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GEODESICS AND DISTANCE ON THE RIEMANNIAN MANIFOLD OF

RIEMANNIAN METRICS

Abstract. Given a fixed closed manifold M , we exhibit an explicit formula for the distance
function of the canonical L2 Riemannian metric on the manifold of all smooth Riemannian
metrics on M . Additionally, we examine the completion of the manifold of metrics with
respect to the L2 metric and show that there exists a unique minimal path between any two
points. This path is also given explicitly.

1. Introduction

In this paper, we give explicit formulas for the distance between Riemannian metrics, as
measured by the canonical L2 Riemannian metric on the manifold of all metrics over a given
closed manifold. We also show that, at least on the metric completion of the manifold of
metrics, there exists a unique geodesic connecting any two given points.

Fix any closed manifold M of dimension n, and consider the space M of all C∞-smooth
Riemannian metrics on M . This space carries a canonical weak Riemannian metric known
as the L2 metric (defined in Sect. 2.2). The L2 metric itself has many interesting local
and infinitesimal properties: for example, Freed–Groisser [FG89] and Gil-Medrano–Michor
[GMM91] have shown that its sectional curvatures are nonpositive, and the geodesic equation
onM is explicitly solvable. The L2 metric has also found numerous applications, for example
in the study of moduli spaces. Ebin [Ebi70] used it to construct a slice for the action of
the diffeomorphism group on M (which thus serves a local model for the moduli space
of Riemannian metrics). Fischer and Tromba [Tro92] have used the L2 metric to study
Teichmüller spaces of Riemann surfaces, where it naturally gives rise to the well-known
Weil-Petersson metric.

In our own work [Cla10, Claa, Clab], we have focused on the global geometry of the L2

metric, studying the distance it induces between Riemannian metrics on M . This approach,
aside from its intrinsic interest, is perhaps most suited to questions related to the convergence
of Riemannian manifolds. In fact, Anderson [And92] has used the L2 metric to study spaces
of Einstein metrics. (He refers to the distance function of the L2 metric onM as the extrinsic
L2 metric, because he considers this instead of the intrinsic Riemannian distance obtained
from restricting the L2 metric to the submanifold of Einstein metrics.) Studying the global
geometry of M with the L2 metric is made significantly more difficult by the fact that this
is a weak Riemannian metric on an infinite-dimensional manifold (cf. Sect. 2.1). In this
setting, many essential results of finite-dimensional Riemannian geometry fail to hold. The
Hopf-Rinow Theorem, for example, does not hold in general. Additionally, given any point
g0 ∈ M, there exist other points at arbitrarily close distance to g0 that are not in the image
of the exponential mapping at g0. (This last point is directly implied by, for example, [Claa,
Lemma 5.11], though it is also easy to see from the work of Gil-Medrano–Michor [GMM91,
Rmk. 3.5].)
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As far as convergence of Riemannian manifolds is concerned, one appeal of the L2 metric
is that it provides a very weak notion of convergence. Another appeal is that we have
previously shown that convergence in the L2 metric implies a kind of uniform convergence
of the volume forms—which hints that it could be suited for studying convergence of metric
measure spaces. Unfortunately, when considered on the full space M, convergence in the
L2 metric is perhaps too weak—it does not imply any more synthetic-geometric notion
of convergence, such as Gromov–Hausdorff convergence. (For proofs and a more detailed
discussion of these facts, we refer to [Clab, Sect. 4.3].) However, as Anderson’s work showed,
restricted to spaces of Einstein metrics, convergence in the L2 metric in fact does imply
Gromov–Hausdorff convergence (or stronger). An open question is what other subspaces of
M might have this desirable property.

We hope that the formulas given here may serve to provide further applications of the L2

metric in the area of convergence of Riemannian manifolds.
The paper is organized as follows. In Section 2, we set up the necessary preliminaries,

both on L2 metrics on spaces of sections in general, as well as on the L2 metric on M in
particular. In Section 3, we find a simplified description for the L2 distance between metrics,
which transforms the problem from finding the infimum of lengths of paths in the infinite-
dimensional space M into a solvable finite-dimensional problem. In Section 4, we show that
there exists a unique geodesic connecting any two given metrics in the completion of M. We
also write down an explicit formula for this geodesic, which in turn allows us to make the
formula for the L2 distance between metrics explicitly computable. Finally, in Section 5 we
outline some open problems regarding the L2 metric that we find to be of interest.

We have attempted to make the paper as self-contained as possible for the convenience of
the reader; however, for conciseness we rely on certain key results from previous works.

Acknowledgements. I would like to thank Jacob Bernstein for helpful discussions during
the preparation of this manuscript.

2. Preliminaries

2.1. L2 metrics. In this subsection dealing with general L2 metrics on spaces of sections,
we follow the definitions and results of Freed–Groisser [FG89, Appendix].

Let M be a smooth, closed manifold. Let π : E → M be a smooth fiber bundle, and
denote the fiber over x ∈M by Ex. Suppose we are given

(1) a smooth volume form µ on M with Vol(M,µ) = 1, and
(2) a smooth Riemannian metric g defined on vectors in the vertical tangent bundle T vE.

Let E denote a space of sections of E, where we allow the possibilities

(1) E = Γs(E), the space of Sobolev sectionsM → E with L2-integrable weak derivatives
up to order s. Here we require s > n/2 if E → M is not a vector bundle.

(2) E = Γ(E), the space of smooth sections M → E.

By standard results on mapping spaces, E is a manifold in either of these cases [Pal68],
[Ham82, Example 4.1.2]. (In case 1, it is a separable Hilbert manifold, and in case 2, it
is a Fréchet manifold.) With this data, we can define an L2-type Riemannian metric on E
as follows. The tangent space at σ ∈ E is identified with the space of vertical vector fields
“along σ”, that is, with the space of sections of the pulled-back bundle σ∗T vE. Now, for
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X, Y ∈ TσE , define the L2 metric by

(X, Y )σ :=

∫

M

g(σ(x))(X(x), Y (x)) dµ(x).

We denote by d the distance function induced by (·, ·) on E , and by dx the distance function
induced by g on Ex. Then d is a pseudometric and dx is a metric (in the sense of metric
spaces). Note that (·, ·) is in general a weak Riemannian metric on E , that is, for any σ, the
topology induced by (·, ·)σ on TσE is weaker than the manifold topology. In this case, it is
in principle possible that d is not a metric in that it could fail to separate points. There are
known examples of this due to the work of Michor–Mumford [MM06, MM05], where weak
Riemannian metrics are constructed for which the induced distance between any two points
is always zero. However, Theorem 1 below will show that L2 metrics as we have defined
them do not suffer from this pathology.

Thinking of E as a bundle of metric spaces ∪x∈M(Ex, dx) over M , we can define an Lp

metric Ωp on E by

(1) Ωp(σ, τ) :=

(∫

M

dx(σ(x), τ(x))
p dµ(x)

)1/p

.

Note that Ωp is indeed a metric (in the sense of metric spaces) on E . All the required
properties are easily implied from those of dx. Only the triangle inequality is not immediately
obvious—but this inequality follows, as in the case of an Lp norm, from the triangle inequality
for dx and Hölder’s inequality. We can think of the Lp completion of E in terms of this
metric—it consists of all measurable sections of the bundle ∪x∈M(Ex, dx) (where (Ex, dx) of
course denotes the completion) that are at finite Ωp-distance from any fixed section σ ∈ E .

The following theorem gives a positive lower bound for the distance, with respect to d,
between distinct elements of E . In the proof, and throughout the rest of the paper, a prime
will denote the partial derivative in the variable t.

Theorem 1. The following inequality holds for any path σt, t ∈ [0, 1], in E :

(2) L(·,·)(σt)
2 ≥

∫

M

Lg(σt(x))
2 dµ,

where on the left-hand side, we measure the length in E with respect to (·, ·), while on the
right-hand side, we measure the length in Ex with respect to g. In particular, for any σ, τ ∈ E ,
we have d(σ, τ) ≥ Ω2(σ, τ), and so d is a metric on E .
Proof. Without loss of generality, suppose that σt is parametrized proportionally to (·, ·)-arc
length. In this case, by a well-known application of Hölder’s inequality, we have L(·,·)(σt)

2 =
E(·,·)(σt), where E(·,·) denotes the energy of the path. On the other hand, using Fubini’s
theorem followed by another application of Hölder’s inequality (this time to the metric g),
we have

E(·,·)(σt) =

∫ 1

0

∫

M

g(σt(x))(σ
′
t(x), σ

′
t(x)) dµ dt =

∫

M

∫ 1

0

g(σt(x))(σ
′
t(x), σ

′
t(x)) dt dµ

=

∫

M

Eg(σt(x)) dx ≥
∫

M

Lg(σt(x))
2 dµ.

This proves (2), from which d(σ, τ) ≥ Ω2(σ, τ) follows directly. �
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Now that we have set up the situation for a general L2 metric, we turn to the main focus
of this paper, when E is the space of smooth Riemannian metrics.

2.2. Preliminaries on the manifold of metrics. For any point x in our closed base
manifold M , let Sx := S2T ∗

xM denote the vector space of symmetric (0, 2)-tensors based
at x, and let S := Γ(S2T ∗M) denote the space of smooth, symmetric (0, 2)-tensor fields.
Similarly, denote by Mx := S2

+T
∗
xM the vector space of positive-definite, symmetric (0, 2)-

tensors at x, and by M := Γ(S2
+T

∗M) the space of smooth sections of this bundle. Thus, M
is the space of smooth Riemannian metrics onM . In the notation of the previous section, we
have E = S2

+T
∗M , Ex = Mx, and E = M. Thus we see that M is a Fréchet manifold, and

since M is an open subset of S, we have a canonical identification of the tangent space TgM
with S for any g ∈ M. (Similarly, the tangent space to Mx at any a ∈ Mx is identified
with Sx; thus we have T v

a (S
2
+T

∗M) ∼= Sx.)
Any element g̃ ∈ M gives rise to a natural scalar product on Tg̃M ∼= S as follows. For

h, k ∈ S, the canonical scalar product that g̃ induces on (0, 2)-tensors is

trg̃(hk) = tr(g̃−1hg̃−1k) = g̃ijhilg̃
lmkjm,

where by expressions like g̃−1h we of course mean the (1, 1)-tensor obtained by raising an
index of h using g̃. Then trg̃(hk) is a function on M , and by integrating it with respect to
the volume form µg̃ of g̃, we get a scalar product

(3) (h, k)g̃ :=

∫

M

trg̃(hk) dµg̃.

This L2 scalar product fits into the framework of the last subsection as follows. For the
rest of the paper, we fix some arbitrary reference metric g ∈ M that has total volume
Vol(M, g) = 1. Given a tensor field h ∈ S or a tensor b ∈ Sx, denote by the capital letter
the (1, 1)-tensor obtained by raising an index using g, i.e., H = g−1h and B = g(x)−1b. For
each x ∈M and a ∈ Mx, define a scalar product on TaMx (vertical vectors) by

〈b, c〉a := tra(bc)
√
detA,

where b, c ∈ TaMx. Thus, 〈·, ·〉 gives a Riemannian metric on Mx. For the remainder of the
paper, we denote by µ := µg the volume form of g. Then the scalar product (3) is given by
the L2 metric (in the sense of the last section)

(h, k)g̃ =

∫

M

〈h(x), k(x)〉g̃(x) dµ.

As in the last subsection, we denote by d and dx the distance functions of (·, ·) and 〈·, ·〉,
respectively. By Theorem 1, it is immediate that d is a metric on M, a fact that we already
proved in a less elegant way in [Cla10, Thm. 18].

For g̃ ∈ M and a ∈ Mx, we will denote the norms associated with (·, ·)g̃ and 〈·, ·〉a by
‖ · ‖g̃ and | · |a, respectively, throughout the remainder of the paper.

In [Claa], we determined the completion of (M, d), which we will denote in the following
by M. We will summarize the relevant details of this here.

Let g̃ :M → S2T ∗M be any measurable section that induces a positive semidefinite scalar
product on each tangent space of M . We call such a section a measurable semimetric. A
measurable semimetric induces a measurable volume form (and hence a measure) onM using
the usual formula µg̃ :=

√
det g̃ dx1 ∧ · · · ∧ dxn in local coordinates. We denote by Mf the

set of all measurable semimetrics on M that have finite volume, i.e., with
∫
M
dµg̃ <∞. We
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also introduce an equivalence relation on Mf by saying g0 ∼ g1 if and only if the following
statement holds almost surely (with respect to the measure µ) on M : g0(x) fails to be
positive semidefinite if and only if g1(x) fails to be positive semidefinite. We then have the
following theorem.

Theorem 2 ([Claa, Thm. 5.17]). There is a natural identification of M with M̂f := Mf/∼.

It will not be important in the following what the precise form of this identification is.
In fact, we will not use Theorem 2 directly in this paper at all, but will instead use some
consequences of it that we have worked out in previous papers. However, having this iden-
tification in mind will serve to help keep things conceptually clear. For the reader who is
interested in the details of the construction of the identification in Theorem 2, we refer to
[Claa].

We do point out, however, that we retain the notation d for the metric induced on the
completion M from (M, d). It will also be convenient to use the above identification to see

d as a metric on M̂f , and as a pseudometric on Mf . Of course, for g0, g1 ∈ Mf , we have
g0 ∼ g1 if and only if d(g0, g1) = 0.

In what follows, we will also be concerned with special subsets of M that have convenient
properties. They are essentially subsets that are, in a pointwise sense, uniformly bounded
away from infinity and the boundary of M.

Definition 3. For g̃ ∈ M and x ∈M , let λG̃min(x) denote the minimal eigenvalue of G̃(x) =
g(x)−1g̃(x). A subset U ⊂ M is called amenable if it is of the form

(4) U = {g̃ ∈ M | λG̃min(x) ≥ ζ and |g̃(x)|g(x) ≤ C for all g̃ ∈ U and x ∈M}
for some constants C, ζ > 0.

We denote the closure of U in the L2 norm ‖ · ‖g by U0; it consists of all measurable,

symmetric (0, 2)-tensors g̃ satisfying the bounds of (4) a.e.

Remark 4.

(1) Note that the preceding definition differs from that in our previous works (cf. [Claa,
Def. 3.1], [Clab, Def. 2.11]). The above definition is coordinate-independent and
therefore more satisfying. Additionally, the results we need from those previous works
are valid for the definition here because of the following equivalence: If U ⊂ M is
amenable in this new sense, then there exist U ′,U ′′ ⊂ M that are amenable in the
old sense, and such that U ′ ⊂ U ⊂ U ′′.

(2) If U ⊂ M is amenable, then U0 is pointwise convex, by which we mean the following.
Let g0, g1 ∈ U0, and let ρ be any measurable function on M taking values between 0
and 1. Then ρg0 + (1− ρ)g1 ∈ U0. This is straightforward to see by the concavity of
the function mapping a matrix to its minimal eigenvalue, and the convexity of the
norm | · |g(x).

The following lemma was originally proved in [Claa, Lem. 3.3] for amenable subsets, but
the same proof (which is more or less self-evident) works for L2 closures of amenable subsets.

Lemma 5. Let U be an amenable subset. Then there exists a constant K > 0 such that for
all g̃ ∈ U0,

(5)
1

K
≤
(
µg̃

µ

)
≤ K,
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where by (µg̃/µ) we denote the unique measurable function on M such that µg̃ = (µg̃/µ)µ.

To end this subsection, we have a somewhat unexpected and extremely useful result that
bounds the distance between two semimetrics uniformly based on the intrinsic volume of the
subset on which they differ.

Proposition 6 ([Clab, Prop. 2.20]). Let g0, g1 ∈ Mf and A := carr(g1 − g0). Then

d(g0, g1) ≤ C(n)
(√

Vol(A, g0) +
√
Vol(A, g1)

)
,

where C(n) is a constant depending only on n = dimM .

3. d = Ω2 on M
In this section, we show that the distance function of the L2 Riemannian metric is exactly

given by the L2-type metric Ω2 that we defined in (1).

3.1. Paths of degenerate metrics and Riemannian distances. If g0, g1 ∈ M and gt is
a piecewise differentiable path in M between them, then d(g0, g1) ≤ L(gt). The goal of this
subsection is to prove a similar inequality for certain paths of semimetrics in Mf .

We first have to be precise about what L(gt) should mean if gt ∈ Mf . We denote by
Mc ⊂ Mf the set of all continuous Riemannian metrics onM . By Sc, we denote the closure
of S in the C0 norm. For g̃ ∈ Mf , denote by S0

g̃ the set of measurable (0, 2)-tensor fields h
such that h(x) = 0 whenever g̃(x) is not positive definite, and such that the quantity

‖h‖g̃ :=
(∫

M\Xg̃

trg̃(h
2)
√
det G̃ dµ

)1/2

is finite, where in the above Xg̃ ⊆M denotes the set on which g̃ is not positive definite.
We will consider paths of (semi-)metrics gt, t ∈ [0, 1], in both Mc and Mf . We will call

such a path gt differentiable in Mc (resp. Mf) if, for each x ∈ M , gt(x) is a differentiable
path in Mx and, additionally, g′t is contained in Sc (resp. S0

gt) for all t ∈ [0, 1].

Definition 7. For E ⊆ M , we call a path gt, t ∈ [0, 1], in Mf continuous on E if gt(x)|E is
continuous in x for all t. If E =M , we call gt simply continuous.

To avoid confusion, we emphasize that a continuous path is one that is continuous in x
for each t, and a differentiable path is one that is differentiable in t for each x.

Let gt, t ∈ [0, 1], be a path in Mf or Mc that is piecewise differentiable. We denote by
L(gt) the length of gt as measured in the naive “Riemannian” way:

L(gt) =

∫ 1

0

‖g′t‖gt dt.

When we refer to the length L(at) of a path at in Mx, we implicitly mean the length with
respect to 〈·, ·〉.

It is easy to see (cf. also the proof of [Cla09, Cor. 3.16]) that the C0 topology on Mc is
stronger than the Riemannian L2 topology. Let gt be a piecewise differentiable path in Mc

connecting two continuous metrics g0 and g1. It is intuitive, but perhaps not immediately
clear, that using smooth approximations, one could show d(g0, g1) ≤ L(gt) as in the case of
smooth metrics. We formalize this in the following lemma. The proof is straightforward,
but we include some details for those readers unfamiliar with regularization of tensors on
manifolds.
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Lemma 8. Let g0, g1 ∈ Mc, and suppose that gt, t ∈ [0, 1], is a piecewise differentiable path
in Mc connecting them. Then d(g0, g1) ≤ L(gt).

Proof. Let {Uα, ϕα} be a finite atlas of charts ϕα : Uα → R
n for M . Choose a partition of

unity pα subordinate to this atlas. We denote the push-forward of gt via ϕα by gαt and, by an
abuse of notation, denote the locally-defined tensor obtained from restricting gt to Uα by the
same. We will regularize these metrics by convolution in local coordinates, letting φ be any
function on R

n that has norm 1 in L1(Rn) and that vanishes outside the unit ball. Defining
φǫ(x) := ǫ−nφ(x/ǫ), we have that for all i, j, and α, the convolutions (gα,ǫt )ij := φǫ ∗ (gαt )ij
and (gα,ǫt )′ij := (φǫ ∗ gαt )′ij = φǫ ∗ (gαt )

′
ij (the prime, as usual, denotes the partial derivative

w.r.t. t) are smooth functions converging in the C0 norm to (gαt )ij and (gαt )
′
ij, respectively,

as ǫ→ 0. Furthermore, since we are dealing with a finite number of indices, for any given t
we can choose ǫ > 0 small enough that (gα,ǫt )ij and (gα,ǫt )′ij are uniformly C0-close to gαt and
(gαt )

′, respectively.
One easily sees that for each ǫ > 0, ‖φǫ‖L1(Rn) = 1, and also that this implies that convo-

lution with φǫ has operator norm 1 when viewed as a linear operator on C0(Rn). From this,
and the compactness of the time interval on which gt is defined, one can straightforwardly
conclude that ǫ > 0 can be chosen small enough that (gα,ǫt )ij and (gα,ǫt )′ij are uniformly

C0-close to gαt and (gαt )
′, respectively, independently not just of i, j, and α, but also t.

Finally, using our partition of unity, we define gǫt :=
∑

α pαg
α,ǫ
t to get a path of Riemannian

metrics connecting gǫ0 and g
ǫ
1. We have (gǫt)

′ =
∑

α pα(g
α,ǫ
t )′, and so one sees that with ǫ small

enough, L(gǫt) is arbitrarily close to L(gt). By the above-mentioned fact that the C0 topology
on M is stronger than the Riemannian L2 topology, we also have that d(g0, g

ǫ
0) and d(g1, g

ǫ
1)

can be made arbitrarily small, from which the desired result follows. �

Using the above result on paths of continuous metrics, we can prove what we need about
paths in Mf . We first briefly set up some notation, and then state the result in a lemma.

Definition 9. Let E ⊆M be any subset. We denote by χ(E) the characteristic (or indicator)
function of E. The characteristic function of its complement is denoted by χ(E) := χ(M\E).
Lemma 10. Let g0, g1 ∈ Mc, and let gt, t ∈ [0, 1], be any smooth path in Mc from g0 to g1.
Furthermore, let E ⊆M be any measurable subset.

We define g̃t := χ(E)g0 + χ(E)gt; in particular g̃1 = χ(E)g0 + χ(E)g1. Then

d(g0, g̃1) ≤ L(g̃t).

Proof. For each k ∈ N, choose an open set Uk and a closed set Zk such that Zk ⊆ E ⊆ Uk,
and such that µ(Uk \ Zk) <

1
k
. (This is possible because the Lebesgue measure is regular.)

We also choose continuous functions fk with the properties that

(1) 0 ≤ fk ≤ 1,
(2) if x 6∈ Uk, then fk(x) = 0, and
(3) if x ∈ Zk, then fk(x) = 1.

For each t ∈ [0, 1], let g̃kt := fkgt+(1−fk)g0. Thus, we have that in particular, g̃k1 coincides
with g1 on Zk and with g0 on M \ Uk. Our goal is to show that limk→∞L(g̃kt ) ≤ L(g̃t) and
d(g̃k1 , g̃1) → 0 as k → ∞, as we can then conclude from the triangle inequality and Lemma
8 that

d(g0, g̃1) ≤ d(g0, g̃
k
1) + d(g̃k1 , g̃1) ≤ L(g̃kt ) + d(g̃k1 , g̃1).

The statement of the lemma then follows by passing to the limit on the right.
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We begin with the claim that limk→∞ L(g̃kt ) ≤ L(g̃t). Since M and [0, 1] are compact, we
have that

N := max
x∈M,t∈[0,1]

|g′t(x)|2gt(x) <∞.

(Recall that by the definition of a smooth path in Mc, we have g
′
t ∈ Sc for all t.) Therefore,

noting that (g̃kt )
′ = g′t on Zk and (g̃kt )

′ ≡ 0 on M \ Uk, we may estimate

∥∥(g̃kt )′
∥∥2
g̃kt

=

∫

Zk

|g′t|2gt dµ+

∫

Uk\Zk

|fkg′t|2fkgt dµ

= ‖χ(Zk)g
′
t‖

2
gt
+

∫

Uk\Zk

trfkgt((fkg
′
t)

2)
√
det(fkGt) dµ

= ‖χ(Zk)g
′
t‖2gt +

∫

Uk\Zk

f
n/2
k trgt((g

′
t)

2)
√
detGt dµ

≤ ‖χ(E)g′t‖
2
gt
+

∫

Uk\Zk

N dµ.

The first term in the last line is just ‖g̃′t‖2g̃t , since g̃t = gt on E. The second term is

just N · µ(Uk \ Zk) < N/k, which converges to zero as k → ∞. Thus, we have that∥∥g̃kt
∥∥
g̃kt

≤ ‖g̃t‖g̃t+N/k for each t ∈ [0, 1], which implies the claim that limk→∞L(g̃kt ) ≤ L(g̃t).

We now move on to the claim that limk→∞ d(g̃k1 , g̃1) = 0. Since g0 and g1 are continuous
metrics, it is clear that we can find an amenable subset U such that g0, g1 ∈ U0. But we
also know that at each point, g̃k1 and g̃1 are linear combinations of g0 and g1 with coefficients
between zero and one. Hence, by the pointwise convexity of L2 closures of amenable subsets
(cf. Remark 4(2)), g̃k1 , g̃1 ∈ U0 for all k ∈ N. Thus, by Lemma 5, there exists a constant K
such that

(6)

(
µg̃k

1

µ

)
≤ K for all k ∈ N and

(
µg̃1

µ

)
≤ K.

Using this, Proposition 6, and the fact that g̃k1 and g̃1 differ only on Uk \Zk, we can conclude

d(g̃k1 , g̃1) ≤ C(n)

(√
Vol(Uk \ Zk, g̃k1) +

√
Vol(Uk \ Zk, g̃1)

)
≤ 2C(n)

√
K

k
.

This proves the second claim and so, as noted above, the statement of the lemma follows. �

In what follows, we will have to deal with reparametrizations of paths. Given a path in
Mf (or in any space of sections), one can reparametrize globally, in that one replaces gt,
t ∈ [0, 1], with gϕ(t), for some appropriate ϕ : [0, 1] → [0, 1]. One can also “reparametrize”
pointwise, in that one uses gϕx(t), where for each x ∈ M , ϕx : [0, 1] → [0, 1] is a function
with the appropriate properties. Of course, the latter changes the image of the path in Mf ,
but for our purposes it can do so in advantageous ways. The next definition deals with the
specific reparametrizations we will need.

Definition 11. Let gt, t ∈ [0, 1], be a path in Mf . By the pointwise reparametrization of gt
proportional to arc length, we mean the path in g̃t in Mf , t ∈ [0, 1], where for each x ∈ M ,
g̃t(x) is the path obtained from gt(x) by reparametrization proportional to 〈·, ·〉-arc length.

Given this definition, the following lemma is essentially self-evident.
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Lemma 12. Let g0, g1 ∈ Mf , and let gt be a piecewise differentiable path in Mf connecting
g0 and g1. Suppose gt fails to have a two-sided t-derivative at times 0 = t0 < t1 < · · · <
tk = 1. If gt is continuous on E ⊆ M for all t ∈ [0, 1], and L(gt(x)|[ti,ti+1]) is continuous as
a function of x on E for all i = 0, . . . , k − 1, then the path obtained from gt via pointwise
reparametrization proportional to arc length is continuous on E.

3.2. Proof that d = Ω2. We now get into the heavy lifting of this section. We will need
two rather technical lemmas to get from the restricted situation of Lemma 10 to the desired
general result. In the following, we will always denote by Bδ(x) the closed geodesic ball
around x ∈M with radius δ (w.r.t. the fixed reference metric g).

Lemma 13. Let any g0, g1 ∈ M and ǫ > 0 be given. Then there exists a δ = δ(ǫ, g0, g1) > 0
with the property that given any x0 ∈M , we can find a path gx0,t in Mf , for t ∈ [−ǫ, 1 + ǫ],
from g0 to χ(Bδ(x0))g0 + χ(Bδ(x0))g1 such that for each x ∈ Bδ(x0), we have

(7)
∣∣g′x0,t(x)

∣∣
gx0,t

<

{
1, t ∈ [−ǫ, 0) ∪ [1, 1 + ǫ],

dx(g0(x), g1(x)) + 3ǫ, t ∈ [0, 1).

Furthermore, for each t, gx0,t is constant on M \Bδ(x0) and is continuous on Bδ(x0).

Proof. For a given x0 ∈M , we may choose a smooth path ax0,t, t ∈ [0, 1], in Mx0
connecting

g0(x0) and g1(x0) that has length

(8) L(ax0,t) < dx0
(g0(x0), g1(x0)) + ǫ.

Furthermore, this path can be chosen in such a way that there exist constants ζ, τ > 0,
depending on g0, g1, and ǫ but not on x0, such that

ax0,t ∈ Mζ,τ
x0

:= {a ∈ Mx0
| detA ≥ ζ and |a|g(x0)

≤ τ for all 1 ≤ i, j ≤ n}
for all x0 ∈ M and t ∈ [0, 1]. (This relies on the fact that g0 and g1 are smooth metrics, and
so are contained in a common compact subset of S2

+T
∗M .)

For the rest of the proof, when we refer to geodesics and the Levi-Civita connection ∇ on
M , we mean those belonging to our fixed reference metric g. Now, let δ be small enough
that for any x0 ∈ M and any x ∈ Bδ(x0), there exists a unique minimal geodesic (up to
reparametrization) from x0 to x.

The Levi-Civita connection ∇ can be extended to all tensor fields, and in particular to
T ∗M ⊗ T ∗M . A brief calculation shows that if h ∈ S2T ∗M and X is a vector field on M ,
then ∇Xh ∈ S2T ∗M . (That is, symmetry is preserved.) Therefore ∇ induces a connection
∇ on the vector bundle S2T ∗M .

For each x0 ∈M and x ∈ Bδ(x0), we denote by Px0,x the parallel transport with respect to
∇ along the minimal geodesic from x0 to x. In local vector bundle coordinates for S2T ∗M ,
the parallel transport of an element of Sx0

= S2T ∗
x0
M is the solution of a first-order linear

ODE with coefficients depending smoothly upon x0 and x. We know that Px0,x is a linear
isometry (w.r.t. the scalar product induced by g) between Sx0

and Sx, so Px0,x(a) depends
smoothly on a ∈ sx0

. Furthermore, since solutions of ODEs behave continuously under
perturbations of the coefficients, the mapping (x0, x) 7→ Px0,x is continuous [CL55, Ch. 1,
Thm. 7.4].

We next let ãx0,t(x) be the path in S2T ∗
xM obtained from ax0,t by parallel transport, i.e.,

ãx0,t(x) = Px0,x(ax0,t). By the discussion above on the smoothness/continuity of parallel
transport, ãx0,t(x) is smooth in the t variable and continuous in the x variable.
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Now, since (x0, x, a) 7→ Px0,x(a) is continuous, this mapping is uniformly continuous when
restricted to the compact space

(9)
⋃

x0∈M


{x0} ×

⋃

x∈Bδ(x0)

Mζ,τ
x


 .

Thus we may (by shrinking δ if necessary) assume that Px0,x(Mζ,τ
x0
) ⊂ Mx for each x0 ∈M

and x ∈ Bδ(x0).
Since we have assumed that each path ax0,t is contained in Mζ,τ

x0
, this implies that ãx0,t(x)

is a path in Mx running from Px0,x(g0(x0)) to Px0,x(g1(x0)). Again by continuity of parallel
transport, by shrinking δ we may assume that

(10) dx(g0(x), Px0,x(g0(x0))) ≤ η and dx(g1(x), Px0,x(g1(x0))) ≤ η

for any choice of η > 0, uniformly in x0 and x. Furthermore, since the differential of a linear
transformation is again the transformation itself, we have ã′x0,t(x) = Px0,x(a

′
x0,t). Thus, by

the above-mentioned continuity of Px0,x(a), one easily sees that we can just as well shrink δ
to get the following bound, uniform in x0 and x:

(11) L(ãx0,t(x)) < L(ax0,t) + ǫ < dx0
(g0(x0), g1(x0)) + 2ǫ.

Finally, we note that dx(g0(x), Px0,x(g0(x0))), dx(g1(x), Px0,x(g1(x0))), and L(ãx0,t(x)) are all
continuous in x, since all of the quantities involved in their computation are continuous.

For any x0 ∈ M , x ∈ Bδ(x0) and α ∈ {0, 1}, we let σα
x0,x,t, t ∈ [0, 1], be the geodesic

in Mx connecting gα(x) and Px0,x(gα(x0)). We assume that this geodesic is parametrized
proportionally to arc length; note that in this case, σα

x0,x,t varies continuously in x on Bδ(x0)
for fixed α, x0, and t. Referring to (10), we see that for given x and α, if η > 0 is small
enough, then this geodesic indeed exists and is unique. In fact, such a positive η can be found
independently of x and α since g0(x) and g1(x) lie in the compact region ∪xMζ,τ

x ⊂ S2
+T

∗M .
We may shrink δ if necessary to insure that (10) is satisfied for this η.

Define metrics ĝ0 and ĝ1 by

ĝ0(x) :=

{
g0(x) if x 6∈ Bδ(x0),

Px0,x(g0(x0)) if x ∈ Bδ(x0),
and ĝ1(x) :=

{
g0(x) if x 6∈ Bδ(x0),

Px0,x(g1(x0)) if x ∈ Bδ(x0).

(Note that both metrics equal g0 on M \Bδ(x0).) We consider the paths

g0x0,t(x) :=

{
g0(x) if x 6∈ Bδ(x0),

σ0
x0,x,t

if x ∈ Bδ(x0),
and g1x0,t(x) :=

{
g0(x) if x 6∈ Bδ(x0),

σ1
x0,x,t

if x ∈ Bδ(x0).

Then these are smooth paths in Mf that are continuous on Bδ(x0). The path g
0
x0,t connects

g0 and ĝ0, while g
1
x0,t

connects χ(Bδ(x0))g0+χ(Bδ(x0))g1 and ĝ1. Furthermore, by shrinking
δ to obtain η < ǫ, we have by (10) that for each x0 ∈M and x ∈ Bδ(x0), we have

(12) L(gαx0,t
(x)) = dx(gα(x), Px0,x(gα(x0))) < ǫ

for α = 0, 1. We also have that on Bδ(x0), L(g
α
x0,t

(x)) = dx(gα(x), Px0,x(gα(x0))) is continuous
in x, as noted after (11).

We define a path ĝx0,t by

(13) ĝx0,t(x) :=

{
g0(x) if x 6∈ Bδ(x0),

ãx0,t(x) if x ∈ Bδ(x0).
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Then ĝx0,t is a path from ĝ0 to ĝ1. As noted above, both ã
0,t(x) and L(ãx0,t(x)) vary contin-

uously with x on Bδ(x0).
Thus, by the following concatenation,

(14) ḡx0,t := g0x0,t
∗ ĝx0,t ∗ (g1x0,t

)−1,

we get a piecewise smooth path in Mf from g0 to χ(Bδ(x0))g0 + χ(Bδ(x0))g1 that in con-
tinuous on Bδ(x0). (Here, (g1x0,t

)−1 denotes the path g1x0,t
run through in reverse.) Let us

assume that ḡx0,t is parametrized such that it runs through g0x0,t for t ∈ [−ǫ, 0], then ĝx0,t for

t ∈ [0, 1], and finally (g1x0,t) for t ∈ [1, 1 + ǫ].
Denote by gx0,t be the path obtained from ḡx0,t by pointwise reparametrizing each portion of

the concatenation (14) proportionally to arc length. Then by Lemma 12 and the statements
following (11), (12), and (13), gx0,t is a piecewise smooth path inMf that is continuous when
restricted to Bδ(x0), and by construction gx0,t(x) = g0(x) for all t ∈ [−ǫ, 1+ ǫ] if x 6∈ Bδ(x0).
For x ∈ Bδ(x0), the estimates (11) and (12) give

∣∣g′x0,t
(x)
∣∣
gx0,t

<

{
1, t ∈ [−ǫ, 0) ∪ [1, 1 + ǫ],

dx0
(g0(x0), g1(x0)) + 2ǫ, t ∈ [0, 1).

Finally, since g0 and g1 are smooth metrics, the function x 7→ dx(g0(x), g1(x)) is continuous.
Therefore, we may assume that δ is small enough that dx0

(g0(x0), g1(x0)) < dx(g0(x), g1(x))+
ǫ for all x ∈ Bδ(x0). This and the above inequality show that gx0,t has all the desired
properties. �

Lemma 14. Let any g0, g1 ∈ M and ǫ > 0 be given, and let δ = δ(ǫ, g0, g1) > 0 be as in
Lemma 13. Consider a finite collection of closed subsets {Fi | i = 1, . . . , N} with the property
that for each i, there exists xi ∈ Fi such that Fi ⊆ Bδ′(xi) for some 0 < δ′ < δ, and such
that Fi ∩ Fj = ∅ for all i 6= j. We denote

F :=
⋃

i=1,...,n

Fi.

Then there exists a path g̃t, for t ∈ [−ǫ, 1+ ǫ], from g0 to g̃1 := χ(F )g0+χ(F )g1 satisfying

(15) L(g̃t)
2 < (1 + 2ǫ)

[
Ω2(g0, g1)

2 + 6ǫΩ1(g0, g1) + 9ǫ2 + 2ǫ
]
.

Furthermore, g̃t satisfies the assumptions of Lemma 10, and so also

(16) d(g0, g̃1)
2 < (1 + 2ǫ)

[
Ω2(g0, g1)

2 + 6ǫΩ1(g0, g1) + 9ǫ2 + 2ǫ
]
.

Proof. For each i ∈ N, let gi,t := gxi,t be the path from g0 to χ(Bδ(xi))g0 + χ(Bδ(xi))g1
guaranteed by Lemma 13. Then for each x ∈ Bδ(xi), we have

(17)
∣∣g′i,t(x)

∣∣
gx0,t

<

{
1, t ∈ [−ǫ, 0) ∪ [1, 1 + ǫ],

dx(g0(x), g1(x)) + 3ǫ, t ∈ [0, 1).

Additionally, gi,t(x) is constant in t for x /∈ Bδ(xi).
Since the sets Fi are pairwise disjoint and closed, we can find η > 0 such that the closed

subsets
Bη(Fi) = {x ∈ M | distg(x, Fi) ≤ η}

are still pairwise disjoint. (Here, distg denotes the distance function of the Riemannian
metric g on M .) Since Fi ⊆ Bδ′(xi) for some 0 < δ′ < δ, we may also choose η small enough
that Bη(Fi) ⊆ Bδ(xi) for all i.
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Now, for each i, we define a continuous function for x ∈ Bη(Fi) by

si(x, t) :=

(
η − distg(x, Fi)

η

)
(t + ǫ)− ǫ,

so that si(x,−ǫ) ≡ −ǫ. Furthermore, si(x, t) = t for all x ∈ Fi and t ∈ [−ǫ, 1 + ǫ], and
si(x, t) = −ǫ for all t if x ∈ ∂Bη(Fi). We define a smooth path in Mc as follows:

ḡt(x) :=





gi,t(x), x ∈ Fi,

gi,si(x,t)(x) x ∈ Bη(Fi),

g0(x), x /∈ ∪iBη(Fi),

for t ∈ [−ǫ, 1 + ǫ].

With this definition, we can see that the path g̃t := χ(F )g0+χ(F )ḡt satisfies the assump-
tions of Lemma 10, and hence d(g0, g̃1) ≤ L(g̃t). We claim that (15) and hence (16) hold as
well.

To see this, note that |g̃′t(x)|g̃t(x) =
∣∣g′i,t(x)

∣∣
gi,t

for all x ∈ F . Therefore, using (17), we can

estimate
(18)

L(g̃t)
2 ≤ (1 + 2ǫ)E(g̃t) = (1 + 2ǫ)

N∑

i=1

∫ 1+ǫ

−ǫ

∫

Fi

|g̃′t(x)|2g̃t(x) dµ dt

< (1 + 2ǫ)

[
N∑

i=1

∫ 1

0

∫

Fi

(dx(g0(x), g1(x)) + 3ǫ)2 dµ dt+
N∑

i=1

∫

[−ǫ,0)∪[1,1+ǫ]

∫

Fi

dµ dt

]

= (1 + 2ǫ)

[
N∑

i=1

∫

Fi

dx(g0(x), g1(x))
2 dµ

+6ǫ ·
N∑

i=1

∫

Fi

dx(g0(x), g1(x)) dµ+ (9ǫ2 + 2ǫ)
N∑

i=1

∫

Fi

dµ

]

≤ (1 + 2ǫ)
[
Ω2(g0, g̃1)

2 + 6ǫΩ1(g0, g̃1) + 9ǫ2 + 2ǫ
]
.

The last line follows by the formulas for Ω1 and Ω2, as well as the fact that Vol(M,µ) = 1.
Finally, we note that Ω1(g0, g̃1) ≤ Ω1(g0, g1) and Ω2(g0, g̃1) ≤ Ω2(g0, g1) since g̃1 equals g1

on F and g0 everywhere else. Thus (18) in fact implies (15). �

We now have all the pieces necessary to prove the main result of this section.

Theorem 15. d(g0, g1) = Ω2(g0, g1) for all g0, g1 ∈ M.

Proof. We have already shown in Theorem 1 that d(g0, g1) ≥ Ω2(g0, g1), so it only remains
to show the reverse inequality.

Let any ǫ > 0 be given, and let δ = δ(ǫ, g0, g1) be the number guaranteed by Lemma 13.
Choose 0 < δ′ < δ and a finite number of points xi ∈ M , i = 1, . . . , N , such that

Bi := int(Bδ′(xi)) cover M . (Here, int denotes the interior of a set.) For each i, we choose
0 < δi < δ′ such that

(19) max {Vol(Bi \Bδi(xi), g0),Vol(Bi \Bδi(xi), g1)} <
ǫ

2N − 1
.
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We then let F1 := Bδ1(x1). For each i = 2, . . . , N , define

Fi := Bδi(xi) \
⋃

j<i

Bj.

We wish to see that the sets Fi cover M up to a set of measure ǫ, intrinsically with respect
to both g0 and g1. By (19), for α = 0, 1,

Vol(F1, gα) ≥ Vol(B1, gα)−
ǫ

2N − 1
.

To estimate Vol(F1 ∪ F2, gα), note that

F1 ∪ F2 = Bδ1(x1) ∪ (Bδ2(x2) \B1) = Bδ1(x1) ∪ (Bδ2(x2) \ (B1 \Bδ1(x1))).

The first set in the union on the right-hand side is completely contained in B1, and the
second set is completely contained in B2. Furthermore, they are disjoint. Therefore, again
using (19),

(20)

Vol(F1 ∪ F2, gα) = Vol(Bδ1(x1), gα) + Vol(Bδ2(x2) \ (B1 \Bδ1(x1)))

≥
(
Vol(B1, gα)−

ǫ

2N − 1

)
+ (Vol(Bδ2(x2))−Vol(B1 \Bδ1(x1), gα))

≥
(
Vol(B1, gα)−

ǫ

2N − 1

)
+

(
Vol(Bδ2(x2))−

ǫ

2N − 1

)

≥
(
Vol(B1, gα)−

ǫ

2N − 1

)
+

(
Vol(B2, gα)− 2 · ǫ

2N − 1

)

≥ Vol(B1 ∪ B2, gα)− (1 + 2)
ǫ

2N − 1
.

If we continue in this way, we find that for F := ∪iFi,

(21) Vol(F, gα) ≥ Vol(M, gα)−
(

N−1∑

j=0

2j

)
ǫ

2N − 1
= Vol(M, gα)− ǫ,

where we recall that ∪iBi =M .
Now, note that as defined, the sets Fi satisfy the assumptions of Lemma 14. Let g̃t and

g̃1 be as in the lemma. Then we have that

(22) d(g0, g̃1)
2 < (1 + 2ǫ)

[
Ω2(g0, g1)

2 + 6ǫΩ1(g0, g1) + 9ǫ2 + 2ǫ
]
.

On the other hand, g̃1 and g1 differ only on M \ F , where g̃1 = g0. Thus, by (21) and
Proposition 6, we have

(23) d(g̃1, g1) ≤ C(n)
(√

Vol(M \ F, g0) +
√

Vol(M \ F, g1)
)
< 2C(n)

√
ǫ.

Applying the triangle inequality to (22) and (23), we obtain

d(g0, g1) <
√
(1 + 2ǫ) [Ω2(g0, g̃1)2 + 6ǫΩ1(g0, g̃1) + 9ǫ2 + 2ǫ] + 2C(n)

√
ǫ.

Sending ǫ→ 0 then gives the desired result, d(g0, g1) ≤ Ω2(g0, g1). �

Since the completion of (M, d) is already known, the previous theorem implies that the

L2 completion of M (in the sense discussed following (1)) is given by M̂f .
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4. Geodesics: Existence, uniqueness, explicit formulas

In this section, we use the formula d = Ω2, together with an analysis of the geometry of
(Mx, 〈·, ·〉), to obtain results about geodesics (that is, minimal paths) in M. Of course, as
the completion of the path metric space (M, d), M is itself a complete path metric space.
(By path metric space, we mean that the distance between points is equal to the infimum of
the lengths of paths between those points. Some authors refer to this as an inner or intrinsic
metric space.) However, since M is not locally compact, completeness is no guarantee that
minimal paths exists between arbitrary points—even in the Riemannian case, this does not
hold, as an example of McAlpin shows [McA65, Sect. I.E] (see also [Lan95, Sect. VIII.6]).

As the title of the section implies, we will nevertheless show that a unique geodesic exists
between any two points, and we can give an explicit and easily computable formula for
this geodesic. Our analysis of the geometry of Mx builds upon the foundation set up by
Freed–Groisser [FG89] and Gil-Medrano–Michor [GMM91].

4.1. The metric dx on Mx. In this subsection, we investigate the properties of the metric
dx as a preparation for studying M.

Given a tensor a ∈ Sx, we have as before A = g(x)−1a. We will denote by
√
A the square

root of the determinant of A, as far as this is well-defined. Similarly, 4
√
A simply denotes

4
√
detA. Note that these quantities are coordinate-independent.
Our first result bounds dx from below based on the determinants of two given elements,

and is the pointwise analog of [Cla10, Lemma 12]. It will come in useful when showing that
given paths are minimal in Mx.

Lemma 16. Let a0, a1 ∈ Mx. Then

dx(a0, a1) ≥
4√
n

∣∣∣ 4
√
A1 − 4

√
A0

∣∣∣ .

Proof. The proof is essentially the same as [Cla10, Lemma 12], but for completeness we
include it here.

First, let a ∈ Mx, and suppose that b ∈ TaMx
∼= Sx. Let b1 be the pure-trace part of b

(b1 =
1
n
tra b) and b0 be the trace-free part (b0 = b− b1). It is easy to see that tra(b0b1) = 0,

and therefore

tra(b
2) = tra(b

2
0) + tra(b

2
1) = tra(b

2
0) +

1

n
(tra b)

2.

Since tra(b
2
0) ≥ 0, we can conclude that (tra b)

2 ≤ n tra(b
2).

Let at, t ∈ [0, 1], be any path connecting a0 and a1. We can estimate

∂t
4
√
At =

1

4
(detAt)

−3/4 trat(a
′
t)(detAt) =

1

4

(
trat(a

′
t)

2
√
At

)1/2

≤ 1

4

(
n trat((a

′
t)

2)
√
At

)1/2
=

√
n

4
‖a′t‖at ,

where we have used the inequality of the last paragraph. Integrating this last estimate gives

4
√
A1 − 4

√
A0 =

∫ 1

0

∂t
4
√
At dt ≤

√
n

4

∫ 1

0

‖a′t‖at dt =
√
n

4
L(at).

Since this holds for any path at between a0 and a1, and we can just as easily exchange a0
and a1, the statement of the lemma is proved. �
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The next result is qualitatively the reverse of the previous, bounding dx from above based
on determinants. It is the pointwise analog of Proposition 6 and will help us in determining
the completion of (Mx, dx).

Lemma 17. Let ã, â ∈ Mx. Then

dx(ã, â) ≤ C ′(n)
∣∣∣ 4
√
Ã+

4
√
Â
∣∣∣ .

Proof. This proof is very similar to, but simpler than, the proof of [Claa, Prop. 4.1]. However,
for completeness, we include it here.

First, define paths ãst and â
s
t , for 0 < s ≤ 1 and t ∈ [s, 1], by

ãst := tã and âst := tâ.

We consider these as a family of paths in the time variable t with domain depending on the
family parameter s.

Second, define a family āst of paths in t depending on the family parameter s by

āst := s ((1− t)ã + tâ) ,

where again 0 < s ≤ 1 but this time t ∈ [0, 1].
Then the concatenation ast := (ãst )

−1 ∗ āst ∗ âst (here, (ãst )
−1 means we run through that

path backwards) is, for each s, a path from ã to â. We will prove that

lim
s→0

L(ast ) ≤ C ′(n)
(

4
√
det Ã +

4
√
det Â

)
,

which will imply the result immediately.
First, note that L(ãst ) ≤ lims→0 L(ã

s
t ) for all s. To estimate the right-hand side, we first

compute

〈(ãst )′, (ãst )′〉ãst = trtã(ã
2)

√
det(tÃ) = nt

n
2
−2
√
Ã.

Therefore,

L(ãst ) ≤ lim
s→0

L(ãst ) =
√
n · 4
√
Ã

∫ 1

0

t
n
4
−1 dt.

Since n
4
− 1 > −1, the above integral is finite, with a value depending only on n. Hence we

have

L(ãst ) ≤ C ′(n)
4
√
Ã.

In exactly the same way, we can show

L(âst ) ≤ C ′(n)
4
√
Â,

even using the same constant.
Now, if we can show that lims→0 L(ā

s
t ) = 0, we will be finished. So we compute

〈(āst)′, (āst)′〉āst = trs((1−t)â+tã)

(
s2(ã− â)2

)√
det
(
s
(
(1− t) Ã+ tÂ

))

= sn/2 tr(1−t)ã+tâ

(
(â− ã)2

)√
det
(
(1− t) Ã+ tÂ

)

= sn/2〈(a1t )′, (a1t )′〉a1t .
This implies that

L(āst ) = sn/2L(ā1t ),
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from which lims→0L(ā
s
t ) = 0 is immediate. �

We now wish to determine the completion of (Mx, dx), which we will do by comparison
with another metric. Consider the Riemannian metric 〈·, ·〉0 on Mx given by

〈b, c〉0a = tra(bc).

By the work of Ebin [Ebi70, Thm. 8.9] (see also [Claa, Prop. 4.9]), we know that (Mx, 〈·, ·〉0)
is a complete Riemannian manifold. Since the scalar product 〈·, ·〉a differs from 〈·, ·〉0a only by

the factor
√
A, one reasonably suspects that the only points that could be missing from the

completion of (Mx, 〈·, ·〉) are those with determinant zero. The next proposition confirms
this hunch and makes it rigorous.

Proposition 18. The completion of (Mx, 〈·, ·〉) can be identified with

Mx
∼= cl(Mx)

/
∂Mx

,

where cl(Mx) denotes the topological closure of Mx as a subspace of Sx, and ∂Mx denotes
the boundary in Sx.

The topology is given by the following. Given a sequence {ak} ⊂ Mx, it converges to
a0 ∈ Mx if and only if it does so in the manifold topology, and it converges to [0] ∈ Mx (the
equivalence class of the zero tensor) if and only if detAk → 0.

Proof. By the standard construction of the completion of a Riemannian manifold, we must
consider all piecewise differentiable paths of the form at, t ∈ [0, 1), in Mx that have finite
length with respect to 〈·, ·〉 and show two facts. First, either limt→1 at ∈ Mx (in the topology
of Sx) or limt→1 detAt = 0. Second, if limt→1 detAt = 0 and ãt, t ∈ [0, 1), is another

path in Mx satisfying limt→1 det Ãt = 0, then at and ãt are equivalent in the sense that
limt→1 dx(at, ãt) = 0. (From these facts, the statements about the topology on Mx follow
immediately.)

The second fact, however, is immediate from Lemma 17. So to prove the first fact, suppose
that limt→1 detAt 6= 0. By Lemma 16, one can easily see that detAt must nevertheless
converge to some limit η > 0. Furthermore, Lemma 16 implies that there exists ǫ > 0
such that η/2 < detAt < 3η/2 for all t ∈ [1 − ǫ, 1). But since 〈·, ·〉 is equivalent to 〈·, ·〉0
on the subset {a ∈ Mx | η/2 < detA < 3η/2}, the completeness of 〈·, ·〉0 implies that
limt→1 at ∈ Mx, as desired. �

As in the case of M, the completion Mx together with the metric induced from dx (which
we will again denote by dx) is a path metric space. Furthermore, given the statements about
the topology of Mx from the previous proposition, it is a straightforward matter to extend
the results of Lemmas 16 and 17 to elements a0, a1 ∈ Mx, so from now on we will assume
the lemmas are stated as such.

4.2. Geodesics on Mx. By the Hopf-Rinow-Cohn-Vossen Theorem for path metric spaces
[BBI01, Thm. 2.5.28, Rmk. 2.5.29], the completeness and local compactness of Mx implies
that between any two points, there exists a minimal geodesic. Using a small result of our own,
but primarily by the work of Freed–Groisser [FG89] and Gil-Medrano–Michor [GMM91] in
solving the geodesic equation for M, we can write down minimal geodesics in Mx explicitly.

As explained in [FG89, Appendix], the formulas for geodesics on Mx follow directly
from those on M determined by Freed–Groisser [FG89, Thm. 2.3] and Gil-Medrano–Michor
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[GMM91, Thm. 3.2]. Therefore, we simply quote them here. For the remainder of the paper,
we denote by bT := b− 1

n
(tra0 b)a0 the traceless part of any b ∈ Ta0Mx

∼= Sx.

Theorem 19. Let a0 ∈ Mx and b ∈ Ta0Mx
∼= Sx. Define

q(t) := 1 +
t

4
tra0(b), r(t) :=

t

4

√
n tra0(b

2
T ).

Then the geodesic starting at a0 with initial tangent a′0 = b is given by

at =




(q(t)2 + r(t)2)

2

n a0 exp

(
4√

n tr(b2
T
)
arctan

(
r(t)
q(t)

)
bT

)
if bT 6= 0,

q(t)4/na0 if bT = 0.

In particular, the change in the volume element
√
At is given by

(24)
√
At = (q(t)2 + r(t)2)

√
A0.

For precision, we specify the range of arctan in the above. At a point where tra0 b ≥ 0, it
assumes values in (−π

2
, π
2
). At a point where tra0 b < 0, arctan(r(t)/q(t)) assumes values as

follows, with t0 := − 4
tra0 b

:

(1) in [0, π
2
) if 0 ≤ t < t0,

(2) in (π
2
, π) if t0 < t <∞,

and we set arctan(r(t)/q(t)) = π
2
if t = t0.

Finally, the geodesic is defined on the following domain. If bT = 0 and tra0 b < 0, then the
geodesic is defined for t ∈ [0, t0). Otherwise, the geodesic is defined on [0,∞).

Gil-Medrano–Michor also performed a detailed analysis of the exponential mapping of M.
We quote here a portion of their results, translated into the pointwise result for Mx.

Theorem 20 ([GMM91, §3.3, Thm. 3.4]). Let U := Sx \ (−∞,−4/n] a0. Then U is the
maximal domain of definition of expa0, and expa0 is a diffeomorphism between U and

V := expa0(U) =

{
a0 exp(a

−1
0 b)

∣∣∣∣ tra0(b2T ) <
(4π)2

n

}
.

Here and in the following, exp without a subscript denotes the usual exponential of a matrix
or linear transformation.

The inverse of expa0 is given by the following. For b ∈ Sx, define

ψ(b) :=





4
n

(
exp

(
tra0 b

4

)
cos

(√
n tra0(b

2
T
)

4

)
− 1

)
a0

+ 4√
n tra0(b

2
T
)
exp

(
tra0 b

4

)
sin

(√
n tra0 (b

2
T
)

4

)
bT if bT 6= 0

4
n

(
exp

(
tra0 b

4

)
− 1
)
a0 if bT = 0.

Now, if a1 ∈ V , write (uniquely) a1 = a0 exp(a
−1
0 b) for some b ∈ Sx. Then exp−1

a (a1) = ψ(b).

Given these two results, and our own lemmas from the previous subsection, we are now
ready to describe minimal paths in Mx. So let any two points a0, a1 ∈ Mx be given.

If a minimal path at, t ∈ [0, 1], between a0 and a1 does not intersect [0], then at is
necessarily a geodesic with respect to 〈·, ·〉 since it is a minimal path in a Riemannian
manifold. Furthermore, since by Theorem 19 expa0 is a diffeomorphism onto its image,
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there can be at most one minimal path between a0 and a1 that does not intersect [0]. (Of
course, when speaking about uniqueness of paths here and in the following, we mean up to
reparametrization.)

Now consider the case where at0 = [0] for some t0 ∈ [0, 1]. By breaking the path into pieces
and reversing it if necessary, we may assume for this discussion that t0 = 1. By Lemma 16,
we have that

dx(a0, a1) ≥
4√
n

4
√
A0.

On the other hand, it is easy to compute that the length of the path at := (1 − t)a0,
t ∈ [0, 1], is exactly equal to 4√

n
4
√
A0. (For t ∈ [0, 1) it is the geodesic with initial tangent

vector a′0 = − 4
n
a0; cf. Theorem 19). Therefore, this path is minimal, and furthermore, we

claim that it is the unique minimal path between a0 and [0]. This is because any minimal
path between a0 and [0] must be a geodesic on the time interval [0, 1), and from Theorem 19
it is clear that the only geodesics with detAt → 0 are those with initial tangents a′0 = λa0 for
some λ < 0 (since otherwise either q(t) or r(t) is both positive and monotonically increasing
in (24)).

Knowing now what minimal paths in Mx look like, we can show:

Proposition 21. There exists a unique minimal path between any two given points a0, a1 ∈
Mx.

Proof. If either a0 or a1 is [0], then the discussion preceding the proposition shows that the
minimal path described there is minimal. So we assume a0, a1 ∈ Mx. If there exists a
minimal path from a0 to a1 that passes through [0], then by the above discussion it is the
concatenation of the straight-line path from a0 to [0], followed by the straight-line path from
[0] to a1, and this is the only possible minimal path passing through [0]. On the other hand,
if there exists a geodesic at in Mx from a0 to a1, then by Theorem 20 there is only one such
geodesic. Therefore, to prove the statement of the proposition, it suffices to prove that

(25) L(at) <
4√
n

(
4
√
A0 +

4
√
A1

)
.

In this case, such a geodesic is shorter than the shortest path between a0 and a1 passing
through [0], implying that geodesics in Mx and paths through [0] cannot simultaneously be
minimal.

To show (25), write a1 = exp(a−1
0 b), and let ψ be as in Theorem 20, so that a1 =

expa0(ψ(b)). One sees easily that (25) is obvious if bT = 0. So we must estimate L(at) =
|ψ(b)|a0 for bT 6= 0, and (recalling that tra0 bT = 0), we first have

tra0(ψ(b)
2) =

16

n2

[
exp

(
tra0 b

2

)
cos2

(√
n tra0(b

2
T )

4

)

− 2 exp

(
tra0 b

4

)
cos

(√
n tra0(b

2
T )

4

)
+ 1

]
tra0(a

2
0)

+
16

n tra0(b
2
T )

exp

(
tra0 b

2

)
sin2

(√
n tra0(b

2
T )

4

)
tra0(b

2
T )
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=
16

n

(
exp

(
tra0 b

2

)
− 2 exp

(
tra0 b

4

)
cos

(√
n tra0(b

2
T )

4

)
+ 1

)
.

Since a1 ∈ V implies 0 < tra0(b
2
T ) < (4π)2/n, the argument of cosine in the above equation

is between 0 and π, and therefore we can estimate

tra0(ψ(b)
2) <

16

n

(
exp

(
tra0(b)

4

)
+ 1

)2

.

On the other hand, using the well-known formula (valid for any matrix X) det(exp(X)) =
exp(tr(X)), we can use the above inequality to see

|ψ(b)|2a0 <
16

n

(
det(exp(a−1

0 b))1/4 + 1
)2√

det(g(x)−1a0)

=
16

n

(
4
√
A1 +

4
√
A0

)2
,

which proves (25). �

Knowing what minimal paths in (Mx, dx) are, we can explicitly determine dx and thus,
by Theorem 15, d. Furthermore, since there exists a unique minimal path between any two
elements in Mx, it is clear that there is a unique minimal path between any two elements
g0, g1 ∈ M: the path gt that gives the minimal path gt(x) between g0(x) and g1(x) for
each x ∈ M . We thus end the section with a theorem stating this result for M, as well as
summarizing the explicit realizations of geodesics and distance that we have determined up
to the this point, reformulating them for M.

Theorem 22. There exists a unique minimal path gt, t ∈ [0, 1], between any two points
g0, g1 ∈ M, given by the following. Let h be a measurable, symmetric (0, 2)-tensor field on
M defined on the subset N where neither g0 nor g1 is zero, and write g1 = g0 exp(g

−1
0 h) on

this subset. Denote by P the subset of M where trg0(h
2
T ) < (4π)2/n (here hT denotes the

traceless part of h). Write k := ψ(h), where ψ(h)(x) is given as in Theorem 20. Finally, let
qt and rt be one-parameter families of functions on N given by

qt := 1 +
t

4
trg0(h), rt :=

t

4

√
n trg0(h

2
T ).

Then at points x ∈ N ∩ P , we have

gt(x) =
(
q2t (x) + r2t (x)

) 2

n g0(x) exp

(
4√

n trg0(x)(h
2
T (x))

arctan

(
rt(x)

qt(x)

)
g−1
0 (x)hT (x)

)
,

and gt(x) does not intersect [0].
At all other points of M , gt(x) passes through [0], and we have

gt(x) =





(
1−

4
√

G0(x)+
4
√

G1(x)

4
√

G0(x)
t

)
g0(x), t ∈

[
0,

4
√

G0(x)

4
√

G0(x)+
4
√

G1(x)

]
,

(
4
√

G0(x)+
4
√

G1(x)

4
√

G1(x)
t−

4
√

G0(x)

4
√

G1(x)

)
g1(x), t ∈

[
4
√

G0(x)

4
√

G0(x)+
4
√

G1(x)
, 1

]
.

The distance induced by the L2 Riemannian metric between g0 and g1 is given by

d(g0, g1) = Ω2(g0, g1) =

∫

M

dx(g0(x), g1(x))
2 dµ,
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with

dx(g0(x), g1(x)) =

{
|ψ(h)(x)|g0(x) , x ∈ N ∩ P,
4√
n

(
4
√
G0(x) +

4
√
G1(x)

)
, x 6∈ N ∩ P.

Here, |ψ(h)(x)|g0(x) is given explicitly by

|ψ(h)(x)|g0(x) =
4√
n

(
exp

(
trg0(x)(h(x))

2

)

− 2 exp

(
trg0(x)(h(x))

4

)
cos

(√
n trg0(x)(h

2
T (x))

4

)
+ 1

)1/2

4
√
G0(x).

As noted in the introduction, the existence of geodesics in M is in stark contrast to the
situation for the incomplete space M, where the image of the geodesic mapping at a point
contains no open d-ball.

5. Outlook

There are a number of open questions concerning the L2 metric. One is, as mentioned in
the introduction, to find submanifolds of M on which convergence in the L2 metric implies
a more synthetic-geometric notion of convergence—e.g., Gromov–Hausdorff convergence, or
convergence as a metric-measure space [Gro07, Sect. 31

2
].

Other open questions that seem difficult to solve concern the moduli space of Riemannian
metrics, also called the space of Riemannian structures or, sometimes, superspace. If D is
the group of orientation-preserving diffeomorphisms of M , then this space is the quotient
M/D, where D of course acts by pulling back metrics. It is not hard to see that the L2

metric is invariant under this action, and so it projects to the quotient, which is a stratified
space [Bou75].

From the metric-geometric standpoint, the first question one must ask is whether the L2

metric induces a metric space structure on the quotient. Because the L2 metric is weak
and the quotient is singular, we cannot a priori exclude the situation that two orbits of the
diffeomorphism group become arbitrarily close to one another. Given the very weak nature
of convergence with respect to the L2 metric, it is difficult to exclude this situation directly
or through some geometric invariants (cf. [Clab, Sect. 4.3] for more on this).

Assuming the previous question is answered in the affirmative, another question one could
ask about the moduli space is what its completion with respect to the L2 metric is. Poten-
tially, some of the very pathological degenerations that lead to losing all regularity of a limit
metric in the completion of (M, d) come from degenerations along a diffeomorphism orbit.

Finally, as mentioned in the introduction, (M, (·, ·)) is nonpositively curved. It is therefore
natural to wonder whether (M, d) is a Hadamard space—a complete, simply-connected space
that has nonpositive curvature in the synthetic sense [BBI01, Sect. 9.2]. By the generalized
Cartan–Hadamard Theorem of Alexander–Bishop [AB90], the existence of unique geodesics
is a necessary condition for M to be a Hadamard space, so it is natural to conjecture that
this might be the case.

In principle, one could explicitly determine whether M has nonpositive curvature using
the formulas for geodesics that we have given here. In practice, this involves very lengthy
computations, and we do not have an answer at the time of this writing.
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We hope, however, that some of the questions posed in this section might be more amenable
to study given the explicit understanding of the L2 metric established in this paper.
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