature of V , then the Riemann curvature

endomorphism R satisfies the following identity:

R(X,Y )Z = K
(
g
(
Y,Z

)
X − g

(
X,Z

)
Y
)
, ∀X,Y,Z ∈ TM (6)

Thus, as J satisfies the Jacobi equation, we have

0 =
D2

dt2
J(t) +R(J, ṙ(0, t))ṙ(0, t) =

=
D2

dt2
J(t) +K

(
g
(
ṙ(0, t), ṙ(0, t)

)
J(t)− g

(
J(t), ṙ(0, t)

)
ṙ(0, t)

)
=

=
D2

dt2
J(t) + |ṙ(0, t)|2KJ(t) =

D2

dt2
J(t) + ℓ2p0KJ(t)

where ℓp0 = d(q, p0). Now by choosing any parallel vector field Z along the

geodesic r(0, ·), namely

D

dt
Z(t) = ∇ṙ(0,t)Zr(0,t) = 0

we can write J(t) = u(t)Z(t), provided the scalar function u satisfies the

second order differential equation:

ü(t) + ℓ2p0Ku(t) = 0

In particular since we have J(0) = 0 we require u(0) = 0 and then we

can choose Z such that Z(1) = Xp0 so that u(1) = 1. Finally, by setting

a = d(q, p0)
√
K (for K 6= 0), we have the explicit formulas:

u(t) =





1

sin(a)
sin(at), K > 0

t, K = 0

1

sinh(a)
sinh(at), K < 0

(7)
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We want to note that if K > 0 then by our hypothesis for every p ∈ M it

holds

0 < d(q, p) <
π√
K

=⇒ 0 < a < π

Now by (5) we have

D

ds
ṙ(0, 1) =

D

dt

d

ds
r(s, t)

∣∣∣∣∣
s=0,t=1

=
D

dt
J(t)

∣∣∣∣∣
t=1

= u̇(1)Z(1) = u̇(1)Xp0

with

u̇(1) =





a cot(a), K > 0

1, K = 0

a coth(a), K < 0

(8)

Therefore (4) rewrites as

0 = −d(q, p0)CX
p0

+ g
(
Xp0 , u̇(1)Xp0

)
= −d(q, p0)CX

p0
+ u̇(1)

Since X is everywhere defined and non-zero, and M is compact, then E

admits maximum and minimum which are critical point for E. By the

hypothesis on the Normal Curvature, CX
p = CX = const. on M , we have

that for all the critical points p0 of E, in particular on the maximum and

on the minimum, it holds




d(q, p0) =
1√
K

arctan
(√K

CX

)
, K > 0

d(q, p0) =
1

CX
, K = 0

d(q, p0) =
1√
K

arctanh
(√K

CX

)
, K < 0

(9)

Therefore the distance function d(q, ·) is constant on M and M is a geodesic

sphere.
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Remark 1.4. From the expression of X2(E(·)) evaluated at a maximum

point p0 of the distance function we have in particular

X2(E(p0)) = −d(q, p0)CX
p0

+ u̇(1) ≤ 0

and since d(q, p0) is strictly positive we have that the constant prescribed for

CX in the hypothesis necessarily satisfies

CX ≥ u̇(1)

d(q, p0)

2 Some applications

We are going to apply the Theorem (1.2) to some manifolds with additional

structures. First we treat the case of an almost symplectic manifold with a

general symplectic group action, then we will specialize to the case of Kähler

manifold with a toric group action; finally we consider the particular case

of the Reinhardt domains in C
n+1.

Let V := V 2(n+1) be a smooth differentiable manifold of dimension 2(n+1).

We recall that an almost symplectic structure on V is a 2-form ω everywhere

non degenerate on V ; ω is said symplectic if it is close. Moreover an almost

complex structure on V is a map J such that for every p ∈ M Jp is a

smooth endomorphism on TpM with J2
p = −1; J is said complex if it is

integrable. For every fixed almost symplectic structure ω there exists and

almost complex structure J on V and a compatible metric g on V , that

means that it holds

ω(X,Y ) = g(X,JY ) (10)

for every pair of vector fields X,Y ∈ TV . Let us consider then any com-

patible triple (ω, J, g) on V and a smooth embedded manifold M on V , of

10



codimension 1. M can always be seen (at least locally) as the (smooth) level

set of some function H, namely,

H : V → R, M := {H = 0}, ∇H 6= 0 on M

where ∇ denotes the gradient with respect to g. Then it is always possible

to define the hamiltonian (non-singular) vector field XH ∈ TM related to

the hamiltonian function H in the following way:

ω(XH , ·) = −dH(·)

or equivalently, since dH(·) = g(∇H, ·)

XH = J∇H

We need to recall some known facts in order to state our next results. First

we recall that a symplectic transformation on V is a map u : V → V that

satisfies u∗ω = ω. A symplectic Lie group action A on V is a group action

such that a is a symplectic map on V , for every a ∈ A. We have that if the

symplectic Lie group action A on V is compact, then there always exists

an almost complex structure J on V such that with respect the associated

compatible metric g is invariant under the action of A (see for instance

[3]): we will call this invariant metric gA. We can state now the following

corollary of the Theorem (1.2):

Corollary 2.1. Let (V, ω) an almost symplectic manifold of dimension

2(n + 1) and let M be a smooth, orientable, compact, connected, with no

boundary, embedded manifold on V , of codimension 1. Let A a symplectic

compact Lie group action on V with a fixed point q, such that M is stable

under the action of A. Suppose V has non-positive constant sectional cur-

vature with respect to the invariant metric gA.
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If the Normal Curvature related to the hamiltonian vector field CXH

is con-

stant on M , then M is a geodesic sphere with respect to the metric gA.

Remark 2.2. For the sake of simplicity we stated the corollary only in

the case of non-positive constant sectional curvature: with the additional

hypothesis as in Theorem (1.2) (see Remark (1.3)) one can handle the case

of positive constant sectional curvature as well.

Proof. First of all, since A is a symplectic group action then XH is one of

the vector fields generated by A; in particular since M is smooth then XH

never vanishes on M . Moreover the fixed point q does not belongs to M : in

fact if q ∈ M would mean that all the vector fields generated by the action

A vanish at q (by the very definition of fixed point, the orbit of q under the

action A is the point q), and we know that the hamiltonian vector field XH

(generated by A) never vanishes on M . Then by considering the distance

dA induced by the invariant metric gA on V , we have by direct computation

that

XH(dA(q, p)) = 0, ∀ p ∈ M (11)

where q /∈ M is the fixed point of the action A. Then Theorem (1.2)

holds.

Now we are going to consider the case of Kähler manifolds. Let V := V 2(n+1)

be a smooth differentiable manifold of dimension 2(n + 1). V is said to

be a Kähler manifold if there exists a symplectic structure ω, a complex

structure J and a Riemannian metric g such that they are compatible in

the sense of (10). We recall that a 2(n + 1)-dimensional symplectic toric

manifold is a compact connected symplectic manifold (V 2(n+1), ω) equipped

with an effective hamiltonian action A of an n+ 1-torus T(n+1) and with a
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corresponding moment map. We will refer to V as a Kähler toric manifold if

in addition the toric action A is holomorphic. We have the following result:

Corollary 2.3. Let V be a symplectic toric Kähler manifold of dimen-

sion 2(n+ 1) with non-positive constant sectional curvature and let M be a

smooth, orientable, compact, connected, with no boundary, real hypersurface

on V , stable under the toric group action A.

If the Normal Curvature related to the hamiltonian vector field CXH

is con-

stant on M , then M is a geodesic sphere.

Proof. As in the previous proof, since A is a symplectic group action then

XH is one of the vector fields generated by A; moreover since M is smooth

then XH never vanishes on M . Moreover by the compactness of V and by

the results of Atiyah [2], Guillemin-Sternberg [6] and Bredon [5] we have

that there exist at least n+ 2 fixed points for the toric group action A and

by using the same argument as in the previous proof, we know that none

of them is on M : let us choose one and let us call this fixed point q /∈ M .

In addition compatible metric g on this Kähler manifolds is invariant under

the group action A: in fact the group action A is holomorphic and then

it commutes with the compatible complex structure J . As consequence we

have that then the following condition is satisfied:

XH(dg(q, p)) = 0, ∀ p ∈ M (12)

where dg is the distance function induced by the invariant metric g. Then

Theorem (1.2) holds.

Now we will consider M as the smooth boundary of a Reinhardt domain in

C
n+1. A Reinhardt domain Ω (with center at the origin) is by definition an

13



open subset of Cn+1 such that

if (z1, . . . , zn+1) ∈ Ω then (eiθ1z1, . . . , e
iθn+1zn+1) ∈ Ω (13)

for all the real numbers θ1, . . . , θn+1. These domains naturally arise in the

theory of several complex variables as the logarithmically convex Reinhardt

domains are the domains of convergence of power series (see for instance [7],

[10]). The smooth boundary M := ∂Ω is then a smooth real hypersurface

in C
n+1 and thus a CR-manifold of CR-codimension equal to one, with

the standard CR structure induced by the holomorphic structure of Cn+1.

Thus for every p ∈ M the tangent space TpM splits in two subspaces: the

2n−dimensional horizontal subspace HpM , the largest subspace in TpM

invariant under the action of the standard complex structure J of C
n+1

and the vertical one-dimensional subspace generated by the characteristic

direction Tp := JNp, where Np is the unit normal at p. Moreover, if g is the

standard metric on C
n+1, then it holds

TpM = HpM ⊕ RTp

and the sum is g-orthogonal.

Let ∇ be the Levi-Civita connection for g and let us consider the complex-

ified horizontal space

HCM := {Z = X − iJ ·X : X ∈ HM}

The Levi Form l is then the sesquilinear and hermitian operator on HCM

defined in the following way: ∀Z1, Z2 ∈ HCM

l(Z1, Z2) = g̃(∇̃Z1Z̄2, N) (14)
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One then compares the Levi Form with the Second Fundamental Form h of

M by using the identity [4]

l(Z,Z) = h(X,X) + h(J(X), J(X)), ∀X ∈ HM

Definition 2.4. We will call CT = h(T, T ) = g(∇TT,N) the Characteristic

Curvature of M .

Thus, a direct calculation leads to the relation between the classical Mean

Curvature H, the Levi-Mean Curvature L and the Characteristic Curvature

CT of M :

H =
1

2n+ 1
(2nL+ CT ) (15)

Following a couple of papers by Hounie and Lanconelli ([8], [9]) in which

they prove Alexandrov type theorems for Reinhardt domains in C
n+1 using

the Levi Mean Curvature, the second author in [11] proved a similar symme-

try result for Reinhardt domains in C
n+1 starting from the Characteristic

Curvature rather than the Levi ones:

Theorem 2.5. Let M := ∂Ω be the smooth boundary of a bounded Reinhardt

domain Ω in C
n+1. If the characteristic curvature CT is constant then M is

a sphere of radius equal to 1/CT .

Here we show that this result is a corollary of our main Theorem (1.2)

Proof. We can think of Cn+1 as a Kähler manifold with the standard com-

patible symplectic, complex and metric structures and with sectional curva-

ture identically zero. We recall now that for every hypersurface M in C
n+1,

with f as defining function, the characteristic direction T of M is exactly

the (normalized) hamiltonian vector field for the hamiltonian function f .

Moreover by the very definition of Reinhardt domain (13) we recognize that
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there exist an explicit toric group action A on C
n+1 such that M is stable

under A. Since C
n+1 is non compact we note that we do not have a sym-

plectic toric Kähler manifold, but in this particular situation we have that

the origin is a fixed point for A and it does not belong to M . Then Theorem

(1.2) holds.
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