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Abstract

We study the global dynamics of integrate and fire neural networks composed of an arbitrary number

of identical neurons interacting by inhibition and excitation. We prove that if the interactions are

strong enough, then the support of the stable asymptotic dynamics consists of limit cycles. We also

find sufficient conditions for the synchronization of networks containing excitatory neurons. The proofs

are based on the analysis of the equivalent dynamics of a piecewise continuous Poincaré map associated

to the system. We show that for strong interactions the Poincaré map is piecewise contractive. Using

this contraction property, we prove that there exist limit cycles attracting all the orbits dropping into

the stable subset of the phase space. This result applies not only to the Poincaré map under study, but

also to a wide class of general n-dimensional piecewise contractive maps.
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1 Introduction

Numerous physical or biological systems can be seen as composed of a large number of units in interaction.
In many occasions, their time evolution is modelled by a system of coupled differential equations, or by a
high dimensional discrete time dynamical system, that suppose a proper individual dynamics for each unit
and a coupling between units which may depend on the state of the whole system. Typical example of such
models are coupled oscillators (continuous time) and coupled map lattices (discrete time) [9]. They usually
assume well mathematically characterized individual dynamics, the main question under study being how
the coupling of units can generate the collective behaviors observed in physical and biological systems.
Nevertheless, from a mathematical point of view, these systems are a source of open problems and most
mathematical results have been proved under the assumption of weak coupling and/or focus on particular
solutions [25].

Pulse-coupled oscillators appear frequently in biological sciences, in particular in neuroscience to model
neural networks [20]. In this context, the state of each oscillator describes the difference of electrical
potential between the inside and the outside of a neuron’s membrane. An archetype of pulse-coupled
neural network appears in literature [17] in the following form:

V̇i = fi(Vi) +

n
∑

j=1

hji(Vi)δ(t− tj) ∀ i ∈ {1, . . . , n}. (1)

The solutions of the non-coupled equation V̇i = fi(Vi) define the individual dynamics of the membrane
potential of the neuron i. The following additional rule is assumed: if the potential Vi reaches the so called
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threshold potential θ > 0 at an instant denoted ti, then the neuron i is said to fire (or to emit a spike) and
its potential is reset to zero. The term hji(Vi)δ(t− tj) is a short hand notation meaning that at time tj the
potential of the neuron i suffers a discontinuity jump of amplitude hji(Vi(t

−
j )) produced by the firing of the

neuron j. If the jump is negative (hji < 0) the interaction is said inhibitory and if it is positive (hji > 0)
it is said excitatory.

When weak interactions are assumed, and extra assumptions on fi are posed, it is possible to reduce
(1), and also more realistic neural models, to a canonical system of phase coupled oscillators [15, 16]. This
opens the possibility to get some insight in the dynamics of a huge class of weakly coupled neural networks
by studying for example the existence and the stability of synchronized states [11, 15, 17]. Further insight
in the dynamics of neural networks can be obtained by considering specific models. In this respect (leaky)
Integrate and Fire (IF) neural networks [13] are certainly the most popular. For these networks fi is a real
affine function. Many mathematical works on IF neural networks deal with the dependence of particular
solutions on the parameters describing the interactions (that are not necessarily impulsive). The effect of
the velocity of the interactions on the stability of synchronized and anti-synchronized states is detailed for
weak excitatory and inhibitory interactions in the case of two [23, 10] or more neurons [24] and in presence
of delay [10, 2]. Synchronized solutions and more generally phase-locked solutions are also studied in the
case of strong coupling for different architectures of network [2].

Although important results about the phenomenology of IF neural networks have been obtained, they
principally focus on particular solutions, and there is still few mathematical results about their global
dynamics, possibly letting unknown important features of neural networks. The purpose of this paper is
precisely to give a mathematical description, developing analytical proofs, of the global dynamics of IF
neural networks. In spite of IF neural networks being continuous time dynamical systems, as far as we
know, previous studies of their global dynamics develop methods of discrete time dynamical systems. In
the seminal work [21], Mirollo and Strogatz study a Poincaré return map to prove that for the system (1)
with homogeneous constant excitatory interactions (hji = cte > 0) and homogeneous individual dynamics
(fi = f), almost all orbits become synchronized. In [8] a discrete time IF neural network, which may be
seen as a discretization of (1) by a formal Euler scheme, is studied. The corresponding dynamical system
is defined by the iterations of a general piecewise affine map. It is proved that for generic values of the
parameters, the global asymptotic dynamics is supported on a finite number of stable periodic orbits. It
is also proved that for non generic values of the parameters, asymptotic dynamics is sensitive to initial
conditions.

Motivated by the rigorous results of [8], which are proved for discrete time system, the question we
address in this paper is if they are also true for continuous time IF neural networks. Although elaborated
integration schemes, especially designed for the simulation of neural networks have been developed [3], there
is no way eliminating completely numerical errors and the results of simulations can drastically depend on
the used integration strategy [22]. This motivates the interest of developing rigorous mathematical proofs
also in the continuous time case. In this respect, the previous works [5, 7, 18] proved that periodic orbits
attract almost all initial conditions, but under the assumption that the interactions are all inhibitory, while
arbitrary interactions are considered in [8].

The main property allowing the proof of these results is that the (return) map is piecewise contractive
in the whole phase space. In Section 2, we derive the return map of (1), assuming fi(Vi) = −γVi + K,
the independence of hji on Vi, and other hypothesis ((H1) and (H2), stated in the same section) giving
a precise meaning to (1). In Section 3, we investigate the contraction properties of the return map. We
prove that, unexpectedly, it is not piecewise contractive in the whole phase space for an open region of the
interactions values, if some of them are excitatory (Theorem 2). Nevertheless, we find also an open subset
in the space of parameters (strong interactions), such that this return map is piecewise contractive in the
whole phase space, with respect to an adapted metric (Theorem 3). This parameters subset is defined by
hypothesis (H3) and (H4) stated in Section 3.

We state now our result about the global dynamics of IF neural networks:

Theorem 1. Under the hypothesis (H1), (H2), (H3) and (H4):

1) If the neural network is completely excitatory and the number of neurons is sufficiently large, then all
the orbits are eventually periodic and synchronized.
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2) If the IF neural network contains inhibitory neurons, then the stable orbits are attracted to (at most
countable many) limit cycles.

The part 1) is Theorem 5 which is proved in Section 4. The part 2) follows from Theorem 6 in Section
5. This last theorem states that the stable asymptotic dynamics of the return map is supported by periodic
orbits. Actually, its proof does not use the particular formulation of the return map, and applies to a wide
class of piecewise contractive maps (see Definition 5.3). Previous results [1, 4, 6, 8, 12] stating the existence
of periodic attractors for piecewise contractive maps are proved in a different context. In [1] the maps are
one dimensional and injective. In the works studying higher dimensional dynamics, only affine maps [8, 4]
or injective maps [6] are considered. In our case, none of these hypothesis is assumed since the proof applies
to n-dimensional maps, that are neither necessarily piecewise affine nor globally injective.

2 Integrate and fire neural network

We propose to study the global dynamics of leaky integrate and fire neural networks. Our working model
is a standard IF neural network considering an arbitrary number of neurons connected by inhibitory and
excitatory synapses. This system, which is defined precisely in Subsection 2.1, is the model (1) with
fi(Vi) = −γVi + K and where hji(Vi) = Hji is independent of Vi. Its global dynamics is studied in the
next sections via a Poincaré map which is derived in Subsection 2.2.

2.1 Definition of the model

At each time t ∈ R, the state of a neuron i ∈ I := {1, . . . , n} is described by its membrane potential Vi(t)
and the state of the network is represented by the vector V(t) = (V1(t), . . . , Vn(t)). The time evolution of
the network has two regimes: a subthreshold regime and a firing regime.

The subthreshold regime occurs when Vi(t) < θ for all i ∈ I, where θ > 0 is called the threshold potential.
In such a regime, the state of the network satisfies the system of differential equations defined by:

V̇i(t) = −γVi(t) +K ∀ i ∈ I. (2)

The constant γ stands for 1/RC where R and C are respectively the resistivity and the capacity of the
neural membrane and K is proportional to a constant external current. According to Equation (2), the
potential of the neurons tends to the equilibrium value β = K/γ.

If we suppose β > θ, then there is an instant (supposed to be the smallest one) when the potential of (at
least) one neuron reaches the threshold and the network enters in the firing regime. At this instant, the
neuron emits a spike that induces a change in the potential of all the neurons to which it is connected, and
its potential is reset to a smaller value than the threshold, chosen equal to 0 (without loss of generality).

Formally, when the network enters in the firing regime, its state suffers a discontinuity due to the reset of
the firing neurons and to the change of potential of the neurons receiving the spikes of the firing neurons.
If J ⊂ I is the set of all the neurons that reach θ at time t0, the state of the network satisfies

lim
t→t

+

0

Vi(t) = 0 if i ∈ J and lim
t→t

+

0

Vi(t) = Vi(t0) +
∑

j∈J

Hji if i /∈ J. (3)

The constant Hji represents the synaptic interaction due to a spike coming from neuron j to neuron i.
It is positive for an excitatory synapse, negative for an inhibitory synapse, and equal to 0 if the neurons
are not connected. We will say that a neuron j is excitatory (inhibitory) if all its synapsis are excitatory
(inhibitory), i.e Hji > 0 (Hji 6 0) for all i ∈ I, and we will say that a neuron is “mixed” if it is neither
excitatory nor inhibitory.

Remark 2.1. Note that in model (1), if an excitatory neuron fires at time t0, then the potential of
others neurons may become larger than θ at time t+0 and these neurons should also fire. To avoid possible
ambiguities in the definition of the model, we have to assume that all the neurons that reach the threshold
because of the firing of other(s) neuron(s) fire simultaneously at time t0 and belong to the set J . We also
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have to assume that a neuron cannot fire twice in the same instant. All these characteristics of the firing
regime are typical of neural networks modeled by Equation (1) and containing excitatory neurons [17, 21].
They are reflected in the definition of the set J , which for convenience is detalled in Subsection 2.2.

To prove Theorem 1 and other results obtained along this paper, we will make the following hypothesis.

(H1) The membrane potential of the neurons has a lower bound, i.e there exists α < 0 such that for all
i ∈ I and t ∈ R, we have Vi(t) > α. We will suppose that α > −β.

(H2) If a neuron suffers inhibitory and excitatory interactions at the same time and if the sum of the
excitatory interactions is enough to make it reach the threshold potential, then the inhibitory interactions
are not taken into account and this neuron emits a spike.

The hypothesis (H1) fits with physical bounds of the electric potentials of real biological or electronic IF
neural networks. The potential of a neuron can not be arbitrarily small and always remains in the order
of magnitude of the characteristic constants of the model such as β and θ. When supposing instantaneous
interactions, we collapse the time interval when the neurons are interacting. However, during this time
interval the spikes are coming in a given order. The hypothesis (H2) assumes that positive interactions are
faster than negative ones.

2.2 The Poincaré return map

In order to analyze the global dynamics of the IF neural network, we reduce it to an equivalent discrete
time dynamical system, namely a first return Poincaré map. We first define a Poincaré section in the phase
space and then we derive the corresponding Poincaré return map.

Since the potential of a neuron is always larger than α and always smaller than θ, the states of the
network always belong to the n-dimensional space Q = [α, θ]

n
. By definition of the model, the network

never stops to emit spikes (since β > θ). It exists then arbitrarily large times such that the potential of a
neuron is reset to zero. In other words, any solution of the model returns infinitely many times to the set:

Σ =

n
⋃

j=1

Σ̂j where Σ̂j = {V ∈ Q : Vj = 0}. (4)

The set Σ is the Poincaré section that we will consider. The topology we use is the one induced by the
embedding Σ ⊂ R

n. Specifically we consider in Σ the metric derived from the supremun norm of Rn,
denoted ‖ · ‖ in this paper and defined by ‖V‖ = max

i∈I
|Vi|.

The first step to compute the return map is to introduce a cover of Σ by n pieces. A piece of this cover
will consist in the points of Σ such that the potential of a specified neuron reaches the threshold in a smaller
time than those of all the other neurons. Solving the system (2) leads to the time t map φt = (φt

1, . . . , φ
t
n)

where for each i ∈ I and t ∈ R

φt
i(V) = (Vi − β)e−γt + β ∀V ∈ R

n. (5)

If at time t = 0 the network is in the state V ∈ Q, then the network enters in the firing regime at time:

t̄(V) := min
i∈{1,...,n}

ti(V) where ti(V) := inf{t > 0 : φt
i(V) > θ}.

The cover of Σ that we consider is:

Σ =

n
⋃

i=1

Σi where Σi = {V ∈ Σ : t(V) = ti(V)}. (6)

As required, the set Σi is the set of points of Σ such that the first neuron to fire is the neuron i. These sets
are not disjoint (because several neurons may reach θ at the same time) but have disjoint interiors.

Now, we introduce a partition of Σ. Each atom of this partition will consist of the points V ∈ Σ such
that the neurons which fire a time t̄(V) are those of a specified subset J of I. We first need to identify
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for all V ∈ Σ the set J(V) of the neurons that fire at time t̄(V) taking into account Remark 2.1 and the
hypothesis (H2). Let V ∈ Σ, at time t̄(V) we may distinguish between two types of neurons. The neurons
of the first type are those which potential reaches the threshold by action of the time t map (5). They
belong to the set of indexes:

J0(V) = {i ∈ I : V ∈ Σi}.

The neurons of the second type are those that fire as a consequence of the interactions with other neurons,
in particular with that of J0(V). To obtain them, we define recursively a finite sequence of sets of indexes
{Jm(V)}m>0. We have already defined the set J0(V). We define Jm(V) by induction, for m > 1, as
follows:

Jm(V) = Jm−1(V) ∪ {k ∈ I \ Jm−1(V) : φ
t(V)
k (V) +

∑

i∈Jm−1(V) :Hik>0

Hik > θ} ∀m > 1.

The second set of the union that defines Jm(V) consists of the neurons that emit a spike as a result of the
spiking of the neurons of Jm−1(V), taking into account the hypothesis (H2). For instance, the neurons of
J1(V) \ J0(V) (if not empty) fire by interaction with the neurons of the first type J0(V).

The set of the neurons that emit a spike at time t̄(V) can be written as:

J(V) =
⋃

m∈N

Jm(V).

If there is no excitatory neurons in J0(V), then Jm(V) = J0(V) for all m ∈ N and J(V) = J0(V). If
J0(V) contains excitatory neurons, then J(V) may contain more neurons than J0(V). Note that J(V) is
finite since I is finite.

The set J used in the definition (3) of the model depends then on the state of the network (and on all
the parameters). To every point V ∈ Σ it corresponds a set J(V) of neurons that fire at the time t̄(V)
when the network enters in the firing regime. The pre-images of the parts of I by J(·) can be used to get
a partition P of Σ:

P = {ΣJ}J∈P (I) where ΣJ = {V ∈ Σ : J(V) = J} (7)

and P (I) denotes the set of all the non empty parts of I. According to the interactions Hji, some ΣJ may
be empty. Nevertheless, there is always a nonempty ΣJ .

According to (3) and hypothesis (H1), the components ρ1 . . . , ρn of the first return map ρ : Σ → Σ are
defined in each ΣJ by:

ρi(V) = 0 if i ∈ J and ρi(V) = max{α, φt̄(V)
i (V) +

∑

j∈J

Hij} if i /∈ J. (8)

Note that the return map does not satisfy standard hypothesis of differentiability or continuity in its entire
domain. Actually, it is a piecewise continuous map whose continuity pieces are the sets ΣJ . On the set
∂P = ∪J∈P (I)∂ΣJ , where ∂ΣJ denotes the boundary of ΣJ , the return map is not continuous and some
perturbation may change drastically the temporal evolution of the network. A study of the irregularities
of ρ is given in Section 5.

3 Contraction properties of the return map

Many mathematical studies of the global dynamics of neural networks consider models presenting a contrac-
tion property in the whole phase space [5, 7, 8, 18]. This property is the basis of the proof of the existence of
limit cycles supporting the asymptotic dynamics. Here, we will prove that for IF neural network as defined
in Section 2, the presence of excitatory interactions prevent the return map from being contractive in the
whole phase space, at least for an open region of the parameters. However, we also show that when the
interactions are sufficiently strong (inhibitory as well as excitatory) there exists a metric and a partition of
Σ such that the return map is contractive in each of the piece of this partition.

5



Definition 3.1. Given a subset Σ∗
c ⊂ Σ and a finite partition P∗ of Σ∗

c , we say that ρ is piecewise
contractive in Σ∗

c with respect to P∗ if there exist a constant 0 < λ∗ < 1 and a norm ‖ · ‖∗ such that

‖ρ(V)− ρ(W)‖∗ 6 λ∗‖V −W‖∗

for all V and W in a same piece of P∗. In such a case, we say that Σ∗
c is a contractive zone with respect

to P∗.

Note that if ρ is piecewise contractive in Σ∗
c with respect to P∗, then ρ is Lipschizt continuous in each piece

of P∗. Thus, P∗ has to be a refined partition of P .

3.1 Arbitrary interactions

The question we address now, is the existence of a norm ‖ · ‖∗ such that the whole Poincaré section Σ is
a contractive zone with respect to the natural partition P . The following theorem shows that it is not a
general property of the model.

Theorem 2. Under the hypothesis (H1) and (H2), there exists an open region of the values of the interac-
tions such that for all norm ‖ · ‖∗ the section Σ is not a contractive zone with respect to P.

In [7] it is proved that if all interactions are inhibitory, then the return map is piecewise contractive.
Thus, the region of parameters values satisfying the thesis of Theorem 2, must contain excitatory interac-
tions. In other words, the introduction of excitatory neurons can avoid piecewise contractivity of the return
map in the whole phase space, for certain values of parameters.

To prove the theorem we introduce the quantity c∗ = β −
√

β(β − θ) ∈ (θ/2, θ) and we define for all
i 6= j ∈ I the sets

Γij = {V ∈ Σi : Vi > c∗, Vk = 0 ∀ k 6= i} ∩ ΣI\{j}.

Lemma 3.2. Let i 6= j ∈ I and suppose there exist V 6= W ∈ Γij ∩ ρ−1(Γji), then

|ρj(W)− ρj(V)| > |Vi −Wi|.

Proof: Since V ∈ Γij ⊂ ΣI\{j} ∩ Σi, we have ρj(V) = max{α, φti(V)
j (V) +

∑

k∈I\{j}

Hkj}, and since ρ(V) ∈

Γji, it follows that ρj(V) > c∗ > α. As a consequence,

ρj(V) = φ
ti(V)
j (V) +

∑

k∈I\{j}

Hkj = −β(β − θ)

β − Vi

+ β +
∑

k∈I\{j}

Hkj ,

where the second equality is obtained computing ti(V) and using Vj = 0 (by definition of Γij). The same
computation being true for ρj(W) we deduce

|ρj(V) − ρj(W)| =
∣

∣

∣

∣

β(β − θ)

(β −Wi)(β − Vi)
(Wi − Vi)

∣

∣

∣

∣

>
β(β − θ)

(β − c∗)2
|Vi −Wi| = |Vi −Wi|.

2

Lemma 3.3. Let i 6= j ∈ I. For an open region of values of the interactions, the sets Γij and Γji are not
empty and there exists (a, b) ⊂ (c∗, θ) such that for all V ∈ Γij satisfying Vi ∈ (a, b), we have ρ(V) ∈ Γji

and ρ2(V) ∈ Γji.

Proof: See appendix 7.1. 2

Suppose that the values of parameters are such that Lemma 3.3 is true. Then, there exist two points
V′ 6= W′ belonging to Γij ∩ ρ−1(Γji) ∩ ρ−2(Γij). Applying Lemma 3.2 twice we obtain:

|ρ2i (V′)− ρ2i (W
′)| > |V ′

i −W ′
i |. (9)
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Proof of Theorem 2: We show that the existence of V′ and W′ is incompatible with the existence of a
norm ‖ · ‖∗ such that Σ is a contractive zone with respect to P . If we suppose such a norm exists, then

‖ρ2(V′)− ρ2(W′)‖∗ 6 λ∗2‖V′ −W′‖∗ < ‖V′ −W′‖∗, (10)

since V′ and W′ ∈ BI\{i} ∩ ρ−1(BI\{j}) and λ∗ < 1.

Let’s consider the norm ‖ · ‖∗i defined by ‖V‖∗i = ‖V‖∗ for all V ∈ {0}i−1 × R × {0}n−i ⊃ Γij . On one
hand, ‖ · ‖∗i being a norm in a vector space isomorphic to R, there exists µi > 0 such that ‖V‖∗i = µi|Vi|.
On the other hand, recalling that ρ2(V′) and ρ2(W′) ∈ Γij , the inequalities (10) are also true with the
norm ‖ · ‖∗i . We deduce that

|ρ2i (V′)− ρ2i (W
′)| < |V ′

i −W ′
i |

which contradicts (9). 2

The Poincaré section is generally not a contractive zone with respect to P . However, when β < 4
3θ, it

is possible to find a subset of Σ which is a contractive zone.

Proposition 3.4. Suppose β < 4
3θ and let c = β − 2

√

β(β − θ). Then, the subset Σc ⊂ Σ defined by

Σc = {V ∈ Σ : α 6 Vi 6 c, i ∈ I}

is a contractive zone with respect to P.

Proof of Proposition 3.4: We show that there exists a constant 0 < λα < 1 such that for any J ∈ P(I):

‖ρ(V)− ρ(W)‖ 6 λα‖V −W‖ ∀ V,W ∈ ΣJ ∩ Σc. (11)

Suppose V,W ∈ ΣJ ∩ Σc and let i, l ∈ J be such that V ∈ Σi and W ∈ Σl.

Let k ∈ I. If k ∈ J then by definition of ρ

|ρk(V) − ρk(W)| = 0. (12)

If k /∈ J we have to consider 4 cases:

Case 1: If ρk(V) = ρk(W) = α then (12) is true.

Case 2: If ρk(V) > α and ρk(W) > α then, using the explicit expression (5) of φt at times t(V) = ti(V)
and t(W) = tl(W), we obtain:

|ρk(V)− ρk(W)| =

∣

∣

∣

∣

(β −Wk)(β − θ)

β −Wl

− (β − Vk)(β − θ)

β − Vi

∣

∣

∣

∣

=

∣

∣

∣

∣

(β −Wk)(β − θ)

β −Wl

− (β − Vk)(β − θ)

β −Wl

+
(β − Vk)(β − θ)

β −Wl

− (β − Vk)(β − θ)

β − Vi

∣

∣

∣

∣

=

∣

∣

∣

∣

β − θ

β −Wl

(Vk −Wk) +
(β − Vk)(β − θ)

(β −Wl)(β − Vi)
(Wl − Vi)

∣

∣

∣

∣

6
β − θ

β − c
|Vk −Wk|+

(β − α)(β − θ)

(β − c)2
|Vi −Wl|.

Suppose Vi 6 Wl. Since ti(V) = t(V), we have Vl 6 Vi, which implies |Vi −Wl| 6 |Vl −Wl|, and

|ρk(V)− ρk(W)| 6
β − θ

β − c
|Vk −Wk|+

(β − α)(β − θ)

(β − c)2
|Vl −Wl|

6
β − θ

β − c

(

1 +
β − α

β − c

)

‖V −W‖. (13)

If Wl < Vi then, using this time that tl(W) = t(W) implies Wl > Wi, we obtain |Vi −Wl| 6 |Vi −Wi| and
the inequality (13) follows.
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Case 3: If ρk(V) > α and ρk(W) = α then

|ρk(V)−ρk(W)| = φ
t̄(V)
k (V)+

∑

j∈J

Hjk−α 6 φ
t̄(V)
k (V)+

∑

j∈J

Hjk−φ
t̄(W)
k (W)−

∑

j∈J

Hjk = φ
t̄(V)
k (V)−φ

t̄(W)
k (W)

and we obtain (13) by the same calculation as in the case 2.

Case 4: If ρk(V) = α and ρk(W) > α then, substituting V for W and W for V in the case 3, we obtain
the inequality (13).

We conclude that for all k ∈ I either (12) or (13) is true. It follows:

‖ρ(V)− ρ(W)‖ 6 λα‖V−W‖ where λα =
β − θ

β − c

(

1 +
β − α

β − c

)

and the proposition is proved since by definition of c and hypothesis (H1)

λα < λ−β =
1

2

(
√

β − θ

β
+ 1

)

< 1.

2

3.2 Strong interactions

In the previous subsection we have shown that Σ is generally not a contractive zone with respect to P .
Nevertheless, we have shown in Proposition 3.4 that under the hypothesis β < 4

3θ there is a subset Σc of
Σ which is a contractive zone. Here, we give values of the parameters such that this contractive zone is
forward invariant. Moreover, if the network contains inhibitory neurons, then any orbit drops into Σc after
a uniform number of iterations. It allows us to prove that there is a metric making Σ a contractive zone,
with respect to a refined partition of P .

From now on, we will make the following assumptions on the parameters:

(H3) Denoting δ = β − θ > 0, we assume δ < θ
3 and the interactions Hji sufficiently strong such that

min
j 6=i

|Hji| > 2
√

(θ + δ)δ = 2
√

β(β − θ) = ǫ.

(H4) We assume the Dale’s principle (see [15] page 7): a neuron is either excitatory or inhibitory. In other
words, the network does not contain mixed neurons.

In Section 2.2 we noted that for every V ∈ Σ such that J0(V) contains only inhibitory neurons J(V) =
J0(V). In the contractive zone we have in addition the following property:

Lemma 3.5. If V ∈ Σc and J0(V) contains an excitatory neuron then J(V) = I.

This lemma, gives us a first result about the dynamics of the network. If V ∈ Σc ∩ Σi, where i is an
excitatory neuron, then ρ(V) = 0. The origin of the phase space being a fixed point of ρ, it is a periodic
orbit of the model. Moreover, this orbit corresponds to a synchronized state of the network, i.e the potential
of all the neurons is the same at each time.

Proof of the lemma: Suppose V ∈ Σc. Let i ∈ J0(V) and take k ∈ I \ J0(V). Then,

φ
t(V)
k (V) = β − (β − Vk)(β − θ)

β − Vi

> β − (β − α)(β − θ)

β − c
= β − β − α

2β

√

β(β − θ) > c,

since α > −β. Thus, since J0(V) contains an excitatory neuron, it follows that

φ
t(V)
k (V) +

∑

j∈J0(V) : Hjk>0

Hjk > c+ ǫ = β > θ.

We conclude that k ∈ J1(V) ⊂ J(V). 2

Now we use the lemma to prove that the contractive zone is a forward invariant set of the return map:
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Proposition 3.6. If V ∈ Σc then ρ(V) ∈ Σc.

Proof: Let V ∈ Σc and k ∈ I. By hypothesis (H1), we know that α 6 ρk(V), so we only have to prove
that ρk(V) 6 c.

If k ∈ J(V) then ρk(V) = 0 6 c. If k /∈ J(V), by lemma 3.5, J0(V) contains only inhibitory neurons. It
implies that J(V) = J0(V) contains only inhibitory neurons. Together with hypothesis (H3) and (H4), it
leads to:

φ
t(V)
k (V) +

∑

j∈J(V)

Hjk < θ − ǫ < c.

Looking at the definition (8) we conclude ρk(V) < c. 2

This last proposition ensures that if an orbit of the return map falls in the contractive zone, then it
stays forever in this region. The following proposition states that if the network contains an inhibitory
neuron, then any orbit falls in the contractive zone.

Proposition 3.7. If the network contains an inhibitory neuron, then there exists p ∈ N such that ρp(Σ) ⊂
Σc.

To prove the proposition, let’s define for each p ∈ N the set Zp of the points of the Poincaré section that
stay outside of the contractive zone during p iterations:

Zp = {V ∈ Σ : ρj(V) ∈ Σ \ Σc, 1 6 j 6 p}.

Lemma 3.8. If the network contains an inhibitory neuron and if there exists p > 1 such that Zp is non
empty, then α+ pǫ < θ.

Proof: Let us suppose there exists V ∈ Zp for a p > 1. We first prove that for all 0 6 j 6 p − 1 the set
J(ρj(V)) contains only excitatory neurons. We begin supposing p = 1. By definition of Σc, if V ∈ Z1 then
ρk(V) > c for a k ∈ I. This k cannot belong to J(V) (if it does then ρk(V) = 0), therefore

φ
t̄(V)
k (V) +

∑

j∈J(V) : Hjk>0

Hjk < θ.

It follows that

ρk(V) = φ
t̄(V)
k (V) +

∑

j∈J(V) : Hjk>0

Hjk +
∑

j∈J(V) : Hjk<0

Hjk < θ +
∑

j∈J(V) : Hjk<0

Hjk,

and if J(V) contains an inhibitory neuron ρk(V) < θ− ǫ < c, which is a contradiction. Suppose p > 1 and
let 0 6 j 6 p− 1 then ρj(V) ∈ Z1, therefore J(ρj(V)) contains only excitatory neurons.

Let us suppose now that the network contains an inhibitory neuron denoted i. Since J(V) contains only
excitatory neurons, i /∈ J(V) and the component i of ρ(V) satisfies:

ρi(V) = φ
t̄(V)
i (V) +

∑

j∈J(V)

Hji = (Vi − β)e−γt̄(V) + β +
∑

j∈J(V)

Hji > Vi + ǫ.

Knowing that J(ρj(V)) contains only excitatory neurons for all 0 6 j 6 p− 1 and as φ
t̄(V)
i (V) > Vi for all

V ∈ Σ, we deduce by induction that θ > ρpi (V) > Vi + pǫ > α+ pǫ. 2

Proof of Proposition 3.7: Let p ∈ N such that α + pǫ > θ. According to Lemma 3.8 either Zp is empty or
the network does not contain inhibitory neurons. By hypothesis of the proposition the network contains
inhibitory neurons, therefore Zp is empty and ρp(Σ) ⊂ Σc. 2

Corollary 3.9. If there exists V ∈ Σ such that ρp(V) /∈ Σc for all p ∈ N then the network contains only
excitatory neurons.

Proposition 3.6 and Proposition 3.7 allow to prove Lemma 7.1 in appendix 7.2, which states that ρ is
“eventually piecewise contractive”. This is a generalization for piecewise continuous maps of the definition
of eventually contractive maps (see for instance Definition 2.6.11 in [14]). From Lemma 7.1 the classical
arguments to prove the existence of an adapted metric can be reproduced for piecewise continuous maps.
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Theorem 3. Under the hypothesis (H1), (H2), (H3) and (H4), there exists an adapted metric and a
partition P∗ of Σ such that ρ is piecewise contractive in Σ with respect to P∗.

Proof: See appendix 7.2.

Now we sum up the results of this section and we point out their important consequences.

Under the hypotheses (H3) and (H4), the Poincaré section of the model can be decomposed in two regions:
the contractive zone (Σc), which is a forward invariant set of the return map, and the set of the orbits that
never fall in the contractive zone. This last set can be non-empty only for networks composed exclusively
of excitatory neurons (cf Corollary 3.9). We study these networks in the Section 4.

In the case of the networks containing inhibitory neurons, all orbits drop into the contractive zone after a
finite time (Proposition 3.7). The study of the asymptotic dynamics reduces then to the analysis of the
dynamics of the return map in the contractive zone. This is the purpose of Section 5.

4 Synchronization

In this section we prove the part (1) of Theorem 1 stating sufficient conditions for the synchronization of
the system.

Definition 4.1. We say that an orbit {V(t)}t∈R+ is a synchronized orbit of the system if Vi(t) = Vj(t)
for all i, j ∈ I and t ∈ R

+. We say that the system is globally synchronized if for any initial state V(0)
there exists t0 ∈ R

+ such that {W(t) = V(t+ t0)}t∈R+ is a synchronized orbit. We say that the system is
globally periodic and synchronized if besides {W(t)}t∈R+ is periodic.

Since for all V ∈ Σ at least one component of V is equal to 0 (see (4)), a synchronized orbit intersects
the Poincaré section at the origin. Therefore, we say that the origin is the synchronization state of the
Poincaré section. Note that the synchronization state is a fixed point of ρ. We call V ∈ Σ a state of eventual
synchronization if there exists l ∈ N such that ρl(V) = 0. Note that a network globally synchronizes if and
only if all the points of the Poincaré section are states of eventual synchronization.

Theorem 4. Under the hypothesis (H1), (H2) and (H3), if the network is exclusively composed of exci-

tatory neurons and the number of neurons n >

(

θ − α

ǫ
+ 1

)2

, then the system is globally periodic and

synchronized.

The hypothesis of Theorem 4 ensures that the synchronization state is stable. Indeed, any sufficiently
small perturbation of the synchronization state, will lead some neurons to reach the threshold before the
other ones. However, since all the neurons are excitatory and the interactions are strong (hypothesis (H3)),
the first spiking neurons will induce the others to spike in turn. Therefore, the system is back to the
synchronization state 0 ∈ Σ in the first iteration of the return map from the perturbed state.

Proof of Theorem 4: Let V ∈ Σ. We prove that there exists l ∈ N such that ρl(V) = 0. To this aim, we
introduce p = ⌊√n⌋+ 1 where ⌊·⌋ is the integer part function.

Claim: We have
p−1
⋃

j=0

J(ρj(V)) = I.

Indeed, let i ∈ I. If i ∈
p−2
⋃

j=0

J(ρj(V)) then i ∈
p−1
⋃

j=0

J(ρj(V)). If i /∈
p−2
⋃

j=0

J(ρj(V)) then by definition of ρ

ρji (V) = φ
t̄(ρj−1(V))
i (ρj−1(V)) +

∑

k∈J(ρj−1(V))

Hki > ρj−1
i (V) + ǫ ∀ j ∈ {1, . . . , p− 1},

where the inequality is obtained using that φ
t̄(V)
i (V) > Vi for all V ∈ Σ and i ∈ I and the fact that all the

interactions are excitatory. By induction we obtain ρp−1
i (V) > Vi + (p− 1)ǫ. We deduce that

φ
t̄(ρp−1(V))
i (ρp−1(V)) +

∑

k∈J(ρp−1(V))

Hki > ρp−1
i (V) + ǫ > Vi + pǫ > α+

√
nǫ > θ,
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and therefore i ∈ J(ρp−1(V)), which proves the claim.

Suppose now that for all j ∈ {0, . . . , p− 1} the cardinal #J(ρj(V)) <
θ − α

ǫ
, then

#

p−1
⋃

j=0

J(ρj(V)) 6

p−1
∑

j=0

#J(ρj(V)) <
p(θ − α)

ǫ
.

Applying the claim, the last inequality implies n <
p(θ − α)

ǫ
< (

√
n + 1)(

√
n − 1) = n − 1, which is a

contradiction. Thus, we proved that there exists j ∈ {0, . . . , p− 1} such that

#J(ρj(V)) >
θ − α

ǫ
.

Then for all i ∈ I,

φ
t̄(ρj(V))
i (ρj(V)) +

∑

k∈J(ρj(V))

Hki > α+ ǫ
θ − α

ǫ
= θ,

and therefore I = J(ρj(V)). In other words, if we take l = j + 1 then ρl(V) = 0. 2

It is a non trivial exercise to construct a simple example for which n 6

(

θ − α

ǫ
+ 1

)2

and there exists an

orbit which is not synchronized.

Definition 4.2. We say that V ∈ Σ is a state of eventual death of the neuron i, if there exists p ∈ N such
that i /∈ J(ρj(V)) for all j > p.

In other words, a state of eventual death of a neuron is a state such that the neuron stops to emit spikes
after a certain time. Therefore, we define a state of the (continuous time) model of eventual death as a
state whose orbit intersects the Poincaré section in a state of eventual death.

Theorem 5. Under the hypothesis (H1), (H2), (H3) and (H4), if the network is composed of excitatory and
inhibitory neurons, then the states of the network are either states of eventual synchronization or states of
eventual death of all the excitatory neurons.

Proof: Let i be an excitatory neuron and V ∈ Σ. By Proposition 3.7 we can assume V ∈ Σc without loss
of generality. We have, either i /∈ J(ρj(V)) for all j ∈ N or there exists j ∈ N such that i ∈ J(ρj(V)).
In the first case V is a state of eventual death of the neuron i. In the second case, by Proposition 3.6 it
follows ρj(V) ∈ Σc for all j ∈ N, and then we can apply Lemma 3.5 to deduce that J(ρj(V)) = I. This
implies ρj+1(V) = 0. 2

5 Asymptotic dynamics of networks with inhibitory neurons

In the previous section we proved that networks composed exclusively of excitatory neurons globally syn-
chronize, whenever their size is sufficiently large (Theorem 4). Now we focus on networks containing both
excitatory and inhibitory neurons. We already know that they synchronize if an excitatory neuron fires
(Lemma 3.5 and Theorem 5). We are now interesting in their general asymptotic dynamics, including
outside of the synchronization regime.

5.1 Continuity pieces of the return map

In Proposition 3.7 we have shown that any orbit of a network containing inhibitory neurons finally drops
into the forward invariant set Σc, called the contractive zone. Then, it is not restrictive to consider this
space as our new phase space1. The partition P (defined in (7)) formed by the continuity pieces of the
return map becomes

Pc := {Σc,J}J∈P (I) where Σc,J = ΣJ ∩ Σc.

1From now on, ρ will denote the return map restricted to Σc.
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In the sequel we give a detailed description of this partition. We show that it is made of open pieces, where
the return map is continuous, and of closed sets which are the boundary of the open pieces, where the
return map generically presents a discontinuity jump.

By Lemma 3.5, if J 6= I and contains excitatory neurons then Σc,J = ∅. As a consequence, Pc is actually
composed of the set Σc,I and of the sets Σc,J such that J contains only inhibitory neurons. It follows that

Σc =





⋃

J∈P (I−)

Σc,J





⋃

Σc,I ,

where I− ⊂ I is the set of the inhibitory neurons.

The sets Σc,J forming the partition Pc admit explicit formulations useful to study their topological
properties. On one hand, if J ∈ P (I−) then for all V ∈ Σc,J we have J(V) = J0(V), since the firing of an
inhibitory neuron cannot lead another neuron to fire. We deduce that V ∈ Σc,J if and only if ti(V) = t̄(V)
for all i ∈ J and tk(V) > t̄(V) for all k /∈ J . This leads to the following expression:

Σc,J = {V ∈ Σc : Vi = Vj > Vk ∀ i, j ∈ J and ∀ k /∈ J} ∀ J ∈ P (I−). (14)

On the other hand, V ∈ Σc,I if and only if J0(V) contains and excitatory neuron. Then, V ∈ Σc,I if and
only if ti(V) = t̄(V) for some i in the set I+ of the excitatory neurons. So, we have:

Σc,I = {V ∈ Σc : max
i∈I+

Vi > Vk ∀ k ∈ I−}. (15)

Let us consider the relative topology induced by R
n in Σ. In the case where J ∈ P (I−) is a singleton

(J = {i}), the set Σc,J is open, since (14) writes:

Σc,{i} = {V ∈ Σc : Vi > Vk ∀ k 6= i} ∀ i ∈ I−.

The topological boundary of Σc,{i} is the set

∂Σc,{i} = {V ∈ Σc : Vi > Vk ∀ k ∈ I and ∃ j 6= i : Vj = Vi}. (16)

According to (15), the interior of Σc,I is

Σc,{0} := {V ∈ Σc : max
i∈I+

Vi > Vk ∀ k ∈ I−},

and its boundary is

∂Σc,{0} = {V ∈ Σc : max
i∈I+

Vi > Vk ∀ k ∈ I− and ∃ j ∈ I− : Vj = max
i∈I+

Vi}. (17)

From (16) and (17) it results that ∂Σc,{0} ⊂ ⋃i∈I−
∂Σc,{i}. On one hand, Σc,{0} is the interior of Σc,I , and

on the other hand if J ∈ P (I−) is not a singleton and contains i, then Σc,J is included in the boundary of
Σc,{i}. Therefore, the partition Pc of Σc consists of the open sets {Σc,{i}}i∈I−∪{0}

and of the boundaries

{∂Σc,{i}}i∈I−

. To sum up,

Σc =





⋃

i∈I
−

0

Σc,{i}





⋃

∂Pc , where I−0 := I− ∪ {0} and ∂Pc :=
⋃

i∈I−

∂Σc,{i} =
⋃

J∈P (I−)
#J>2

Σc,J .

On one hand, for all i ∈ I−0 , the return map ρ is continuous in Σc,{i}, since this set is an open continuity
piece, see (8). On the other the hand, the following lemma shows that ρ is generically discontinuous in
∂Pc.

Lemma 5.1. If V ∈ ∂Pc, then there exists a sequence {Um}m∈N of points of Σc such that lim
m→∞

Um = V

and lim
m→∞

‖ρ(Um)− ρ(V)‖ > min{|α|,min
i6=j

|Hij + θ|}.
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Proof: If V ∈ ∂Pc then there exists a subset J of I− such that #J > 2 and V ∈ Σc,J . Let i 6= j ∈ J . Since
Σc,J ⊂ ∂Σc,{i}, by definition of boundary, there exists a sequence {Um}m∈N of points of Σc,{i} such that
lim

m→∞
Um = V. Moreover,

lim
m→∞

ρj(U
m) = lim

m→∞
max{α, β − (β − Um

j )
β − θ

β − Um
i

+Hij} = max{α, β − (β − Vj)
β − θ

β − Vi

+Hij}.

By (14) we have Vi = Vj and therefore lim
m→∞

ρj(U
m) = max{α, Hij + θ}. Since j ∈ J and V ∈ Σc,J , we

have ρj(V) = 0, and we obtain that

lim
m→∞

‖ρ(V)− ρ(Um)‖ > lim
m→∞

|ρj(V) − ρj(U
m)| = |max{α, Hij + θ}| > min{|α|,min

i6=j
|Hij + θ|}.

2

Lemma 5.1 implies that ρ is discontinuous in any point of ∂Pc, if min
i6=j

|Hij + θ| 6= 0 (recall, that α < 0). In

this case ρ admits a discontinuity jump in ∂Pc which is not smaller than min{|α|,mini6=j |Hij + θ|} > 0.

In the sequel we will assume the generic condition Hij 6= −θ for all i 6= j ∈ I and denote

ν′ := min{|α|,min
i6=j

|Hij + θ|}/2. (18)

Remark 5.2. From the arguments above the return map ρ : Σc 7→ Σc presents the following properties:

1) There exists a finite family of pairwise disjoint open sets {Σc,{i}}i∈I
−

0

such that Σc =
⋃

i∈I
−

0

Σc,{i}.

2) There exists ν′ > 0 such that ρ admits a discontinuity jump larger than ν′ for all V ∈ ⋃

i∈I
−

0

∂Σc,{i}.

3) For all i ∈ I−0 the map ρ restricted to Σc,{i} is a contraction.

Now we induce an abstract concept from the properties of the return map ρ:

Definition 5.3. Let Σc be a compact subset of n-dimensional real space. A map ρ : Σc 7→ Σc is said
piecewise contractive if it satisfies the conditions 1), 2) and 3) of Remark 5.2.

The results of the sequel of this section apply to any piecewise contractive map.

5.2 The stable and the sensitive sets.

In order to study the asymptotic dynamics we divide the contractive zone Σc in two complementary sets,
the stable set S and the sensitive set C = Σc \ S. The set S is formed by the states whose future orbit
changes continuously under small perturbations of the initial state. The set C is formed by the states whose
future orbit changes drastically under arbitrarily small perturbations of the initial state.

Definition 5.4. Stable set. A point V ∈ Σc is stable, if for all ν > 0 there exists δ > 0 such that:

if p > 0 and ‖ρp(V) −W‖ < δ then ‖ρk(ρp(V))− ρk(W)‖ < ν ∀ k > 1. (19)

We call stable set S the set of all the stable points. We denote Sν,δ the set of the points V ∈ Σc such that
(19) holds for given ν > 0 and δ > 0.

Note that the stable set can be written as follows:

S =
⋂

ν>0

⋃

δ>0

Sν,δ =
⋂

ν>0

∞
⋃

h=1

Sν, 1
h

(20)

and that S is not empty if and only if for all ν > 0 there exists δ > 0 such that Sν,δ 6= ∅.
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Definition 5.5. Sensitive set. A point V ∈ Σc is sensitive, if it is not stable. That is, there exists ν > 0
such that for all δ > 0 there are p ∈ N and W ∈ Σc satisfying:

‖ρp(V)−W‖ < δ and ‖ρk(ρp(V)) − ρk(W)‖ > ν for some k > 1.

We call sensitive set C = Σc \ S the set of all the sensitive points.

Proposition 5.6. The stable set S is forward invariant, i.e ρ(S) ⊂ S, and the sensitive set C is backward
invariant, i.e ρ−1(C) ⊂ C.

Proof: Let us first prove that ρ(S) ⊂ S. Take V ∈ S. Then for all ν > 0 there exists δ > 0 such that for
all p > 1

if ‖ρp−1(ρ(V))−W‖ < δ then ‖ρk(ρp−1(ρ(V)))− ρk(W)‖ 6 ν ∀k > 1.

The last assertion is the definition of stable point applied to ρ(V). Therefore ρ(S) ⊂ S. As C is the
complement in Σc of S, and ρ(S) ⊂ S we have ρ−1(C) ⊂ C. 2

The same argument proves that ρ(Sν,δ) ⊂ Sν,δ for all ν > 0 and δ > 0.

Lemma 5.7. If V ∈ ∂Pc then it is a sensitive point. Even more, for all δ > 0 there exists W ∈ Σc such
that:

‖V −W‖ < δ and ‖ρ(V)− ρ(W)‖ > ν′,

where ν′ is defined in (18).

Proof: Let V ∈ ∂Pc. From Lemma 5.1 there exists a sequence of points {Um}m∈N which converges to V
and such that lim

m→∞
‖ρ(Um)− ρ(V)‖ > 2ν′ > ν′. Given δ > 0, there exists m > 1 large enough, such that

Um satisfies ‖Um −V‖ < δ and ‖ρ(Um)− ρ(V)‖ > ν′. Therefore, taking W = Um the point V satisfies
the definition of sensitive point with p = 0 and k = 1. 2

Remark 5.8. Lemma 5.7 and Proposition 5.6 state that the sensitive set C contains the points of ∂Pc

and their pre-images. Thus, the stable set satisfies:

S ⊂ Σc \
∞
⋃

k=0

ρ−k(∂Pc)

and as a consequence, the orbit of any stable point is contained in
⋃

i∈I
−

0

Σc,{i}. Moreover, if 0 < ν < ν′ then

this last inclusion is also true for the set Sν,δ. In other words,

ρk (Sν,δ) ⊂
⋃

i∈I
−

0

Σc,{i} ∀ k ∈ N. (21)

5.3 Asymptotically periodic dynamics

The purpose of this subsection is to study the dynamics on the stable set. Theorem 6 states that the
limit sets attracting the stable points is only composed of limit cycles. The proof essentially relies on the
contraction property of the return map. Since the map is not continuous, it is not possible to apply directly
a classic fixed point theorem for contractive maps. Nevertheless, we obtain a generalization of the Banach
fixed point theorem for piecewise contractive maps. It states the existence of periodic orbits - maybe of
period different from one and not necessarily unique - that attract all the stable points.

Definition 5.9. ω-limit set. The ω-limit set ω(V) ∈ Σc of a point V ∈ Σc is the set of the limit points
of the future orbit of V, that is:

ω(V) = {W ∈ Σc : ∃ {pk}k∈N
: lim

k→∞
pk = +∞ and lim

k→∞
ρpk(V) = W}
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As the the phase space Σc is compact, the ω-limit set of any point is not empty. The Poincaré map ρ is
not continuous, so ω(V) is not necessarily forward invariant. Nevertheless, the ω-limit set is the same for
all the points in the same orbit.

Definition 5.10. Limit cycle. A set L ∈ Σc is a limit cycle (also called a sink in the case of the discrete
dynamics of the Poincaré map) if it is a periodic orbit whose basin of attraction

B(L) = {W ∈ Σc : ω(W) = L}

contains an open neighborhood of L.

Theorem 6. If the stable set S is not empty, then there exists limit cycles such that the union of their
basins of attraction contains S.

Suppose that S 6= ∅. Then for all µ > 0 there exists δ > 0 such that Sµ,δ 6= ∅. We fix µ = ν′/2, being
ν′ defined in (18), and an arbitrary δ > 0 such that Sµ,δ 6= ∅. To prove the theorem, we introduce the so
called atoms of Sµ,δ.

For all i ∈ I−0 , we define Fi : P (Σc) → P (Σc), where P (Σc) denotes the set of the parts of Σc, by:

Fi(E) = ρ(E ∩ Σc,{i} ∩ Sµ,δ) ∀E ⊂ Σc.

Given k ∈ N and (i1, i2, . . . , ik) ∈ (I−0 )
k
, we call atom of generation k the set

Ai1i2...ik = Fik ◦ Fik−1
◦ · · · ◦ Fi1 (Σc,{i1})

and we call family of the atoms of generation k the set Ak = {Ai1i2...ik , (i1, i2, . . . , ik) ∈ (I−0 )
k}. Note that

the forward invariance of Sµ,δ by ρ ensures that any atom is contained in Sµ,δ.

Lemma 5.11. Let k ∈ N. i) If V ∈ Sµ,δ, then ρk(V) belongs to an atom of generation k.

ii) Any atom of generation k + 1 is contained in an atom of generation k.

iii) Let dk = max
A∈Ak

diam(A), where diam(A) denotes the diameter of A. We have lim
k→∞

dk = 0.

Proof: i) It follows from the forward invariance of Sµ,δ and from the inclusion Sµ,δ ⊂ ⋃

i∈I
−

0

Σc,{i} resulting

from (21). Suppose V ∈ Sµ,δ, it exists then i1 ∈ I−0 such that V ∈ Σc,{i1} ∩ Sµ,δ. It follows that

ρ(V) ∈ ρ(Σc,{i1} ∩ Sµ,δ) = Fi1 (Σc,{i1}) ∈ A1.

By induction, suppose that ρk(V) belongs to Ai1...ik ∈ Ak. The forward invariance of Sµ,δ ensures that
ρk(V) ∈ Sµ,δ. It exists then ik+1 ∈ I−0 such that ρk(V) ∈ Σc,{ik+1} ∩ Sµ,δ. Using the induction hypothesis
we obtain

ρk+1(V) ∈ ρ(Σc,{ik+1} ∩ Sµ,δ ∩ Ai1...ik) = Fik+1
◦ · · · ◦ Fi1(Σc,{i1}) ∈ Ak+1.

ii) Let Ai1i2...ik+1
be an atom of generation k + 1. Then,

Ai1i2...ik+1
= Fik+1

◦ · · · ◦ Fi2 ◦ Fi1(Σc,{i1}) ⊂ Fik+1
◦ · · · ◦ Fi2(Σc) = Fik+1

◦ Fik ◦ · · · ◦ Fi2(Σc,{i2}) ∈ Ak.

iii) It is enough to show by induction that

diam(A) 6 λk−1
α diam(Σc) ∀A ∈ Ak. (22)

Since any atom is a subset of Σc, it is true for k = 1. Assume (22) is true for k = k0. Take A = Ai1i2...ik0+1
∈

Ak0+1 and V, W ∈ A. Then A = ρ(A′ ∩ Σc,{ik0+1} ∩ Sµ,δ) where A′ = Ai1i2...ik0
∈ Ak0

. Therefore, there
exists V′, W′ ∈ Σc,{ik0+1} ∩A′ such that V = ρ(V′) and W = ρ(W′). Applying the contraction property
and the induction hypothesis we obtain:

‖V −W‖ = ‖ρ(V′)− ρ(W′)‖ 6 λα‖V′ −W′‖ 6 λαdiam(A′) 6 λk0

α diam(Σc),

which implies the desired result, since V and W are arbitrary in the atom A. 2
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Lemma 5.12. There exists k > 1 such that if A ∈ Ak then A ⊂ Σc,{i} for some i ∈ I−0 .

Proof: We first prove that if W ∈ Sµ,δ and V ∈ ∂Pc then ‖V−W‖ > δ/2. Since V ∈ ∂Pc, by Lemma 5.7
there exists U ∈ Σc such that

‖U−V‖ <
δ

2
and ‖ρ(U)− ρ(V)‖ > ν′ = 2µ. (23)

By contradiction suppose ‖V − W‖ < δ/2. Then, on one hand, since W ∈ Sµ,δ, by definition, we have
‖ρ(V)− ρ(W)‖ < µ and from (23) we obtain:

‖ρ(U)− ρ(W)‖ > ‖ρ(U)− ρ(V)‖ − ‖ρ(V)− ρ(W)‖ > 2µ− µ = µ. (24)

On the other hand, from (23) we have ‖U−W‖ 6 ‖U−V‖ + ‖V−W‖ < δ which together with (24) is
in contradiction with W ∈ Sµ,δ.

Let k > 1 such that dk < δ/4 and A ∈ Ak not empty. Take W ∈ A, then there exists i ∈ I−0 such
that W ∈ Σc,{i} (recall A ⊂ Sµ,δ and (21)). Let E = Σc \ Σc,{i} and let ∂E be its boundary. We denote
dist(W, E) the distance between the point W and the set E, defined from the norm ‖ · ‖. We have:

dist(W, E) = dist(W, ∂E) = dist(W, ∂Σc,{i}) > dist(W, ∂Pc) >
δ

2
.

Let W′ ∈ A then dist(W′,W) 6 diam A 6 dk < δ/4 and from

dist(W′, E) > dist(W, E)− dist(W′,W) >
δ

2
− δ

4
> 0

we deduce that W′ /∈ E. Then W′ ∈ Σc,{i}. 2

Lemma 5.13. If there exist (i0, i1, . . . , ip−1) ∈ (I−0 )p and a family of sets B0, B1, . . . , Bp−1 satisfying

i) Bk ⊂ Σc,{ik} for all k ∈ {0, . . . , p− 1} and

ii) ρ(Bp−1) ⊂ B0 and ρ(Bk−1) ⊂ Bk for all k ∈ {1, . . . , p− 1},
then there exists a unique periodic point of period p in B0 whose orbit is the ω- limit set of any point
contained in the union of the Bk’s.

Proof: Since each Bk is contained in a contractive piece of ρ, it follows that ρp is contractive B0 and
ρp(B0) ⊂ B0. Then, by the fixed point theorem of Banach, we deduce the existence of a unique periodic
point Ṽ of period p in B0.

We prove now that if V ∈ Bk, then ω(V) is the orbit L of Ṽ. Without loss of generality we can assume
V ∈ B0. It is enough to show that ω(V) = ω(Ṽ), since the ω-limit set of a periodic point coincides with
its orbit.

Let {pj}j∈N
be a sequence of natural numbers such that lim

j→∞
pj = +∞ and either lim

j→∞
ρpj (V) or

lim
j→∞

ρpj (Ṽ) exists. Since V and Ṽ belong both to B0, by hypothesis ρpj (V) and ρpj (Ṽ) belong to the

same continuity piece for all j ∈ N. Using the contraction property we obtain:

lim
j→∞

‖ρpj (V)− ρpj (Ṽ)‖ 6 lim
j→∞

λpj
α ‖V− Ṽ‖ = 0.

It follows that both lim
j→∞

ρpj (V) and lim
j→∞

ρpj (Ṽ) exist and are equal. This proves that ω(V) = ω(Ṽ) as

wanted. 2

Proof of Theorem 6: Let V ∈ S. Then, due to the definition of the stable set S, there exists δ > 0 such
that V ∈ Sµ,δ. By equality (20), it is not restrictive to assume that δ = 1/h for some natural number
h > 1 depending on the point V. Therefore, to prove the existence of at most countable many limit cycles
attracting the orbit of all the points in S, it is enough to prove that, for any fixed δ = 1/h > 0 (in a
countable set), there exists a finite number N = N(δ) of limit cycles L1, L2, . . . , LN (depending on δ) such
that

∀V ∈ Sµ,δ, ω(V) = Li for some i = 1, . . . , N.

16



Step 1 Let k̃ ∈ N be such that the thesis of Lemma 5.12 is true. We show that the image by ρ of any
atom of Ak̃ is contained in an atom of Ak̃. Suppose A ∈ Ak̃. By Lemma 5.12, there exists i ∈ I−0 such that
A ⊂ Σc,{i}, and since any atom is contained in Sµ,δ, we have ρ(A) = ρ(A ∩ Σc,{i} ∩ Sµ,δ) = Fi(A). Then,
ρ(A) ∈ Ak̃+1, and according to ii) of Lemma 5.11 it is included in an atom of Ak̃.

Step 2 Let V ∈ Sµ,δ and W = ρk̃(V). Then, from i) and ii) of Lemma 5.11 we deduce that each point of
the orbit of W belongs to an atom of Ak̃. Being the number of atoms in Ak̃ finite, it must exist B0 ∈ Ak̃

such that ρj0(W) ∈ B0 and ρj0+p(W) ∈ B0 for some j0 and p ∈ N. Let’s denote B1, B2, . . . , Bp−1 the
atoms of Ak̃ that contain respectively ρj0+1(W), ρj0+2(W), . . . , ρj0+p−1(W). By Step 1, the image by ρ of
each of these atoms is contained in an atom of Ak̃, so they must satisfy:

ρ(Bp−1) ⊂ B0 and ρ(Bk−1) ⊂ Bk ∀ k ∈ {1, . . . , p− 1}.

Moreover, by Lemma 5.12 there exists (i0, . . . , ip−1) ∈ (I−0 )p such that Bk ⊂ Σc,{ik} for all 0 6 k 6 p− 1.

Therefore, this family of atoms satisfy the hypothesis of Lemma 5.13. Since ρk̃+j0(V) ∈ B0 and ω(V) =

ω(ρk̃+j0(V)), we conclude that ω(V) is a periodic orbit of period p contained in the union of the atoms
Bk’s. Note that it may exit at most #Ak̃ different families satisfying Lemma 5.13 and thus at most #Ak̃

different periodic orbits.

Step 3 We have shown that the ω-limit set of any point of Sµ,δ is a periodic orbit contained in
⋃

i∈I
−

0

Σc,{i}.

We finish the proof of the theorem by showing that any periodic orbit is actually a limit cycle.

Suppose Ṽ is a periodic point of period p and let L = {Ṽ, ρ(Ṽ), . . . , ρp−1(Ṽ)} ⊂ ⋃

i∈I
−

0

Σc,{i} be its

orbit. We have to prove that there exists an open neighborhood of L which points have L as ω-limit set
(i.e, the basin of attraction of L contains an open neighborhood of L). For all k ∈ {0, . . . , p − 1} we
have ρk(Ṽ) ∈ Σc,{ik} where (i1, . . . , ip) ∈ (I−0 )p. Since the continuity piece Σc,{ik} is open, there exists

an open ball B(ρk(Ṽ), ak) of center ρk(Ṽ) and radius ak > 0 whose closure is contained in Σc,{ik}. Let
0 < a < min{ak, 0 6 k 6 p− 1} and B be the open neighborhood of L defined by:

B =

p−1
⋃

k=0

Bk where Bk = B(ρk(Ṽ), a) ∀ k ∈ {0, . . . , p− 1}.

We have Bk ∈ Σc,{ik}, and if we show that ρ(Bp−1) ⊂ B0 and ρ(Bk−1) ⊂ Bk for all k ∈ {0, . . . , p − 1},
then we can apply Lemma 5.13 to prove that the open set B contains a unique periodic orbit (L) which is
the ω-limit set of all the points of B. We will only prove that ρ(Bp−1) ⊂ B0, the other inclusions admit

an analogous proof. If V ∈ Bp−1 then V and ρp−1(Ṽ) belong to the same piece of continuity Σc,{ip−1}.
Applying the contraction property of ρ we obtain:

‖ρ(V)− ρp(Ṽ)‖ 6 λα‖V− ρp−1(Ṽ)‖ < λαa < a.

In other words ‖ρ(V)− Ṽ‖ < a which implies ρ(V) ∈ B0. 2

6 Conclusion

In this paper we proved the existence of an open set of parameter values (strong interactions) such that
the dynamics of IF neural networks is equivalent to that of a piecewise contractive return map. Then, the
continuous time original system satisfies the thesis of Theorem 1 describing the asymptotic dynamics of
the stable points: their orbits all converge to limit cycles, regardless of whether the interactions are all
excitatory, all inhibitory or combined. Besides, we proved that the limit cycle is unique and that the system
is not only periodic but also synchronized, if all the neurons are excitatory.

These results principally concern the dynamics on the stable set. This set is always invariant but its size
a priori depends on the piecewise contractive map under study. Nevertheless, we can state a rough almost
obvious observation about its complementary set, namely the sensitive set. Since the map is not continuous,
all the sensitive points may become stable after some future iterations. In this case, the sensitive set does
not contain a forward invariant set and the whole asymptotic dynamics is stable. In the other case, the
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limit set of some sensitive points is chaotic in a topological sense. The study of the existence of this chaotic
dynamics and its characterization, in addition to the results of this paper about the stable dynamics, would
give a rather complete picture of the asymptotic dynamics of general piecewise contractive maps.

We also proved the existence of a set of parameter values such that the return map is not contractive,
and where consequently the asymptotic dynamics is still unknown. We believe that the problem is non
trivial and relevant at least for the mathematical science. As far as we know, there are still few results in the
theory of dynamical systems, describing the global dynamics of piecewise continuous maps of arbitrary large
dimensions. We can mention for example results developed for piecewise continuous weakly coupled map
lattices (see [19] and reference therein), but the system is supposed expanding and does not have contractive
directions. From the geometric and ergodic points of view, the abundant results on dynamical systems that
hold for arbitrary large dimensions, and also their proofs, were mainly developed under assumptions of C1

plus Hölder regularity. These assumptions are sometimes too strong for the models that appear in natural
or technological sciences nowadays.

Acknowledgments: We thanks R. Budelli for being at the origin of this collaboration, and for useful
discussions about biological neural networks and their dynamics. E. C. has been supported by the Agenćıa
Nacional de Investigación e Innovación de Uruguay. P. G. has been supported by project FONDECYT
1100764.

7 Appendix

7.1 Proof of Lemma 3.3

Let i 6= j ∈ I. To prove the Lemma 3.3, we consider the open region of values of the interactions satisfying:

• (H’1) Hij and Hji belong to (0, θ − c∗),

• (H’2) Hsk > θ for all for all s ∈ {i, j} and k /∈ {i, j},
• (H’3)

∑

l 6=s :Hls>0

Hls < θ − c∗ for all s ∈ {i, j},

• (H’4)
∑

l 6=s

Hls > 0 for all s ∈ {i, j}.

We recall that c∗ = β−
√

β(β − θ) ∈ (θ/2, θ). The proof of the lemma can be done with other open regions
of the parameters. However, it seems that this region allows the simplest proof, unless one consider mixed
neurons.

Step 1: We show that in this region of parameters, Γij and Γji are respectively equal to the set Γ′
ij and

Γ′
ji defined by

Γ′
ij := {V ∈ Σ : Vi ∈ (c∗, θ) and Vk = 0 ∀ k 6= i} and Γ′

ji := {V ∈ Σ : Vj ∈ (c∗, θ) and Vk = 0 ∀ k 6= j}.

A direct consequence is that Γij and Γji are not empty.

Let us prove that Γij = Γ′
ij (an analogous proof allows to show that Γji = Γ′

ji). It obvious that Γij ⊂ Γ′
ij .

To show Γ′
ij ⊂ Γij , it is enough to prove that Γ′

ij ⊂ Σi ∩ ΣI\{j}. Suppose V ∈ Γ′
ij . Then, we have

ti(V) = t̄(V), since Vk < Vi for all k 6= i. It implies that V ∈ Σi and J0(V) = {i}. It remains to prove
that V ∈ ΣI\{j}, that is to say J(V) = I \ {j}.
Let k ∈ I \ J0(V) = I ⊂ {i}, then

φ
t̄(V)
k (V) +

∑

l∈J0(V) :Hlk>0

Hlk = φ
ti(V)
k (V) +Hik = β − β(β − θ)

β − Vi

+Hik ∈ (Hik, c
∗ +Hik).

If k 6= j, then k /∈ {i, j} and by hypothesis (H’2) we have Hik > θ. Therefore, k ∈ J1(V). If k = j, by
hypothesis (H’1) we have Hik < c∗ − θ and then k /∈ J1(V). We deduce that J1(V) = I \ {j}.
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Let k ∈ I \ J1(V) = {j}, then

φ
t̄(V)
k (V) +

∑

l∈J1(V) :Hlk>0

Hlk = φ
ti(V)
j (V) +

∑

l 6=j :Hlj>0

Hlj < c∗ + θ − c∗ = θ

and it follows that j /∈ J2(V). We deduce that J2(V) = J1(V) = I \ {j} and then J(V) = I \ {j}.
Step 2: We show that there exists (a, b) ⊂ (c∗, θ) such that for all V ∈ Γij such that Vi ∈ (a, b) we have
ρ(V) ∈ Γji and ρ2(V) ∈ Γij .

Suppose V ∈ Γji, then ρk(V) = 0 for all k 6= i and

ρi(V) = φ
tj(V)
i (V) +

∑

l 6=i

Hli = gi(Vj) where gi(x) := β − β(β − θ)

β − x
+
∑

l 6=i

Hli ∀x 6= β.

Since gi(c
∗) = c∗ +

∑

l 6=iHli > c∗ (by H’4) and gi is continuous, there exists δ′ > 0 such that gi(c
∗) > c∗

for all x ∈ (c∗ − δ, c∗+ δ). On the other hand, the function gi being decreasing, gi(x) < gi(c
∗) < θ (by H’3)

for all x > c∗. It results that gi(x) ∈ (c∗, θ) for all x ∈ (c∗, c∗ + δ′). Since ρi(V) = gi(Vj), using Γij = Γ′
ij ,

we obtain that
if V ∈ Γji and Vj ∈ (c∗, c∗ + δ′) then ρ(V) ∈ Γij . (25)

Suppose now V ∈ Γij , then ρk(V) = 0 for all k 6= j and

ρj(V) = φ
ti(V)
j (V) +

∑

l 6=j

Hlj = gj(Vi) where gj(x) := β − β(β − θ)

β − x
+
∑

l 6=j

Hlj ∀x 6= β.

We have gj(θ) =
∑

l 6=j Hlj < θ − c∗ < c∗ (by H’3 and because c∗ > θ/2) and gj(c
∗) = c∗ +

∑

l 6=j Hlj > c∗

(by H’4). By continuity of gj , it exits then b ∈ (c∗, θ) such that gj(b) = c∗ and it exits δ > 0 such
that gj(x) ∈ (c∗ − δ′, c∗ + δ′) for all x ∈ (b − δ, b + δ). If we denote a = max{c∗, b − δ}, then for all
x ∈ (a, b), we have gj(x) ∈ (c∗ − δ′, c∗ + δ′) and gj(x) > gj(b) = c∗, since gj is decreasing. It follows that
gj(x) ∈ (c∗, c∗ + δ′) for all x ∈ (a, b). Since ρj(V) = gj(Vi), using Γij = Γ′

ij and supposing δ′ < θ − c∗, we
obtain

if V ∈ Γij and Vi ∈ (a, b) then ρj(V) ∈ (c∗, c∗ + δ′) and ρ(V) ∈ Γji. (26)

This ends the proof of the Lemma 3.3, since if V satisfies the hypothesis of (26), then V ∈ Γij , ρ(V) ∈ Γji

and by (25) we have also ρ2(V) ∈ Γij .

7.2 Proof of Theorem 3

Lemma 7.1. Under the hypothesis (H1),(H2),(H3) and (H4) there exists c > 0 such that for all n ∈ N

‖ρn(V) − ρn(W)‖ 6 cλn
α‖V−W‖ if V, W ∈ PJ0...Jn

:=

n
⋂

i=0

ρ−i(ΣJi
)

where J0, . . . , Jn ∈ P (I) and λα is the constant of Proposition 3.4.

Proof: Consider the integer p of Proposition 3.7 and define for all k ∈ {0, . . . , p}

ck = max
J0,...,Jk∈P (I)

sup

{‖ρk(V) − ρk(W)‖
λk
α‖V −W‖ , V 6= W ∈ PJ0...Jk

}

where PJ0...Jk
=

k
⋂

i=0

ρ−i(ΣJi
).

Let us show that ck is bounded for all k ∈ {0, . . . , p}. Fix a k ∈ {0, . . . , p} and let J0, . . . , Jk ∈ P (I). The
Poincaré map ρ being Lipchitz continuous on each ΣJi

, by construction of PJ0...Jk
, the composition ρk is

also Lipchitz continuous on PJ0...Jk
. There exists then a constant L > 0 such that
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‖ρk(V)− ρk(W)‖ 6 L‖V−W‖ ∀ V, W ∈ PJ0...Jk
,

and as a consequence

sup
V 6=W∈PJ0...Jk

‖ρk(V) − ρk(W)‖
λk
α‖V −W‖ 6

L

λk
α

.

It follows that ck is bounded for all k ∈ {0, . . . , p} and c := max
k∈{0,...,p}

ck exists.

Let n ∈ N and J0, . . . , Jn ∈ P (I). If n 6 p, then by definition of c

‖ρn(V) − ρn(W)‖ 6 cλn
α‖V−W‖ if V, W ∈ PJ0...Jn

. (27)

If n > p, take (27) as an induction hypothesis. Let Jn+1 ∈ P (I) and suppose V, W ∈ PJ0...Jn+1
. As n > p

by Proposition 3.7 and Proposition 3.6 we have ρn(Σ) ⊂ Σc. Therefore, ρn(V) and ρn(W) ∈ Σc ∩ ΣJn
.

From Proposition 3.4 it follows

‖ρn+1(V) − ρn+1(W)‖ 6 λα‖ρn(V) − ρn(W)‖

and from the induction hypothesis we obtain

‖ρn+1(V) − ρn+1(W)‖ 6 cλn+1
α ‖V−W‖.

2

Let λα < µ < 1 and let n0 ∈ N be such that c
(

λα

µ

)n0

< 1. Consider the metric d defined by

d(V,W) :=

n0−1
∑

i=0

‖ρi(V) − ρi(W)‖
µi

∀V,W ∈ Σc

and the partition P∗ of Σ defined by P∗ := {PJ0...Jn0
, J0 . . . Jn0

∈ P (I)}. To prove the theorem it is
enough to show that ρ is piecewise contractive in Σ with respect to P∗ for the metric d. This is the purpose
of the following calculation. First, note that for all V, W in Σ, we have:

d(ρ(V), ρ(W)) =

n0
∑

i=1

‖ρi(V) − ρi(W)‖
µi−1

= µ

(

d(V,W) +
‖ρn0(V) − ρn0(W)‖

µn0
− ‖V−W‖

)

.

Now, suppose V and W in PJ0...Jn0
for some J0 . . . Jn0

∈ P (I). Then, applying Lemma 7.1 we obtain:

d(ρ(V), ρ(W)) 6 µ

(

d(V,W) + c

(

λα

µ

)n0

‖V −W‖ − ‖V−W‖
)

.

By definition of µ and n0, we have then

d(ρ(V), ρ(W)) 6 µd(V,W)

which ends the proof of Theorem 3.
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