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ABSTRACT
We study the bias and scatter in mass measurements of galaxy clusters resulting from fitting spherically-

symmetric Navarro, Frenk & White (NFW) model to the reduced tangential shear profile measured in weak
lensing observations. The reduced shear profiles are generated for≈ 104 cluster-sized halos formed inΛCDM
cosmology using a cosmologicalN-body simulation of a 1h−1Gpc box. In agreement with previous studies, we
find that the scatter in the weak lensing masses derived usingsuch fitting method has irreducible contributions
from the triaxial shapes of cluster-sized halos and uncorrelated large-scale matter projections along the line-of-
sight. Additionally, we find that correlated large-scale structure within several virial radii of clusters contributes
a smaller, but nevertheless significant, amount to the scatter. The intrinsic scatter due to these physical sources
is ≈ 25− 30% depending on the cluster mass and redshift. For current,ground-based observations, however,
the total scatter should be dominated by shape noise from thefinite number of background galaxies used to
measure the shear. Importantly, we find that weak lensing mass measurements can have a small,≈ 5− 10%,
but non-negligible amount of bias. Given that weak lensing measurements of cluster masses are a powerful
way to calibrate cluster mass-observable relations for precision cosmological constraints in the near future, we
strongly emphasize that a robust calibration of the mean amount of bias requires detailed simulations which
include more observational effects than we consider here. Such a calibration exercise needs to be carried out for
each specific weak lensing mass estimation method, as the details of the method determine in part the expected
scatter and bias.
Subject headings:galaxies: clusters: general — gravitational lensing

1. INTRODUCTION

The abundance of galaxy clusters as a function mass and
redshift can be used to investigate both the nature of dark
energy and, potentially, deviations of gravity from General
Relativity. The power in this cosmological test arises from
the sensitivity of the abundance of galaxy clusters to both
the geometry of the universe and the growth of structure
Holder et al. (e.g., 2001); Haiman et al. (e.g., 2001, see Voit
2005 for a recent review). While in principle a compari-
son between the predicted and observed abundance of galaxy
clusters is straightforward, there are complications which will
need to be at least partially addressed through simulations.
These complications include the completeness and purity
of cluster finding algorithms (e.g., Reblinsky & Bartelmann
1999; White et al. 2002; Carlstrom et al. 2002; Cohn et al.
2007; Rozo et al. 2007; Cohn & White 2009; Vikhlinin et al.
2009) and bias and scatter in estimators of total cluster mass
(Lima & Hu 2005; Shaw et al. 2010). The total mass is crit-
ical because it is by far the most accurate theoretically pre-
dicted cluster property.

Although in principle the total mass-observable relations
can be calibrated self-consistently within a given clustersam-
ple (e.g., Majumdar & Mohr 2003, 2004; Lima & Hu 2005),
there is also significant hope that masses measured using
weak lensing (WL) observations can be used to accurately
calibrate such relations (e.g., Hoekstra 2007; Mahdavi et al.
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2008; Zhang et al. 2008; Vikhlinin et al. 2009; Zhang et al.
2010, and references therein). Indeed, WL measurements
of masses have now been made for dozens of clusters (e.g.,
Dahle 2006; Bardeau et al. 2007; Hoekstra 2007; Bergé et al.
2008; Okabe et al. 2010; Abate et al. 2009) and this number is
expected to increase to hundreds of clusters in the near future
(Kubo et al. 2009). However, for this hope to be realized in
practice, we need to know both the scatter and potential bias
in the WL mass measurements. The scatter will determine the
number of WL mass measurements required to calibrate nor-
malization and slope of scaling relations to a given accuracy.
The bias will determine the systematic uncertainty with which
such a calibration can be made.

In this work we investigate the scatter and bias in
WL estimates of cluster masses obtained from fitting the
Navarro-Frenk-White (NFW, Navarro et al. 1997) profile to
the shear profile around individual clusters. Previous stud-
ies in the literature have identified two primary system-
atic effects in WL masses. First, the triaxial shapes of
Cold Dark Matter (CDM) halos (e.g., Warren et al. 1992;
Jing & Suto 2002; Bailin & Steinmetz 2005; Kasun & Evrard
2005; Allgood et al. 2006; Shaw et al. 2006; Bett et al. 2007;
Macciò et al. 2007, 2008) can bias a spherically-symmetric
model fit of the reduced tangential shear profile and lead to er-
rors of≈±30−50% in the estimated mass (Clowe et al. 2004;
Corless & King 2007; Meneghetti et al. 2010b). The essen-
tial sense of this effect is that for halos whose major axes are
aligned along the line-of-sight (LOS), the WL mass is overes-
timated, and for halos whose major axes are transverse to the
LOS, the WL mass is underestimated.

Second, correlated and uncorrelated large-scale struc-
ture (LSS) along the LOS can cause positive bias
of ≈ 30% and scatter of≈ 20% in the recovered
WL masses (Metzler et al. 2001; Hoekstra 2001, 2003;
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Hoekstra et al. 2010b; de Putter & White 2005; Marian et al.
2010; Noh & Cohn 2010). The exact amount of bias in the
WL masses due to correlated LSS depends strongly on the
method used to analyze the WL data (compare Metzler et al.
2001 with Marian et al. 2010 and our results below). Addi-
tionally, the estimated amount of scatter in the WL masses
due to correlated LSS depends somewhat on how much LSS
along the LOS is included from the simulations (Metzler et al.
2001). Hoekstra (2001, 2003) and Hoekstra et al. (2010b)
found that uncorrelated LSS along the LOS does not bias
the WL masses but does add extra scatter of≈ 15− 30% de-
pending on the cluster’s mass. Additionally, uncorrelatedLSS
from random projections along the LOS introduces correlated
noise in the shear field of the clusters (Hoekstra 2001, 2003;
Hoekstra et al. 2010b; Dodelson 2004).

Note that the projection of LSS and the effects of triaxiality
are closely associated. Neighboring halos of similar mass
are generally connected by a filament of matter with the
fraction of halos connected by filaments dropping as the
distance between halos is increased (Colberg et al. 2005).
The direction of the major axis of halos is correlated with the
direction to its massive neighbor and the filament connecting
the halos (e.g., Splinter et al. 1997; Onuora & Thomas
2000; Faltenbacher et al. 2002; Hopkins et al. 2005;
Bailin & Steinmetz 2005; Kasun & Evrard 2005;
Basilakos et al. 2006; Aragón-Calvo et al. 2007;
Lee & Evrard 2007; Hahn et al. 2007; Zhang et al. 2009).
Furthermore, these alignments persist out to very large scales,
with the correlation finally reaching zero only at≈ 100
h−1Mpc (Faltenbacher et al. 2002; Hopkins et al. 2005).
Therefore, halos viewed along their major axes would also
be more likely to exhibit a larger amount of filamentary LSS
projecting onto the halo’s field (see Noh & Cohn 2010 for
a similar study which demonstrated this effect explicitly for
many cluster observables including WL masses).

In this work, we extend these previous studies by explic-
itly and systematically considering the effects of halo shape,
as well as correlated, and uncorrelated LSS on the WL mass
estimates. We aim not only to give estimates of bias and
scatter in the WL masses as a function of true mass, defined
within a spherical radius enclosing a given overdensity, but
also to synthesize these previous results with our own into
a coherent picture of the sources of scatter and bias in WL
masses. To this end, we use the entire population of halos
in largeΛCDM simulation to study the relationship between
WL masses and true masses statistically. Additionally, we
systematically study this relationship under different amounts
of structure projected along the LOS. Our treatment is dif-
ferent than the previous works mentioned above because we
simultaneously consider a large number of integration lengths
in the range of 3-400h−1Mpc, employ a commonly used WL
mass estimator to enable easy comparison to current obser-
vational studies, use a statistical sample (∼ 104) of halos at
multiple redshifts (regardless of their dynamical state orenvi-
ronment), and avoid simulation box replications and random
rotations by using the results of Hoekstra (2001, 2003) to ex-
tend our results to the full LOS integration length back to the
weak lensing source redshift. Furthermore, as we will show
below, predicting the bias in WL mass estimates to better than
10% is a non-trivial task that will require detailed simulation
studies. In this context, our study serves as an example of
the kind of work that will be needed to obtain percent-level
accuracy from future WL mass estimates.

Although in practice different methods can be used
to estimate the total mass using the observed shear field
(King & Schneider 2001; Hoekstra 2003; Dodelson 2004;
Maturi et al. 2005; Corless & King 2008; Marian et al. 2010;
Oguri et al. 2010), in this study we adopt a specific model
in which the density profiles of clusters are assumed to
be described by the NFW profile. The prediction for the
reduced tangential shear in the thin-lens approximation
based on this profile (Bartelmann 1996; Wright & Brainerd
2000) is then used to fit the reduced tangential shear profiles
of the halos from the simulations. This method is com-
mon (e.g., Clowe & Schneider 2001; Hoekstra et al. 2002;
Clowe & Schneider 2002; Bardeau et al. 2005; Jee et al.
2005; Clowe et al. 2006; Dahle 2006; Kubo et al. 2007;
Paulin-Henriksson et al. 2007; Pedersen & Dahle 2007;
Okabe et al. 2010; Abate et al. 2009; Umetsu et al. 2009;
Kubo et al. 2009; Hamana et al. 2009; Holhjem et al. 2009;
Israel et al. 2010) and serves to illustrate our main points.
Our results as to the scatter of the estimated WL masses
with respect to the true mass are specific to this method.
Other methods require their own quantitative evaluation of
the WL mass errors using simulations along similar lines.
However, our results do have some applicability to aperture
densitometry (also known asζ-statistics, Fahlman et al. 1994;
Kaiser 1995) WL mass measurements. It is clear from the
study of Meneghetti et al. (2010b) that WL masses estimated
from aperture densitometry and spherically-symmetric fits
to the reduced tangential shear profile are quite correlated.
Thus we can expect qualitatively similar conclusions about
the sources of scatter and bias in WL mass estimated from
these two methods.

Note also that we have made no attempt to identify an opti-
mal method to estimate the mass from the shear field (e.g.,
Dodelson 2004; Maturi et al. 2005; Corless & King 2008;
Marian et al. 2010), which could potentially decrease the scat-
ter or bias. In fact, optimal, compensated aperture mass filters
(Kaiser et al. 1994; Schneider 1996) applied to shear fields
in the context of WL peak finding have been shown to be
able to largely eliminate the effects of uncorrelated LSS on
the mass reconstructions of individual peaks (Maturi et al.
2005; Marian et al. 2010). Dodelson (2004) suggested us-
ing the correlations in the noise of the shear field due to ran-
dom LSS projections to help remove this kind of contami-
nation (see Oguri et al. 2010 for a recent observational study
which employs a similar technique). Corless & King (2008)
and Corless et al. (2009) used triaxial halo models to account
for the orientation of the clusters along the LOS when fitting
for WL masses using the entire two-dimensional shear field.
They tested this procedure with analytic models for triaxial
NFW halos and found that it can reduce the amount of bias
in the WL masses through the use of a prior on the distri-
bution of triaxial halo shapes from N-body simulations. Our
results for the scatter and bias in the presence of observational
errors, triaxial halo shapes, and LSS may thus be somewhat
pessimistic. However, given how commonly the mass mea-
surement method we employ is used to analyse observations,
it is still necessary to obtain estimates of scatter and biasin
the relation between WL masses measured using this method
and true three-dimensional masses.

In §2 we describe the simulation and halo finder used in
this work. In §3 we review the weak lensing formalism and
describe our procedure for extracting reduced tangential shear
profiles from the particle distributions around the halos inour
simulations. In §4 we fit the reduced tangential shear profiles
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of simulated clusters, illustrate how various sources of scatter
in the WL masses behave in simulations, and give estimates
of bias and scatter in the recovered masses in the presence of
observational errors. In §5 we compare our results to previous
work and describe some implications of our bias and scatter
estimates. Finally, we give some general remarks and conclu-
sions in §6.

2. THE COSMOLOGICAL SIMULATION

For our study we use a simulation of a flatΛCDM cosmol-
ogy with parameters consistent with the WMAP 7 year re-
sults (Komatsu et al. 2010):Ωm = 0.27,Ωb = 0.044,σ8 = 0.79,
h = 0.7 in units of 100 km s−1/Mpc, and a spectral index of
n = 0.95. The simulation followed evolution of 10243 dark
matter particles fromzi = 60 toz= 0 in a box of 1000h−1Mpc
on a side using distributed version of the Adaptive Refinement
Tree (ART code Kravtsov et al. (1997); Gottloeber & Klypin
(2008). The mass of each dark matter particle in the simula-
tion is 6.98×1010 h−1M⊙ and their evolution was integrated
with effective spatial resolution of 30h−1kpc. The simula-
tion was used in Tinker et al. (2008), where it was labeled
L1000W. We use the redshift 0.25 and 0.50 snapshots for our
results below.

The halos are identified using the spherical overdensity al-
gorithm described in Tinker et al. (2008) and we refer the
reader to this work for a complete description of the details
concerning halo identification. We measure the true halo mass
using the common overdensity criterion

M∆ = ∆ρ(z)
4
3
πr3

∆
(1)

whereM∆ is the mass at the overdensity∆ρ(z) and r∆ is
the radius enclosing this overdensity. We use masses defined
using overdensities defined with respect to both the mean,
ρm(z), and critical densities,ρc(z), at a given redshift of our
simulation snapshot. We will follow the notation thatM500c
is the mass with∆ρ(z) = 500ρc(z), M200m is the mass with
∆ρ(z) = 200ρm(z), etc. The various mass thresholds used in
our analysis will be listed when they are relevant.

For every halo we additionally fit the spherically-averaged
three-dimensional density profile with the NFW profile. We
first bin the profiles using the following procedure. We sort
the halo’s particles by distance to the halo center into ascend-
ing order. We use the halo center output from the halo finder.
We then group the particles in bins so that there are at least 30
particles per bin moving out in radius. The radius of the bin is
set to the average radius of the particles in the bin. The error
in the density is computed assuming Poisson statistics. The
density profiles are then fit with an NFW profile using aχ2-
fitting metric using the non-linear least-squares Levenberg-
Marquardt algorithm (Press et al. 1992).

We also measure the halo’s shape from the inertia tensor.
The inertia tensor is defined as (e.g., Shaw et al. 2006)

Mi j =
1

N∆

∑

n

x(n)
i x(n)

j , (2)

where the sum extends over allN∆ particles of the halo within
a predefined radiusr∆ andx(n)

i is theith coordinate (i = 1,2,3)
of the nth particle relative to the halo center. We first com-
pute the inertia tensor defined in Equation 2 using all particles
within a predefined radiusr∆. We then diagonalizeMi, j and
compute its eigenvalues and eigenvectors. The eigenvalues

and eigenvectors are sorted into ascending order. The square-
roots of the eigenvalues will be denoted by{a,b,c} and we
adopt the convention thata< b< c. With our conventions
the intermediate-to-major axis ratio isb/c and the minor-to-
major axis ratio isa/c. Finally, we define a parameter from
the axis ratios calledS,

S=
a
c
. (3)

For a perfectly spherical halo,S= 1 and for a perfectly pro-
late halo,S= 0. This parameter does not distinguish between
oblate and prolate halos, but halos inΛCDM cosmologies are
known to be preferentially prolate (e.g., Shaw et al. 2006).

Note that we do not iteratively measure the triaxial axes, as
is customary done. We also do not apply radial weighting and
do not remove subhalos, as is often done in more sophisticated
algorithms measuring halo triaxiality (e.g., Bett et al. 2007;
Lau et al. 2010). In this study we are only interested in the
general direction of each halo major axis, and only use the
measured axis ratioS to rank-order halos by their triaxiality
(i.e. we do not use its absolute value). Thus our simplified
method for estimating axis ratios should be adequate for our
purposes.

3. LENSING FORMALISM

The weak lensing equations follow from the linearized
geodesic and Einstein equations set in an homogeneous,
isotropic, expanding universe, with weak perturbations tothe
metric (see Dodelson 2003 for a pedagogical introduction).
We use the approximation given by eqs. 7-9 in Jain et al.
(2000) in which the line-of-sight component of the Laplacian
of the potential is neglected and straight-line photon paths are
assumed. Under this approximation and assuming a flat ge-
ometry, the convergence can be calculated as (Metzler et al.
2001)

κ =
3
2

(

Hoχ

c

)2

Ωm

∫ 1

0
t(1− t)

δ

a
dt , (4)

whereχ is the comoving distance to the source,χ′ is the ra-
dial component of the photon’s comoving position along its
unperturbed path,t ≡ χ′/χ, δ is the mass overdensity,a is the
scale factor normalized to unity today,Ho is the Hubble con-
stant,c is the speed of light, andΩm is the total matter density
at z= 0 in units of the present day critical density. This equa-
tion is commonly referred to as the Born approximation in the
literature and is applicable for sources at a single redshift. In
the case of multiple sources at different redshifts, the integral
can simply be averaged over the normalized source redshift
distribution. Equation 4 highlights the dimensionless lensing
kernelg(t) = t(1−t). In general, this kernel function is broad in
redshift and weak lensing measurements of individual clusters
can therefore be easily affected by structures projected along
the LOS.

Although more complicated ray-tracing schemes exist to
evaluate the convergence and shear along the actual curved
photon paths (e.g., Jain et al. 2000; Vale & White 2003;
Hilbert et al. 2009), we choose to use the Born approxima-
tion to simplify and speed up our calculations. Generally,
one expects that the Born approximation will fail in high-
convergence regions (see e.g., Vale & White 2003). We use
a ray-tracing code similar to that of Hilbert et al. (2009) to
check the accuracy of the Born approximation around our ha-
los. Over the radial range of 1′ to 25′ at bothz = 0.25 and
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z= 0.50 the Born approximation is accurate to. 1% and so
does not compromise the accuracy of our WL masses.

Working in the flat-sky approximation, the two components
of the shear and the convergence are related through deriva-
tives of the lensing potentialψ:

γ1 =
1
2

(

∂2
1ψ −∂2

2ψ
)

, (5)

γ2 = ∂2
12ψ , (6)

κ =
1
2
∇2

⊥ψ . (7)

Note that equation 7 is a two-dimensional Poisson equation
for ψ sourced by 2κ. Assuming vacuum boundary conditions,
ψ can be written as a convolution of the two-dimensional
Green’s function with the effective source 2κ,

ψ =
1
π

∫

d2x′κ(x′) ln |x − x′| . (8)

The shear components defined in Equations 5 and 6 can be ob-
tained fromκ by taking the appropriate derivatives of Equa-
tion (8) with respect to the components ofx. We choose to
directly convolve the resulting kernels forγ1,

1
2π

(

∂2
1 ln |x − x′|−∂2

2 ln |x − x′|
)

=
(x2 − x′2)

2 − (x1 − x′1)
2

2π
[

(x1 − x′1)
2 + (x2 − x′2)

2
]2 ,

and forγ2,

1
π
∂2

12 ln |x − x′| = −
(x1 − x′1)(x2 − x′2)

π
[

(x1 − x′1)
2 + (x2 − x′2)

2
]2 ,

into the convergence fieldκ using an FFT and zero padding.

3.1. Analysis of the Simulation

We use Equation 4 to produce convergence maps around
clusters extracted from the simulation. Using a single sim-
ulation snapshot, we extract all of the particles around each
cluster in a 20×20×400h−1Mpc box. We use comoving dis-
tances in this work. Thez-axis direction is used for the long
axis of the box. To explore the effects of projected correlated
LSS, we vary the length of the long axis of the box from 3 to
400h−1Mpc, but always keep the transverse size of the analy-
sis volume fixed.

For a given choice of the LOS length, we sum over all parti-
cles from the simulation along the long dimension of the vol-
ume in order to compute the integral in Equation 4, account-
ing for the periodic boundary conditions. In the transverse
directions, we use the triangular-shaped cloud interpolation
onto a projected 2D grid which has a dimension of 512×512
cells. The angle of each particle from the cluster center is
computed assuming the cluster center is at the comoving dis-
tance corresponding to the simulation snapshot redshift. The
source redshiftzs is fixed at 1.0 in this work. We then compute
the shear field from the convergence maps according to the
procedure described above. We have checked that with a grid
of 1024×1024 cells and a transverse box width of 15h−1Mpc
(a factor of≈ 2.7× better resolution) that our results for the
bias in the WL masses we find below are unchanged by. 1%.
The results for the scatter and the slope of theMWL − M∆ re-
lation are unchanged to this accuracy as well.

For every grid cell, we calculate the component of the shear
tangential to the radius vector connecting the cell under con-
sideration to the center of the halo. The shear transforms asa
second-rank tensor under rotations, so that we can define

γE ≡ −γ1cos(2θ) −γ2sin(2θ)

γB ≡ γ1 sin(2θ) −γ2cos(2θ) ,

whereθ is the angle counter-clockwise from the positive 1-
axis. We have used the commonE- andB-mode decompo-
sition applied around the halo center and the grid cell under
consideration in the equations above, so that the tangential
shear satisfiesγT = γE. Under the assumption of small dis-
tortions to galaxy shapes due to gravitational lensing, theav-
erage shape over a set of galaxies will give a measurement
of the reduced shearg1,2 = γ1,2/(1− κ) (see e.g., Appendix
A of Mandelbaum et al. 2006 for this result and higher order
corrections). Thus using the convergence, we compute the
reduced tangential shear field,g = γT/(1− κ), for use in our
WL mass modeling, details of which we describe in the next
subsection.

3.2. The Noise Properties of the Shear Profile and Fitting
Methods

In order to accurately predict the scatter in the cluster
masses estimated from reduced tangential shear profile fitting,
we must ensure that our calculated profiles have similar noise
properties to observed profiles. Hoekstra (2001, 2003) has
established that the noise in the reduced tangential shear pro-
files can be broken into two components. The first component
is random noise due to the intrinsic noise in the shapes of
the galaxies themselves and should decrease with the num-
ber of galaxies used in each radial bin as∝ 1/

√
N. The sec-

ond source of noise is due to LSS (and also due to triaxial-
ity of halos). However, Hoekstra (2001, 2003) only consid-
ered noise from LSS uncorrelated with the target lens. This
source of noise does not decrease as the source galaxy den-
sity increases, and in general LSS introduces correlated noise
in the shear field around a halo (Dodelson 2004). We neglect
all other potential sources of noise or systematic errors such
as contamination of the source galaxies with cluster members
(e.g., Okabe et al. 2010), and photometric redshift errors (e.g.,
Mandelbaum et al. 2008) or unknown source redshifts (e.g.,
Okabe et al. 2010). The contamination of the source galaxies
with cluster members can produce an≈ −10% bias in typical
WL masses (Okabe et al. 2010), though the exact magnitude
of this effect depends sensitively on the contamination rate.
Unknown source redshifts can introduce systematic biases in
WL masses of≈ ±5− 10% as the source redshift is changed
by ±0.2 (Okabe et al. 2010). The improper use of photomet-
ric redshifts can introduce large≈ ±5− 15% biases in the
estimated lensing critical surface density (Mandelbaum etal.
2008) and thus WL masses.

For halos extracted from a cosmological simulation, the
noise and correlations due to LSS are already included. We
thus simply add to the mean reduced tangential shear value
of each radial bin the Gaussian noise due to the limited num-
ber of background sources. This noise has a zero mean and
variance

σ2
s =

σ2
e

ngalA
, (9)

whereσe is the intrinsic shape noise of the sources,ngal is the
surface density of source galaxies on the sky, andA is the area
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of the annulus. Note that magnification and size bias will in-
troduce changes in the effective number density of sources as
a function of radius relative to the geometric expectation given
above in Equation 9 (Schmidt et al. 2009a,b; Schmidt & Rozo
2010; Rozo et al. 2010). For simplicity we will neglect this
effect in this work.

We adoptσe = 0.3 for the intrinsic shape noise. This
value is typical for ground-based observations like those in
Okabe et al. (2010). Note thatσe is the shape noise in the re-
duced tangential shear per galaxy. This amount of shape noise
in the reduced tangential shear is roughly equivalent to a shape
noise of 0.4 per shear component (i.e.σe ≈ 0.4/

√
2). We will

use the following representative values for the source galaxy
densityngal: ngal = 10 galaxies/arcmin2 for the Dark Energy
Survey5 (DES) or similar observations (e.g., Hoekstra & Jain
2008; Okabe et al. 2010),ngal = 20 galaxies/arcmin2 for deep
ground-based observations, andngal = 40 galaxies/arcmin2 for
very deep ground-based observations like the Large Synoptic
Survey Telescope6 (LSST) or space-based observations like
those from theHubble Space Telescope(e.g., Hoekstra et al.
2002) or Euclid7. We also present results with no observa-
tional errors added to the reduced shear profiles in order to
illustrate the intrinsic scatter and bias in the WL masses at
fixed true mass.

As stated in §1, we will estimate the true mass of the cluster
with WL by fitting the tangential component of the reduced
shear profile with that predicted from the NFW profile in the
thin lens approximation. In the fits we vary both the total mass
and concentration independently. We use logarithmic binning
in radius. Below we will systematically test the effects of
variations in the number of bins used and the maximum ra-
dius of the fits. For simplicity, we fix the minimum radius
used for fitting the binned reduced tangential shear profilesto
1′ at all redshifts. This value is similar to that used in typical
ground-based WL analyses (see e.g., Okabe et al. 2010). Note
however that for space-based observations the minimum fit ra-
dius can be as small as 0.5′ (see e.g., Hoekstra et al. 2010a).
Tests with the higher resolution 1024×1024 cell grids indi-
cate that the bias in the WL masses we find below decreases
by ≈ 1− 2% using a 0.5′ inner fitting radius, indicating that
the exact choice of inner fitting radius has a relatively small
effect on our results.

We use aχ2-fitting metric and the non-linear least-squares
Levenberg-Marquardt algorithm throughout (Press et al.
1992). For the comparison of our results to WL observations,
aχ2-fit is appropriate. Specifically, theχ2-fitting metric is

χ2 =
N
∑

i=1

[

gi − gNFW(r i ,M∆,c∆)
σs(r i)

]2

, (10)

wheregi is the reduced tangential shear averaged over the an-
nulus at radiusr i , gNFW(r,M∆,c∆) is the prediction for the
reduced tangential shear from an NFW profile at radiusr
for massM∆ and concentrationc∆, andσs(r) is the intrin-
sic shape noise given by Equation 9 for the sources in the bin
at radiusr. The radius of each binr i is computed from the
average radius of the sources in each bin. With this definition
of the fitting metric, each radial bin is treated independently,
although LSS will correlate the radial bins as discussed above.

5 http://www.darkenergysurvey.org/
6 http://www.lsst.org/lsst
7 http://sci.esa.int/euclid

We also neglect the contribution ofg to the overall shape
noise of the sources. When estimating the intrinsic noise in
WL mass estimates due to LSS alone, we use the sameχ2-fit
weighted by the observational errors, but do not add observa-
tional noise to the mean reduced shear value of each bin. We
have verified that an unweightedχ2-fit,

χ2
uw =

N
∑

i=1

[gi − gNFW(r i ,M∆,c∆)]2 ,

or a fit that minimizes the summed absolute deviations from
the model profile,

χ2
abs=

N
∑

i=1

|gi − gNFW(r i ,M∆,c∆)| ,

both produce similar or larger scatter in the WL masses at
fixed true mass. However the fractional bias in the WL masses
varies by a few percent depending on the choice of fitting met-
ric as described below. For our main results we use aχ2-
fit with or without observational errors added to the reduced
shear profile depending on the context.

We compute the errors and correlations of various quanti-
ties derived from the simulation and reduced tangential shear
profile fits (e.g., the parameters of and scatter in theMWL-
M500c relation) using a jackknife method. Namely, for the en-
tire 1000h−1Mpc simulation box we split the two dimensions
perpendicular to the LOS direction (i.e. the x-y plane perpen-
dicular to thez-axis direction in our case) into a 10×10 grid of
one hundred 100×100h−1Mpc cells. We can then use these
cells to compute jackknife estimates of the covariance matrix
of our desired quantities by not considering the halos in each
cell in turn (see Scranton et al. 2002 for a similar technique).

4. RESULTS

Our aim in this section is to illustrate the effect of the un-
correlated and correlated LSS on WL mass estimates and
to give estimates for the scatter in WL-measured masses at
fixed true mass under a variety of observational conditions.
Our primary results in Figures 1–3 are discussed in detail
in §4.1. For these results we have chosen halos from the
z = 0.25 andz = 0.50 snapshots and have usedσe = 0.3 and
ngal = 20 galaxies/arcmin2 to fix the error for each bin in
theχ2-fitting metric, but have not added observational scatter
(through Equation 9) to the reduced tangential shear profile.
Also, for these fiducial results we use 15 logarithmic bins in
radius from the inner radial limit of 1 arcminute to an outer ra-
dial limit of 20 arcminutes atz= 0.25 and 10 logarithmic bins
from 1 to 10 arcminutes atz = 0.50. As discussed above in
§3.2, the results in these figures illustrate the intrinsic scatter
and bias in the WL masses at fixed true mass in the absence
of observational effects.

For our primary results, we fit for masses at an overdensity
of 500 with respect to the critical density at the redshift of
our halos. Qualitatively, the intrinsic scatter and bias inthe
WL masses for other overdensity mass definitions are simi-
lar. The effects of halo shape and orientation with respect to
the LOS are discussed in §4.2. In §4.3, we give estimates
for the scatter and bias in WL mass estimates under changing
observational conditions, including varying overdensityfits,
number of bins, maximum fit radius, source galaxy densities,
and source galaxy shape noise. We emphasize again that the

http://www.darkenergysurvey.org/
http://www.lsst.org/lsst
 http://sci.esa.int/euclid
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FIG. 1.— The bias and scatter in WL mass measurements ofM500c at z = 0.25 (left) andz = 0.50 (right). The open circles (black) and filled triangles (blue)
show the results for halos satisfying the mass cuts given in the top panels for each redshift. The filled triangles are shifted by+0.05 dex in the horizontal direction
for clarity. The lines show the predictions from Equation 12in the regime where uncorrelated LSS along the LOS begins to have an effect on the scatter in the
WL masses for each mass cut and redshift. See §4.1 for detailsconcerning the fit of Equation 12 to the simulation data. The WL masses are clearly biased using
for the NFW fitting and the behavior of the scatter as a function of LOS integration length is different for low- and high-mass halos. Note that a non-negligible
fraction of the scatter and bias is due to correlated structures in matter distribution at distances between≈ 3 and 10h−1Mpc from the cluster.

results of this section are specific to the method we have cho-
sen for measuring the WL masses, even when we do not refer
explicitly to our method itself. In §5 we will present a full
discussion of our results in comparison to previous work.

4.1. Intrinsic Bias and Scatter in WL Mass Estimates

We will consider the distribution of WL masses at fixed true
mass for a series of line-of-sight integration lengths in order to
study the sources of bias and scatter. We will use integration
lengths of 3, 6, 15, 30, 60, 120, 240, and 400h−1Mpc. An
integration length of 400h−1Mpc, for example, indicates that
all the matter in the simulation from−200 h−1Mpc to +200
h−1Mpc along the LOS (with the cluster at zero) was included
in constructing the reduced tangential shear profile. For each
simulation snapshot and integration length we obtain a WL
mass estimate ofM500c for the cluster under consideration and
can compare this WL mass estimate to the trueM500c mass
measured in three dimensions.

Figure 1 shows the intrinsic scatter and bias in the WL
masses as a function of LOS integration length for the pop-
ulation of halos atz= 0.25 andz= 0.50 snapshots. We have
made two different mass cuts at each redshift to illustrate
the difference between high- and low-mass halos. For the
z = 0.25 snapshot, we have kept the halos withM500c above
6.0×1013h−1M⊙ and 2.0×1014h−1M⊙ for the low and high
mass halo samples respectively. For thez= 0.50 snapshot the
cuts were placed at 5.0×1013h−1M⊙ and 1.5×1014h−1M⊙.
These mass thresholds are set so that the halo sample is com-
plete above the low-mass threshold, so that there is approx-
imately the same number of halos in the high-mass sample
at both redshifts, and so that the qualitative differences in the
shape of the scatter in the WL masses as a function of LOS in-
tegration length between the low- and high-mass halo samples
are maximized.

The scatter, denoted asσlnMWL , is the width of the best fit
Gaussian to the residuals from a fit of the lnMWL–lnM500c
relation of the form

ln

(

MWL

Mp

)

= β +α ln

(

M500c

Mp

)

. (11)

The bias is defined asβ from the equation above and is the
bias in〈lnMWL |M500c〉. Mp is a pivot mass chosen so that the
errors onβ andα are uncorrelated.α is the slope of the re-
lation. The covariance matrix of the quantities{β,α,σln MWL}
is computed using the jackknife method described in §3.2.
We have computed all of the correlations of the quantities
{β,α,σln MWL} between the various LOS integration lengths
and mass ranges using the jackknife method as well. The er-
ror bars shown in Figure 1 are the square-root of the diagonal
elements of the jackknife covariance matrix. The best-fit pa-
rameters of Equation 11 for each mass threshold and snapshot
using the 400h−1Mpc integration length forM500c are given
in Table 1. The scatter in the WL masses listed in this table is
extrapolated to the full LOS as described below.

In the method we adopt (i.e., the NFW profile fitting of the
reduced tangential shear profile), the WL masses are on aver-
age biased low by≈ 6% in thez = 0.25 andz = 0.50 snap-
shots. A large portion, but not all, of the bias in the WL
masses occurs because the NFW profile is a poor descrip-
tion of the actual shear profiles of clusters at the radii used
in the fitting. We illustrate this issue as follows. For each halo
we fit an NFW profile to the halo’s three-dimensional mass
profile. Then using the parameters from this fit, we predict
the reduced shear profile,gT,NFW. In Figure 2 we have plot-
ted the fractional difference between the true reduced shear
profile,gT, and the prediction from the NFW fit of the three-
dimensional halo mass profile, (gT − gT,NFW)/gT,NFW for clus-
ter halos in different ranges of massM500c. Note that we com-
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FIG. 2.— Mean fractional difference between the reduced tangential shear profile predicted from an NFW fit to the three-dimensional mass profile of each halo,
gT,NFW, and the halo’s true reduced tangential shear profile,gT. The average is taken in four bins of logM500c for thez= 0.25 (left) andz= 0.50 (right) snapshots.
The vertical lines extending from the top of each panel markr500c for each halo mass bin. The range in logM500c for each halo mass bin and the associated line
style (and color) are given in the lower left corner of each panel. The virial radius of the halos in each mass bin is at≈ 2r500c. The up turn at large radii is due
to 2-halo contributions to the stacked shear signal. In the region between the 1- and 2-halo contributions beyond the halo virial radius, the NFW model is clearly
wrong (see e.g., Tavio et al. 2008). Note that 1 arcminute corresponds to comoving distances of 206h−1kpc and 389h−1kpc atz= 0.25 andz= 0.50 respectively.

pute the factional differences for each halo individually and
then average over the mass bin. The lines at the top of the
figure indicate the value ofr500c. The virial radius of each
halo is≈ 2r500c, which is well within 10 arcminutes for both
analyzed redshifts for most clusters in the sample. Typical
fits of the reduced tangential shear profile extend out to 10′-
20′, where the actual reduced sheargT deviates significantly
from the predictions of the three-dimensional model. These
deviations first become more negative as the density profile
becomes steeper than the NFW profile in the cluster infall re-
gion. At larger radii the NFW model asymptotes to zero and
the fractional deviations then become more positive due to 2-
halo contributions of matter around the cluster.

A simple Monte Carlo estimate of the bias in the WL
masses from the results of Figure 2 shows that fitting an in-
correct model can account for≈ 2− 4% of the bias in the WL
masses at any overdensity and redshift. We make this estimate
as follows. We generate reduced tangential shear profiles us-
ing a given mass and concentration of the cluster. We then
introduce a bias in these profiles using the results of Figure2.
Then we fit the reduced tangential shear profile to determine
a WL mass and compute the fractional bias in the WL mass.
Our results indicate that using an improved fitting function, or
limiting the radial range of the fits to the virial region, will de-
crease, but may not fully eliminate, the bias in our WL mass
estimates.

There are other physical sources of bias in the WL masses,
only some of which are included in Figure 2. Substructure in
the outskirts of halos will cause the shear profile to deviate
low at radii less than the radius of the substructure and will
cause the shear profile to deviate high at radii greater than the
substructure. This source of bias is already included in thees-
timates in Figure 2 since we are comparing the shear with all
substructures in the simulation included to the expected shear

from the three-dimensional halo profile. Additionally, aver-
aging the WL masses estimated from spherically-symmetric
NFW model fits to individual triaxial halos with different ori-
entations along the LOS can produce a biased average WL
mass at the level of a few percent for a single set of axis ra-
tios (Corless & King 2007). However when the WL masses
from fits to individual clusters are averaged over the entire
population of halos with a range of axis ratios the net bias is
small,≈ 1% high (Corless & King 2007). In addition to the
effects of halo shape, the correlation between the halo major
axis and the direction to nearby halos and filaments can po-
tentially change the expected bias in the WL masses from this
orientation averaging effect as well. Our simulations include
all of these correlations automatically and so are a useful tool
for studying these effects in aggregate.

Note also that the bias in the WL masses depends sensi-
tively on the fitting method. If we use theχ2

uw or χ2
abs fitting

metrics, the WL masses are only biased low by≈ 3 − 4%.
These metrics tend to weigh the inner bins of the reduced tan-
gential shear profile in the fit more than a pureχ2 fitting met-
ric. The reduced tangential shear profile is biased less in the
inner regions in Figure 2, so that the WL masses tend to be
less biased using these alternative fitting metrics.

We additionally find that the exact choice of halo center
can have a strong effect on the bias in the WL masses. For ex-
ample, if we allow the halo centers to move randomly±100
h−1kpc comoving in the two orthogonal directions in the pro-
jected halo field about the fiducial center defined by the halo
finder, the bias increases to≈ 7−10% low for the 400h−1Mpc
integration length atz= 0.25. We can also search for the peak
of the convergence field for each halo. We search the region
defined by±12 grid cells about the grid center (±469h−1kpc
in comoving distance) for the peak of the convergence field
for the 400h−1Mpc integration length atz= 0.25. In this case,
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TABLE 1
INTRINSIC RELATION BETWEEN WEAK LENSINGMASS ESTIMATES

OF M500cAND TRUE MASS.a

Mp β α σln MWL
b

z= 0.25,M500c ≥ 6.0×1013h−1 M⊙

9.74×1013h−1 M⊙ −0.059±0.003 0.997±0.006 0.297±0.008

z= 0.25,M500c ≥ 2.0×1014h−1 M⊙

2.80×1014h−1 M⊙ −0.052±0.007 0.99±0.03 0.207±0.005

z= 0.50,M500c ≥ 5.0×1013h−1 M⊙

7.89×1013h−1 M⊙ −0.063±0.003 1.001±0.007 0.311±0.009

z= 0.50,M500c ≥ 1.5×1014h−1 M⊙

2.07×1014h−1 M⊙ −0.054±0.008 0.96±0.03 0.22±0.01
a See Equation 11 for definitions of the parametersMp, β, andα.
b These numbers have been extrapolated using Equation 12. See§4.1 for
details.

the peak tends to be approximately two grid cells (78h−1kpc
comoving) or less away from the fiducial halo center defined
by the halo finder. The bias in the WL masses increases by
. 1% using these new halo centers. Thus we can conclude
that the halo centers defined by our halo finder are robust in
this regard. The effect of halo centering on the bias in the WL
masses is quite sensitive to the exact choice of inner fittingra-
dius as shown by Hoekstra et al. (2010a). We do not explore
this dependence in this work.

The slopeα of the relation in Equation 11 is generally con-
sistent with unity at large LOS integration lengths. However
there are& 3σ deviations of the slope below or above unity in
some mass ranges, especially at the smallest LOS integration
length in each snapshot for both mass bins. A relation with a
slope significantly different than unity would indicate that the
bias in the WL masses depends on the halo mass. However,
as shown in Figure 2, the deviation of the reduced tangential
shear profiles from the NFW model are nearly the same over
all of the mass bins, consistent with the slope of theMWL-
M500c being close to unity.

As the LOS integration length is increased, so does the scat-
ter in the WL masses. The scatter for the low-mass halo sam-
ple increases more strongly than that for the high-mass halo
sample in both snapshots. Note that correlated structures at
distances≈ 3− 10h−1Mpc contribute to the scatter. This cor-
related structure is not due to the triaxiality of the cluster it-
self, but is due to neighboring groups, clusters, and filaments.
At distances& 10h−1Mpc, the scatter is generated from a su-
perposition of many largely uncorrelated structures.

We propose a simple toy model of the scatter as a func-
tion of mass and LOS integration length which can explain
the trends in Figure 1. We assume that the scatter in the WL
masses due to uncorrelated LSS is proportional to the scat-
ter in the shear. We compute the fractional scatter in the WL
masses as

∆MWL

MWL
=

√

[

f Mmed
]2 + [AσLSS(d)]2

Mmed
(12)

where f is the fractional intrinsic scatter in the WL masses
due to halo triaxiality and correlated LSS,σLSS(d) is the scat-

ter in the shear due to uncorrelated LSS as a function of the
LOS integration lengthd, andA is a proportionality constant
with units ofh−1M⊙ that is independent of the LOS integra-
tion lengthd and halo mass.Mmed is the median halo mass of
the sample under consideration. The form of this model is mo-
tivated by the fact that scatter from uncorrelated LSS should
simply add in quadrature to the scatter from triaxial halo
shapes and correlated LSS. We computeσLSS(d) as a function
of integration length using the results of Hoekstra (2003) with
the transfer function from Eisenstein & Hu (1998) and the
non-linear matter power spectrum from Smith et al. (2003).
In general,σLSS(d) depends on the radius and width of the an-
nulus used to average the tangential shear. However, as shown
in Hoekstra (2003), this dependence is not strong. We use a
bin of radius 10 arcminutes with a width much less than the
radius to get a representative value. For each snapshot this
model is fit the to the last four LOS integration length points
(i.e. 60, 120, 240 and 400h−1Mpc) for both mass bins si-
multaneously using the jackknife covariance matrix computed
above. We assume that both mass bins have the same value of
A, but different values off , flow and fhigh, for a total of three
free parameters per snapshot and five degrees of freedom in
the fit.

The fractional scatter predicted by Equation 12 for the low-
and high-mass sample of halos is shown as the solid lines
in Figure 1. We have plotted model predictions for points
not used to fix the value ofA, flow, and fhigh for the low
mass bins in each snapshot as well. While the specific value
of A is somewhat arbitrary, the values offlow and fhigh for
each snapshot indicate the total amount of scatter due to halo
triaxiality and correlated LSS. The three parameters for the
z = 0.25 snapshot areA = (7.5± 0.3)× 1015h−1M⊙, flow =
0.170± 0.002, and fhigh = 0.189± 0.006. For thez = 0.50
snapshot the parameters areA = (6.6± 0.3)× 1015h−1M⊙,
flow = 0.163±0.003, andfhigh = 0.19±0.01. Figure 1 shows
that about 80% of the scatterf is due to matter within≈ 3
h−1Mpc of clusters (i.e., within 2− 3 virial radii) and≈ 20%
is due to the matter in correlated structures between 3 and 10
h−1Mpc.

This model summarizes nicely the way in which uncorre-
lated LSS along the LOS effects WL masses. Uncorrelated
LSS along the LOS adds approximately the same amount of
scatter to mass estimates independent of halo mass. Thus, in
terms of fractional scatter, low-mass halos are more strongly
affected by uncorrelated LSS along the LOS because they pro-
duce less shear as compared to high-mass halos. This fact mo-
tivates the assumption that parameterA is the same for low-
and high-mass halos.

The differences betweenflow and fhigh for the different clus-
ter mass thresholds and snapshots are harder to explain witha
simple model. They are essentially due to changes in halo bias
and shape as a function of mass. Less massive halos tend to be
more spherical (see e.g., Allgood et al. 2006) than more mas-
sive halos. Thus the fractional scatter generated by averaging
over many orientations is smaller for lower mass halos. Ad-
ditionally, higher mass halos are more biased with respect to
the dark matter than lower mass halos (see Tinker et al. 2010
for a recent study of halo bias). Therefore, contributions to
the scatter in the WL masses from correlated structure outside
the virial radius (i.e. any slight increase in the scatter from an
LOS integration length of 6 to≈ 120h−1Mpc) along the LOS
generally are stronger for more massive halos. Based on the
changes in the scatter as function of LOS distance in Figure 1,
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FIG. 3.—Left: Scatter-contour plot ofM500cobtained from fitting the reduced tangential shear profile,MWL , against the trueM500c mass measured in simulation.
The “high-density” regions of the plot are shown with grey shaded contours (light to dark indicates high- to low-density) and the rest of the data is shown as
points. The solid (red) line marks a one-to-one ratio and thedashed (magenta) line is the best-fitting power-law given inEquation 11. The best-fit power law is
biased low by≈ 6% but the slope is consistent with unity.Right: Residuals from the best-fitting power law on the left. The solid line is the best-fitting Gaussian
model to the residuals in lnM500c. The skewness of the residuals, 0.70± 0.14, is clearly non-zero indicating that the conditional distribution of MWL at fixed
M500c is close to, but not quite log-normal. See §4.1 for details.

the effects of halo shape seem to be dominant in determining
flow and fhigh. However, as we noted above, the effects of
correlated LSS outside the virial radius are not negligible.

Additionally, the model in Equation 12 can be used to ex-
trapolate the scatter measured in the simulations over a re-
stricted LOS to the full LOS. We simply evaluate the model
using the value ofσLSS(d) from integrating over the entire
LOS from the observer to the sources at redshift one. The
results are given in Table 1 for both snapshots and mass bins.
The extrapolated scatter values represent the total amountof
intrinsic scatter in WL mass estimates ofM500c for our fitting
method from all sources along the LOS to redshiftz= 1. Note
that this extrapolation and the resulting effects of uncorrelated
LSS on the scatter in the WL masses will change if the source
galaxies extend to higher redshifts.

Finally, in Figure 3 we show a contour-scatter plot of
the lnMWL-lnM500c relation and a histogram of the residuals
about the best-fit power law for thez = 0.25 snapshot at the
400h−1Mpc integration length. We have used all halos with
M500c ≥ 6.0×1013h−1M⊙ for this plot. There is a small num-
ber of halos in the simulation where the WL mass differs from
the true mass by a factor of five or more (the outliers in the
left panel of Figure 3). We have visually checked the reduced
shear profiles of these halos and found that they are negativein
one or more bins and/or are strongly non-monotonic. These
pathological cases are due to the presence of a second mass
peak in the shear field which cancels shear from the main peak
associated with the halo.

The conditional distribution of the WL masses from the
best-fit mean relation shown in the right panel of Figure 3
is close to log-normal. However there is a statistically sig-
nificant tail at high WL masses. The skewness of the dis-
tribution in the right panel of Figure 3 is 0.70± 0.14 for
halos withM500c ≥ 6.0× 1013h−1M⊙. For the higher mass
sample withM500c ≥ 2.0× 1014h−1M⊙, the conditional dis-
tribution is somewhat closer to log-normal with skewness
0.38±0.11. The conditional distribution atz = 0.50 is quite
similar with skewness 0.43± 0.18 for the low mass sample
with M500c ≥ 5.0× 1013h−1M⊙ and 0.49± 0.12 for the high

mass sample withM500c ≥ 1.5×1014h−1M⊙.

4.2. The Effects of Halo Shape and Orientation

We have also investigated the correlation between the ori-
entation of the halo with respect to the LOS and the de-
viation of its WL mass from the mean relation as a func-
tion of LOS integration length. Specifically, we compute
the correlation coefficient between cosθ and ∆ lnMWL =
lnMWL − 〈lnMWL |M500c〉. Hereθ is the angle of the halo’s
major axis with respect to the LOS (see §2 for details) and
〈lnMWL|M500c〉 is the best-fit mean relation defined in Equa-
tion 11. This correlation coefficient is≈ 0.68 at the LOS inte-
gration length 6h−1Mpc and declines to≈ 0.51 at 400h−1Mpc
for the low mass halo sample defined above from thez= 0.25
snapshot. For the high mass halo sample from the same snap-
shot, the correlation coefficients at 6 and 400h−1Mpc are
≈ 0.72 and≈ 0.61 respectively. The correlation coefficient
between cosθ and∆ lnMWL is smooth and monotonic from 6
to 400h−1Mpc. For the high mass halos, the correlation coef-
ficient shows a slight increase from 3 to 6h−1Mpc as the LOS
integration length increases to include all of the halo’s mass.
Similar trends are seen in thez= 0.50 snapshot.

The correlation coefficients decrease as the LOS integra-
tion length is increased because of random perturbations to
the shear profiles due to uncorrelated LSS or due to imperfect
alignment of correlated structures. The decline is stronger for
lower mass halos because they produce less shear, so that ran-
dom perturbations have a larger effect. In addition to the fact
that smaller halos produce less shear, it is known that the ori-
entation of halos is correlated with the orientation of the fila-
mentary structure around them (see §1 for references). Thus
the filamentary, correlated LSS around larger halos, which are
more highly biased, will work to maintain the correlation co-
efficient as the LOS integration length is increased.

It is interesting that even considering all matter between
−200 and+200 h−1Mpc, the correlation coefficients are still
substantial,≈ 0.50− 0.60. We expect the correlation co-
efficients to decrease more as the LOS integration length
is increased, but extrapolating accurately to the final values
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TABLE 2
BIAS AND SCATTER IN WEAK LENSINGMASSESESTIMATES OFM500c AT z= 0.25.a

maximum fit radius 12 bins 15 bins 17 bins 20 bins

{σe,ngal} = {0.3,10}

Biasb Scatterc Bias Scatter Bias Scatter Bias Scatter
15′ -0.06±0.01 0.38±0.02 -0.06±0.01 0.39±0.02 -0.08±0.01 0.34±0.02 -0.08±0.01 0.35±0.02
20′ -0.09±0.01 0.34±0.02 -0.10±0.02 0.37±0.04 -0.09±0.01 0.33±0.03 -0.10±0.01 0.36±0.03
25′ -0.11±0.01 0.34±0.03 -0.10±0.01 0.37±0.02 -0.12±0.01 0.33±0.02 -0.10±0.01 0.35±0.03

{σe,ngal} = {0.3,20}

Bias Scatter Bias Scatter Bias Scatter Bias Scatter
15′ -0.06±0.01 0.29±0.01 -0.05±0.01 0.29±0.02 -0.06±0.01 0.28±0.02 -0.07±0.01 0.27±0.02
20′ -0.07±0.01 0.27±0.02 -0.07±0.01 0.29±0.02 -0.08±0.01 0.29±0.02 -0.08±0.01 0.29±0.02
25′ -0.09±0.01 0.29±0.02 -0.10±0.01 0.29±0.02 -0.09±0.01 0.27±0.02 -0.10±0.01 0.28±0.02

{σe,ngal} = {0.3,40}

Bias Scatter Bias Scatter Bias Scatter Bias Scatter
15′ -0.05±0.01 0.26±0.02 -0.05±0.01 0.26±0.02 -0.05±0.01 0.25±0.02 -0.05±0.01 0.27±0.01
20′ -0.06±0.01 0.24±0.02 -0.07±0.01 0.25±0.02 -0.06±0.01 0.24±0.01 -0.07±0.01 0.23±0.02
25′ -0.07±0.01 0.26±0.01 -0.07±0.01 0.22±0.02 -0.08±0.01 0.24±0.01 -0.08±0.01 0.25±0.01

a We have used all halos withM500c ≥ 2.0×1014h−1 M⊙. Additionally, we require that the WL mass differ from the true mass by no more
than a factor of five.
b This quantity isβ from Equation 11 and is the bias in〈lnMWL |M∆〉.
c The scatter is defined as width of the best-fit Gaussian to the residuals of theMWL -M∆ relation,σln MWL .

for a full LOS from the simulation data we have presented
here is difficult. However, we can do this extrapolation ap-
proximately as follows. We use the toy model proposed in
Equation 12 above to include the effects of uncorrelated LSS
along the LOS on the WL masses. The term proportional to
(AσLSS(d)/Mmed)2 in Equation 12 is the extra variance intro-
duced into the WL masses due to the effects of uncorrelated
LSS projections along the LOS. We thus use log-normal ran-
dom deviates with variance equal to (AσLSS(d)/M500c)2 and
zero mean to add scatter to the WL masses in order to simu-
late the effects of LSS projections along the LOS not included
in our simulation box. Here we use the value ofσLSS(d) which
corresponds to the extra scatter due to a full LOS from lens-
ing sources to the observer andM500c is set to the true mass
of each cluster individually when adding the random scatter.
We start with the WL masses at an integration length of 120
h−1Mpc. The choice of starting integration length is motivated
by the fact that most of the correlated structure along the LOS
due to filamentary LSS is within 60-100h−1Mpc of the halo
center. We then recompute the correlation coefficients. We
find a correlation coefficient of≈ 0.37 for the low-mass bins
in both thez = 0.25 andz = 0.50 snapshots. For the high-
mass bins in both snapshots, the correlation coefficients are
≈ 0.58. If we use the WL masses at an integration length of
240h−1Mpc, these numbers change by. 0.01, indicating that
our extrapolation is robust to this choice.

While there is certainly some uncertainty in this extrapola-
tion, it is clear that the correlation still remains positive even
integrating over a full LOS. Stated differently, the key point
is that thesign (i.e. positive or negative) of the deviation of
the WL mass from the true mass is on average set by the ori-
entation of the matter within and near the virial radius of the
halo. Matter outside the virial radius of the halo along the
LOS changes the strength of the correlation between the ori-
entation of the halo and the deviations of the WL masses from
the true masses, but the correlation is always positive at high
significance on the scales probed by our simulation and re-

mains positive even after extrapolating to a full LOS.
In addition to halo orientation with respect to the LOS, halo

shapes also influence the WL masses. To investigate this ef-
fect, we build subsamples of halos which are more spherical
or more triaxial based on the minor to major axis ratio, de-
noted here asS (see §2 for details concerning its computa-
tion). We fit a power-law to the mean value ofSas a function
of M500c (a similar relation was used in Allgood et al. 2006).
Using the mean power-law relation betweenSandM500c, we
compare all halos withS in the upper quartile of the distribu-
tion of S at fixed mass (i.e. the more spherical halos) to the
entire halo population and all halos withS in the lower quar-
tile of the distribution ofSat fixed mass (i.e. the more triaxial
halos) to the entire halo population using the same mass bins
as before. These cuts generate four halo samples per snapshot.

We find that while the bias in normalization and slope of the
MWL-M500c relations are unaffected in a statistically signifi-
cant way by cuts on halo shape, the scatter in the WL masses
does depend on halo shape. Not unexpectedly, the WL masses
of more spherical halos have less scatter than those of more
triaxial halos. In both snapshots for the low-mass cuts, the
more triaxial halos have≈ 3− 5% more scatter than the entire
halo population while the more spherical halos have≈ 3−5%
less scatter than the entire halo population. For the high-mass
cuts the mean shifts in the scatter between the different sam-
ples are the same, but the trend is not statistically significant
given the jackknife errors. We find additionally that the dif-
ference in the scatter in the WL masses between the more
spherical halos and the entire population increases marginally
with integration length from 60h−1Mpc to 400h−1Mpc in the
z= 0.50 snapshot. Given that correlations between halo orien-
tation and LSS persist out to∼ 100h−1Mpc and that spherical
halos tend to be more highly biased (i.e. more clustered) than
triaxial halos at fixed mass (Faltenbacher & White 2010) and
thus tend to dominate their local environment more strongly,
this trend is physically plausible.
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TABLE 3
BIAS AND SCATTER IN WEAK LENSINGMASSES

ESTIMATES OFM200m, M200c, AND M500cAT z= 0.25.a,b

mass definition∆ρ(z)c Biasd Scattere

{σe,ngal} = {0.3,10}

200ρm(z) 0.00±0.02 0.40±0.02
200ρc(z) -0.06±0.01 0.35±0.01
500ρc(z) -0.10±0.02 0.37±0.04

{σe,ngal} = {0.3,20}

200ρm(z) 0.02±0.01 0.32±0.02
200ρc(z) -0.06±0.01 0.27±0.02
500ρc(z) -0.07±0.01 0.29±0.02

{σe,ngal} = {0.3,40}

200ρm(z) 0.02±0.01 0.27±0.02
200ρc(z) -0.04±0.01 0.25±0.01
500ρc(z) -0.07±0.01 0.25±0.02

a We have used all halos withM200m ≥ 4.0× 1014h−1 M⊙,
M200c ≥ 3.0× 1014, andM500c ≥ 2.0× 1014. Additionally,
we require that the WL mass differ from the true mass by no
more than a factor of five.
b The WL masses were fit with an outer radial fit limit of 20
arcminutes using 15 bins.
c ∆ρ(z) is defined through the relation M∆ = ∆ρ(z) 4

3πr3.
d This quantity isβ from Equation 11 and is the bias in
〈lnMWL |M∆〉.
e The scatter is defined as width of the best-fit Gaussian to the
residuals of theMWL -M∆ relation,σln MWL .

4.3. Scatter and Bias Under Varying Observational
Conditions

In this section we present the bias and scatter in the WL
masses at fixed true mass including the effects of galaxy shape
noise. For each halo in the simulation, we vary the source
density, amount of shape noise, maximum radius of the fit,
and the number of bins used in the fit. We consider WL mass
estimates ofM200m, M200c, andM500c. For each set of obser-
vational parameters and mass overdensity definition, we mea-
sure the bias and scatter in the WL masses. Since we are now
including observational errors in the reduced tangential shear
profiles, the shear of some of the lower mass halos will be un-
detectable. We thus focus only on the highest mass halos in
the simulation which have the highest signal-to-noise.

Additionally, we find that in the presence of observational
errors, even while focusing on the high-mass halos only, there
are still outliers in the WL masses, especially for the poorest
observations with{σe,ngal} = {0.3,10}. These outliers gener-
ally occur when the signal-to-noise is low so that the WL mass
differs from the true mass by a factor of five or more and is
biased low. We thus cut all halos where the WL mass differs
from the true mass by a factor of five or more before comput-
ing the bias and scatter in the WL masses. These cuts reject
low signal-to-noise observations while still retaining a sample
with a sharp mass threshold above which the sample is nearly
100% complete. We do not use direct cuts on signal-to-noise
since these cuts result in a sample with varying completeness
as a function of mass. This extra cut has a negligible effect on
the results atz = 0.25, but does reduce the measured bias in
the WL masses atz= 0.50.

The bias and scatter in the WL mass measurements ofM500c
averaged over all halos withM500c ≥ 2.0× 1014h−1M⊙ at
z = 0.25 are given in Table 2. We show results for different

TABLE 4
BIAS AND SCATTER IN WEAK LENSINGMASSES

ESTIMATES OFM200m, M200c, AND M500cAT z= 0.50.a,b

mass definition∆ρ(z)c Biasd Scattere

{σe,ngal} = {0.3,10}

200ρm(z) 0.03±0.03 0.52±0.07
200ρc(z) -0.04±0.02 0.57±0.03
500ρc(z) -0.11±0.02 0.51±0.04

{σe,ngal} = {0.3,20}

200ρm(z) -0.04±0.03 0.44±0.06
200ρc(z) -0.08±0.02 0.42±0.05
500ρc(z) -0.10±0.01 0.40±0.03

{σe,ngal} = {0.3,40}

200ρm(z) 0.02±0.02 0.32±0.08
200ρc(z) -0.06±0.01 0.36±0.03
500ρc(z) -0.09±0.01 0.33±0.02

a We have used all halos withM200m ≥ 4.0× 1014h−1 M⊙,
M200c ≥ 2.5× 1014, andM500c ≥ 1.5× 1014. Additionally,
we require that the WL mass differ from the true mass by no
more than a factor of five.
b The WL masses were fit with an outer radial fit limit of 10
arcminutes using 10 bins.
c ∆ρ(z) is defined through the relation M∆ = ∆ρ(z) 4

3πr3.
d This quantity isβ from Equation 11 and is the bias in
〈lnMWL |M∆〉.
e The scatter is defined as width of the best-fit Gaussian to the
residuals of theMWL -M∆ relation,σln MWL .

outer radial limits of the fit and the number of bins for the
errors typical for a wide-area DES-like, deep ground-based,
and space-based observational surveys. The scatter in the
WL mass varies as a function of the quality of the observa-
tions, but varies very little with the exact choice of outer ra-
dial fit limit or number of bins. The expected scatter in WL
mass estimates ofM500c at fixed true mass for very common
ground-based or DES-like observations is≈ 33− 39%. For
current common ground-based or DES-like observations, the
dominant source of scatter is shape noise from background
galaxies. For deeper ground-based observations, the scatter
drops slightly to≈ 27− 29%. For high-quality observations
like those expected from LSST or space-based instruments,
the scatter drops to≈ 22− 27%. As the number density of
sources approaches that expected from space-based observa-
tions or LSST, the contribution to the scatter in the WL masses
from galaxy shape noise becomes comparable or even sub-
dominant to the intrinsic scatter in the WL masses atz= 0.25
for the radial fitting ranges we have considered here. If the
radial fitting range is decreased significantly (e.g. to 10 ar-
cminutes), the scatter in the WL masses will increase even for
the highest quality observations simply because many fewer
galaxies are used in the measurement and thus the signal-to-
noise is lower.

The bias in the WL masses at fixed true mass is in the range
of [−12%,−5%] in all cases atz = 0.25. The errors in the
bias from the jackknife samples are typically≈ ±1% for the
high-mass halo sample we are considering. The bias gener-
ally increases with increasing outer radial fit limit. The main
cause of this bias is apparent in Figure 2: the deviation of the
halo’s true tangential shear profile from the NFW model we
are using in our fitting method increases as the outer fit limitis
increased, resulting in more bias in the WL masses. We have
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confirmed this trend using the Monte Carlo method described
above.

For reference, the bias and scatter in WL mass measure-
ments for various other mass definitions atz= 0.25 are given
in Table 3. For this table we have set the outer radial limit
of the fit to 20 arcminutes and the number of bins to 15. The
shape noise contribution to the scatter in the WL masses is
dominant for all mass definitions. The scatter increases as the
overdensity decreases because smaller overdensities pivot the
fit of the tangential shear profile away from the median ob-
served radius (Okabe et al. 2010). The shift in the pivot point
causes uncertainty in the measured concentration of the NFW
profile to project into the WL mass, causing the scatter to in-
crease.

The bias and scatter in the WL masses using an outer fit
limit of 10 arcminutes and 10 bins forz = 0.50 are given in
Table 4. The biases in the WL masses in the presence of shape
noise for common ground-based observations are marginally
larger atz= 0.50 than atz= 0.25. Also there is significantly
more scatter in the WL masses atz = 0.50, due to the de-
creased radial range of the fits and the corresponding drop
in signal-to-noise of the WL mass measurements.

WL masses measured at an overdensity of∆ρ(z) = 200ρm(z)
seem to be unbiased at bothz= 0.25 andz= 0.50. In fact, the
Monte Carlo estimates of the magnitude of the bias predict
that the WL masses should becomemorebiased at lower over-
density, not less biased. Additionally, if we use 10 bins and
an outer fit limit of 10 arcminutes for thez= 0.25 halos, then
the WL masses measured at∆ρ(z) = 500ρc(z) are nearly unbi-
ased,−0.01±0.01 for{σe,ngal} = {0.3,40}, as one would ex-
pect from Figure 2. However, with the 10 arcminute outer fit
limit for the z= 0.25 halos, the WL masses measured at lower
overdensities are then biased high, 0.06±0.01 for M200c and
0.10±0.02 forM200m with {σe,ngal}= {0.3,40}. The discrep-
ancies between the measured biases in the WL masses and
the Monte Carlo predictions indicate that an unknown effect
is contributing to the bias in the WL masses and also illustrate
the complexity of these measurements.

5. DISCUSSION

Our results presented in the previous section show that con-
tributions to the scatter and bias in WL masses estimated from
an NFW fit comes from three physically distinct sources: mat-
ter within the halo virial radius, correlated LSS at distances
3-20 h−1Mpc from clusters, and uncorrelated LSS at larger
distances. Previous studies have used a combination of ana-
lytic models and simulations to study these different sources
separately, while we have considered the effects of all three
simultaneously. In the subsections below, we discuss the con-
tributions of each of these sources.

5.1. Matter Within the Halo Virial Radius

The matter within the virial radius and immediately outside
of it is a significant source of scatter and the main source of
biases in the WL mass estimates using NFW fits. Specifi-
cally, the bias shown in Figure 1 changes negligibly once the
LOS integration length is increased beyond 6h−1Mpc. The
main origin of the bias is shown in Figure 2, which shows that
deviations of the mean reduced tangential shear profile from
NFW profile are significant outside the virial radius. So when
these radii are included in the NFW fit, the resulting mass is
biased low. The deviations in Figure 2 are consistent with the
results of Tavio et al. (2008), who have systematically studied
density profiles of halos beyond the virial radius.

In addition to demonstrating that using an inaccurate den-
sity profile can bias WL mass estimates, we have demon-
strated that even if the correct halo profile is known, there are
still biases in the WL masses which depend on the specific de-
tails of the fitting method and need to be calibrated in simula-
tions. Note that high-resolution simulations naturally include
other sources of bias like substructure, halo triaxiality,and
potential halo centering issues as well. Specifically, we have
demonstrated in our simulations that halo centering errorscan
introduce≈ 5% negative biases in WL masses as has been
seen before using analytic models (see e.g., Hoekstra et al.
2010a). The myriad of complications involved in WL mass
estimation makes detailed studies of shear fitting using shear
fields derived from cosmological simulations indispensable in
estimating the bias and scatter of the weak lensing mass mea-
surements.

The orientation of the major axis of halo mass distribution
also affects the magnitude and sign of the bias in the WL
mass estimates. This effect was discussed by Clowe et al.
(2004) for a small sample of simulated clusters using all mat-
ter within 7.5h−1Mpc of the halo center. Meneghetti et al.
(2010b) have detected this effect with a similarly small sam-
ple of halos using all matter within 10h−1Mpc of the halo
center. Finally, Corless & King (2007) used analytic triax-
ial NFW models to arrive at a similar conclusion for matter
within the halo virial radius. We have extended this type of
analysis to the full LOS, showing that these correlations per-
sist to large distances and for a much larger sample of simu-
lated halos.

Halos in the roundest quartile of the distribution ofS at
fixed mass have less scatter in the WL masses by≈ 3− 5%
and halos in the most triaxial quartile of the distribution of S
at fixed mass have≈ 3−5% more scatter than the overall halo
population. A similar conclusion for matter just associated
with the halo itself was found by Corless & King (2007) using
analytic triaxial NFW models of halos. Marian et al. (2010)
found using a different WL mass estimator that WL masses
for low-mass halos have less scatter than for high-mass halos.
They interpreted this effect as due to the decrease of triaxial-
ity with decreasing halo mass expected inΛCDM cosmology
(e.g., Allgood et al. 2006). We have presented a similar inter-
pretation of our results in Figure 1. Finally, as indicated in
Figure 1, the majority of the scatter in the WL masses due to
matter correlated with the halo is set by matter within approx-
imately two virial radii. Marian et al. (2010) reached a similar
conclusion for a different WL mass estimator.

5.2. Correlated LSS

For our WL mass measurement method, correlated LSS at
distances≈3−20h−1Mpc has a small, but non-negligible con-
tribution (≈20% of the total) to the scatter of WL masses (and
no effect on the bias). Clowe et al. (2004) used the same WL
mass estimator as this study and saw hints of similar effectsof
triaxiality and correlated LSS on WL masses to those we iden-
tify in this study. However, given the small number of clus-
ters analyzed, they could not quantify the effect of correlated
LSS on the scatter in the WL masses. Metzler et al. (2001)
found larger effects on both the bias and the scatter in WL
mass estimates due to correlated LSS. Similarly, Marian et al.
(2010) found somewhat smaller effect on the scatter in the
WL masses due to correlated LSS than the ones we find in this
study, though they use a friends-of-friends halo finder which
complicates the separation of the effects of correlated LSS
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and triaxial halo shapes. However, these differences are most
likely due to differences in the method used to estimate the
WL masses: Metzler et al. (2001) use an aperture mass esti-
mator, whereas Marian et al. (2010) use a compensated aper-
ture mass estimator. The comparison of these works with our
own clearly demonstrates that the properties of WL masses
strongly depend on how they are estimated.

Note also that in some of the previous studies the effects
of correlated LSS on WL masses have been studied in less
direct ways. For example, King et al. (2001) studied a par-
ticular configuration of two halos in close projection with a
varying impact parameter. They found changes in the re-
covered WL masses that are similar to the scatter in the WL
masses measured from our simulations. Halos identified us-
ing the spherical overdensity algorithm used in our study are
known to have nearby, overlapping neighbors even at high
masses (e.g., Evrard et al. 2008). This effect is the flip side
of the well-known “bridging effect” in friends-of-friendshalo
finders, which often join such neighboring halos into a single
structure. The study of King et al. (2001) thus provides some
insight into the effects of different configurations of neighbor-
ing halos with respect to the LOS and origin of scatter due to
nearby, correlated large-scale structures.

de Putter & White (2005) have used a smaller 300h−1Mpc
simulation tiled along the LOS to study the total amount of
scatter introduced in WL masses due to LOS projections.
They estimate the scatter in WL masses by computing the
scatter in the tangential shear at a fixed radius due to LSS pro-
jections. While these authors do not distinguish between cor-
related and uncorrelated LSS, given the high masses of the ha-
los they consider, we have demonstrated that the effects they
observe are due mostly to halo shape and correlated LSS.

5.3. Uncorrelated LSS

As the LOS integration length is increased into the regime
of uncorrelated LSS, we have found that for our WL mass es-
timator the scatter increases due to random projections. Ad-
ditionally, we have demonstrated that the model of Hoekstra
(2003, 2001) based on cosmic shear computations can cor-
rectly predict the increase of the scatter with LOS inte-
gration length in this regime. Hoekstra et al. (2010b) have
reached a similar conclusion using analytical NFW clusters
superimposed on top of uncorrelated LSS noise from ray-
tracing through a largeN-body simulation. The formalism
of Hoekstra (2003, 2001) also correctly predicts the differ-
ent behavior of WL masses measured for low- and high-mass
halos in the presence of random projections along the LOS.
The scatter in the WL masses of low-mass halos increases
more than for high-mass halos as a function of LOS integra-
tion length because the high-mass halos generate more shear
than the low-mass halos. Hoekstra et al. (2010b) find that un-
correlated LSS has a larger effect on the scatter in the WL
masses than we find here. They have sources out toz= 3, so
that they integrate over more mass fluctuations along the LOS,
whereas we have sources only toz= 1. This change in source
redshift accounts approximately for the differences between
the estimates of scatter in the WL masses due to uncorrelated
LSS. These differences also indicate that the relative contribu-
tions to the intrinsic scatter of triaxial halo shapes and corre-
lated LSS versus uncorrelated LSS will change as the source
redshift is increased, with the effects of uncorrelated LSSbe-
coming stronger. Marian et al. (2010) find that uncorrelated
LSS projections have a negligible effect on their WL masses
estimated with a compensated aperture mass filter. Compar-

ing their work with our results, it is clear that their WL mass
estimator is more efficient than the one considered here in fil-
tering out the effects of uncorrelated LSS projections. These
differences highlight the need to study each WL mass esti-
mator individually in simulations in order to understand its
properties.

In addition to the intrinsic effects of matter along
the LOS, other authors have considered the effects WL
shape noise as well (Hoekstra 2001, 2003; King et al.
2001; King & Schneider 2001; Corless & King 2007;
Meneghetti et al. 2010b; Hoekstra et al. 2010b). While
our estimate of the effects of shape noise are consistent
with results of these studies, we are also able to accurately
compare the effects of matter projections along the LOS
with shape noise. In particular, we find that shape noise is a
dominant source of scatter in WL masses for most common
ground-based observations (i.e.{σe,ngal} = {0.3,10} or
{σe,ngal} = {0.3,20}), even in the presence of triaxial halo
shapes and uncorrelated projections of mass along the LOS.
Oguri et al. (2010) found that shape noise is the dominant
source of scatter in WL masses estimated with a different
method using ground-based observations of individual clus-
ters as well. As the weak lensing observations become better,
for the WL mass estimator considered here, shape noise ef-
fects and intrinsic scatter will make comparable contributions
to the total scatter in the WL masses (see Clowe et al. 2004
and Hoekstra et al. 2010b for similar conclusions). In order
to achieve precision calibration of cluster mass-observable
relations for precision cosmology any source of scatter and
bias at the level of& 1 − 10% needs to be considered and
controlled.

5.4. Implications for Precision Cosmology with Galaxy
Clusters and Weak Lensing

Scaling relations between observable properties of clusters
and their total mass are the key component of cosmological
constraints derived from cluster abundances and clustering.
However, the total masses of clusters are notoriously diffi-
cult to measure. The most common mass estimates, which
use X-ray derived gas and temperature profiles and assump-
tion of hydrostatic equilibrium (HSE), can be biased low by 5-
15% if non-thermal pressure support from gas motions or cos-
mic rays exists in clusters (see e.g., Lau et al. 2009, and ref-
erences therein). A recent analysis by Mahdavi et al. (2008)
has indeed indicated that the HSE X-ray derived masses are
biased low by≈ 10% with respect to the WL masses, al-
though no such bias has been detected in other recent studies
(Zhang et al. 2008; Vikhlinin et al. 2009; Zhang et al. 2010).
Given the weak lensing mass estimates are hoped to be used
for precise calibration of cluster mass-observable relations,
further independent studies of systematics and sources of scat-
ter in the WL mass measurements are critical.

How well the normalization of cluster scaling relations can
be constrained with WL mass measurements depends on the
size of the sample and on the distribution of the measured
WL masses with respect to the true cluster mass. Conversely,
if one plans to calibrate an observable-mass relation to a given
accuracy, one needs to know the scatter and bias to gauge the
required cluster sample size. In this study we have quantified
this distribution using a large cosmological simulation ofa
ΛCDM cosmology. We have measured a scatter of≈ 30% in
the WL mass at fixed true mass for parameters which charac-
terize modern and upcoming WL surveys. This large scatter
implies that samples of at least few dozens of clusters will be
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required to constrain the normalization of scaling relations to
better than 5−10%. Biases in the WL masses are important as
well since they will directly shift the normalization of cluster
scaling relations. Biases in WL masses will also complicate
attempts to learn about cluster astrophysics from these scaling
relations. WL masses which are biased low (high) can poten-
tially mask (exacerbate) the effects of non-thermal pressure
support in comparisons with X-ray HSE mass measurements.

Determining the bias accurately will be more difficult than
the scatter. The current precision to which we can detect in-
trinsic biases in our WL estimates ofM500c is ≈ 1% at 1-
σ for the highest mass halos. However, we have neglected
other systematic and observational effects which can poten-
tially change the bias in our WL masses. Magnification and
size bias (e.g., Schmidt et al. 2009a,b) will produce changes
in the relative number of sources in each bin and thus in
the properties of WL mass estimators (Schmidt & Rozo 2010;
Rozo et al. 2010). Also, we have assumed perfect knowledge
of the source redshifts. The use of photometric redshifts or
unknown source redshifts can potentially induce biases of≈
±5− 15% in the WL masses as well (e.g., Mandelbaum et al.
2008; Okabe et al. 2010). Contamination of the source galax-
ies by cluster member galaxies can produce≈ −10% system-
atic biases as well (e.g., Okabe et al. 2010). Misidentifying
halo centers can also cause small≈ 5% negative biases as
well (e.g., Hoekstra et al. 2010a). These and other similar ef-
fects will need to be accounted for in order to derive accurate
masses from WL observations.

Note that we have not used any strong lensing information
about our halos. Using this information would require higher
resolution, more realistic simulations with baryonic physics,
full ray tracing of our halos, and mock galaxies so that real-
istic multiply imaged galaxies could be analyzed as is done
in observations. Such an analysis for three cluster-sized ha-
los have been carried out by Meneghetti et al. (2010b). They
have found for their three simulated halos that the inclusion
of strong lensing information with the WL reduced tangen-
tial shear profile can reduce the scatter in the reconstructed
cluster masses. While not all clusters will have strong lensing
features in observations, understanding the statistical propri-
eties of strong lensing mass reconstructions in relation tothe
population of halos is an important avenue of future research
(see Meneghetti et al. 2010a, for a study of strong lensing
cross-sections in this spirit).

Finally, our results have implications for follow-up strate-
gies employed with the future cluster samples from large sur-
veys. Wu et al. (2010) have estimated that follow-up mass
observations to check for systematic errors in self-calibration
studies of Dark Energy can increase the Dark Energy figure
of merit (FOM) by up to 40.3− 76.4% depending on which
clusters as a function of mass and redshift are selected for
follow-up observations. However, such significant improve-
ments in the FOM can be achieved only if the bias in the
follow-up mass estimates is known to better than 5%. The
increase in the FOM from follow-up observations is less sen-
sitive to the precise value of the scatter in the follow-up mass
estimates, but a scatter of 40% can degrade the improvement
in the FOM noticeably compared to 10%. Our results put
the scatter of WL mass estimates from ground-based observa-
tions near≈ 30%, so that some degradation in the improve-
ment of the FOM compared to their baseline results is ex-
pected. While in principle we have calibrated the bias at a
level that should not degrade the efficacy of follow-up obser-
vations using WL masses, given its dependence on the exact

WL mass estimation method and other systematic effects not
studied here, more detailed work is needed in this direction.

6. CONCLUSIONS

In this paper we have studied the statistical properties of
WL mass estimates obtained by fitting the reduced tangential
shear profile with spherically-symmetric mass model in the
thin-lens approximation. We have also systematically investi-
gated the sources of scatter and bias in WL masses as a func-
tion of mass and quantified the amount of scatter for typical
ground- and space-based WL observations.

Importantly, we did not examine in detail the relative mer-
its of using other spherically-symmetric models or other fit-
ting methods for WL data. We have found that the scatter
and especially bias in WL mass estimates depends strongly
on the specific details of the analysis like the choice of outer
radial fit limit, the choice of halo mass definition, the degree
to which the halo center can be determined accurately, the
choice of fitting metric, and importantly the choice of WL
mass estimation method (i.e. spherically-symmetric model
fits, aperture densitometry, compensated aperture mass esti-
mates, etc.). Given the large number of choices made when
estimating WL masses, it is difficult to make general state-
ments about the performance of all WL mass estimators or
even explore all the possibilities. We have chosen to study
one common method of WL mass estimation in detail and
leave the investigation of the performance other WL mass es-
timation methods to future work.

Our main conclusions are as follows.

• Weak lensing cluster mass estimates made with
spherically-symmetric model fits have irreducible scat-
ter from correlated LSS around the clusters in addi-
tion to the well-known effects of halo triaxiality and
uncorrelated LSS. Specifically, we find that correlated
LSS contributes≈ 20% and halo triaxiality contributes
≈ 80% of the scatter due to matter within≈ 20h−1Mpc
of the halo center.

• For low-mass cluster halos the total intrinsic scatter is
dominated by uncorrelated LSS (see Figure 1 and Ta-
ble 1). For the most massive halos, correlated LSS
and halo triaxiality are the dominant sources of intrinsic
scatter for our assumed source redshiftzs = 1.

• The contribution of uncorrelated LSS as a function of
increasing distance from the cluster for distances& 20
h−1Mpc is well-described by the formalism of Hoekstra
(2001, 2003). A similar conclusion was reached by
Hoekstra et al. (2010b).

• Weak lensing cluster mass estimates can generally have
small, but non-negligible bias of≈ 5− 10%. A large
portion of this bias is due to the fact that the NFW pro-
file assumed in this work is not a good description of
the true shear profile at large radii around clusters from
the simulations. However other physical effects in the
simulations, such as substructure and halo triaxiality,
likely contribute to this bias as well.

• For current ground-based observations, shape noise
is the dominant source of scatter in the weak lens-
ing masses. For higher-quality observations with
higher source densities, the effects of shape noise be-
come comparable or sub-dominant to the effects of the
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sources of intrinsic scatter: halo triaxiality, correlated
LSS, and uncorrelated LSS. A similar conclusion was
reached by Hoekstra et al. (2010b), but by just compar-
ing shape noise and uncorrelated LSS.

The overall implication of our results is that in order to
achieve percent level accuracy in WL mass mass modeling,
the specific details of both the WL estimation method and
observations will matter. We will need to include more re-
alistic physical and observational effects in our simulations.
Additionally, in this work we have used dark matter only sim-
ulations. While in principle the effects of baryonic physics
on WL mass estimates should be small, the baryonic physics
can affect cluster masses by a few percent (Rudd et al. 2008).
Much more detailed studies will be needed before we can use

WL mass estimates to help study Dark Energy and do preci-
sion cosmology.
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