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Abstract

The confined, quasi-two-dimensional guiding center plasma and a system of interacting line vor-

tices in an ideal fluid are examples of Hamiltonian systems with infinite interaction distances. The

existence of metastable states with negative specific is investigated by standard entropy maximiza-

tion of the thermodynamic limit of vortices as they become infinitesimal and form a continuous

field. We find metastable states and suggest that these imply a runaway reaction leading to a

rapid expansion of a confined plasma or fluid similar to the rapid collapse of globular clusters in

astrophysics.
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I. INTRODUCTION

There has been considerable interest recently in metastable states and negative specific

heat, particularly related to fluids and plasmas [4, 20]. The guiding center plasma or ideal

fluid vorticity model for quasi-2D columns of electrons or lines of vorticity is similar to

the widely studied two-dimensional model but the lines contain small variations which can

change the dynamics of the system. An ensemble of filaments {~φ1(τ), . . . , ~φN(τ)},

EN [~φ1 . . . ~φN ] =
∑

i

∫ l

0

dτ
αΓ
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−
1

ǫ

∑

i<j

Γ2 log |~φi − ~φj |, (1)

where 1/ǫ is the coupling constant, all the filaments have the same average circulation, Γ, α

is a core elasticity constant related to the frequency, and l is the length of the period under

periodic boundary conditions ~φi(0) = ~φi(l). Each filament ~φi(τ) = (xi(τ), yi(τ)) is a vector

in the plane with a parameter τ representing the third dimension. This is under special

asymptotic assumptions that the filaments are nearly parallel and far enough apart [16].

Because of the nearly parallel assumption, this model neglects vortex stretching which is

assumed to be too small to affect the statistics. An example of such an ensemble is pictured

in Figure 1.

There is a significant difference between the two-dimensional one-component Coulomb

plasma and this quasi-2D model. Because the total energy is entirely dependent on how far

apart the lines are, an ensemble of two-dimensional lines at a fixed energy has a maximum

radius beyond which the lines cannot move while the quasi-2D lines can move, theoretically,

as far apart as there is space available because the potential energy can always be balanced

by altering the kinetic energy. In addition, we show in this paper that metastable states

exist in the quasi-2D model that do not exist in the 2D model.

Statistical derivations for three dimensional fluids of any kind have tended to focus on sin-

gle vorticity columns [6, 7] and [8, 9] or statistical treatments of ensembles of two-dimensional

point vortices [1, 10–12]. The nearly parallel vortex filament model of [15, 16] for Navier-

Stokes fluids is an exception.

The nearly parallel model can be extended to electron columns by a generalized vorticity

model for electron plasmas [5, 13, 14] which takes the magnetic and electric fields into account
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FIG. 1: This output from a Monte Carlo simulation of the energy functional.

as well as the vorticity. In the case of charged particles, the vorticity must, essentially, be

gauge invariant: the magnetic field, −e ~B/m = (−e/m)∇× ~A, and the charged fluid vorticity,

~ω = ∇ × ~v, combine into a general vorticity field Ω = m−1∇× ~p where the generalised or

“canonical” gauge invariant momentum is, ~p = m~v − e ~A, m is the electron mass, −e is the

electron charge, ~v is the fluid velocity field, and ~A is the magnetic vector potential field.

The generalized angular momentum is ~L = ~r × ~p.

Electron column core sizes are small, equal to the Larmor radius, a, about a tenth of a

millimeter for electrons, hence the core structure may be abstracted by the local induction

approximation (LIA). The size of the local region, which is the wavelength of the highest

energy frequencies on the filaments, is naturally given by the London wavelength, b = c/ωpe,

where the electron plasma frequency is given by ω2
pe = ne2/mǫ0 and n is the electron number

density of the individual filament [13]. Because the filaments are all nearly parallel, collisions

between points not in the same cross-section are small, and the two dimensional Coulomb

interaction gives the potential to leading order.

II. METHOD

A filament nearly parallel to the z axis has a C2 curve ~φ(τ) = (x(τ), y(τ)) with L2
[0,l]

derivative where l ≪ 1 is a small length scale. Assuming no short-wave disturbances (knots,
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kinks, etc.), the filament has a LIA kinetic energy functional,

E1[~φ] =

∫ l

0

dτ
αΓ
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∣

∣
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∣

∣

2

(2)

where Γ is the generalized circulation of the filament [13] and α = log(b/a) + 1, b is the

arclength of the “local” region where the induction takes place, i.e. the wavelength of the

highest frequency modes on the filament, and a is the core size of the filament. The ratio

b/a does not vary significantly over the length of the filament; therefore, it can be assumed

to be constant [9]. The core size a of electron filaments is the Larmor radius while a natural

choice for b is the London wavelength, b = c/ωpe, where the electron plasma frequency is

given by ω2
pe = ne2/mǫ0 and n is the electron number density of the individual filament [13].

For N such filaments, they have, under suitable asymptotic assumptions such that the

filament core size is much smaller than the intervortex spacing, a 2-D Coulomb interaction

such that,

EN [~φ1 . . . ~φN ] =
∑
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−
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ǫ

∑

i<j

Γ2 log |~φi − ~φj|, (3)

where 1/ǫ is the coupling constant and all the filaments have the same average circulation

[14]. The kinetic energy is the square amplitude of the filament with zero amplitude im-

plying zero kinetic energy; hence the filament’s self energy is not directly connected to the

microscopic temperature.

The kinetic energy of generalized angular momentum for a single filament of electrons is

A1 = 1
2
Iω̄2 where I is the moment of inertia of the filament, I =

∫ l

0
dτ |~φ|2, and ω̄ is the

generalized frequency of rotation. For N filaments, all with the same frequency,

AN [~φ1 . . . ~φN ] =
1

2
µ′

∑

i

∫ li

0

dτ Γ|~φi|
2, (4)

where µ′Γ = ω̄2. Now choose mass and charge units such that e = m = 1 for electrons.

No boundary conditions are imposed perpendicular to z since the plasma is fully contained

by the magnetic field and never contacts any surfaces. The confinement radius R is a

bounding radius representing the distance from the center of the plasma to the outer edge

where the density falls to zero (sometimes abruptly). This is smaller than the radius of

the container. Provided the magnetic surfaces to which they are confined are closed, the

filaments cannot interact with material surfaces.
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In the thermodynamic limit as N → ∞ such that total circulation, Λ = ΓN , is constant,

the filaments have area density f(~c, ~r, τ) = Γg(~c, ~r, τ) (where ~c = d~ψ/dτ and Γ is the

generalized circulation) such that, if σ = (~c, ~r), the kinetic energy is,

T =
1

2

∫

d4σdτ fαc2, (5)

where c = ‖~c‖. In a rotating frame the kinetic energy of angular momentum becomes a

potential added to the interaction potential,

V =
1

2
µ′

∫

d4σdτf |~r|2 −
1

ǫ

∫

d4σd4σ′dτ ff ′ log |~r − ~r′|, (6)

where f ′ = f(~c′, ~r′, τ) and particle number is N =
∫

d4σdτ g. All integrals are over the

interior of the torus. Since the energy functional does not depend on τ , the density with

maximal entropy does not depend on τ either (as one can show from the variation); therefore,

we drop the integrals over τ and assume the area density is constant in τ . All functionals

are now per unit length.

For a fixed energy system, the entropy (with Boltzmann’s constant kB = 1),

S = −

∫

d4σ g log g, (7)

is maximal in the most-probable macrostate.

To maximize the entropy, we must solve the variational problem,

δS = 0, (8)

subject to the constraints, T + V = E, N fixed. That is for some small parameter λ, we

define a family of density functions g(σ;λ), such that entropy is maximal (δS = dS/dλ = 0)

at g(σ; 0).

The method of Lagrange multipliers provides the equation for the variation of S subject

to the constraints,

δS + β ′δE + νδN = 0, (9)

where β ′ is inverse temperature, ν is a normalization parameter. (Angular momentum is

automatically conserved by the rotational invariance of the energy.) Taking the variation

([3]) we have,

log g + 1 + β ′Γ

(

α

2
c2 +

µ′

2
r2 + ψ

)

+ ν = 0, (10)
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where

ψ(~r) = −
1

ǫ

∫

d~r′ρ(~r′) log |~r − ~r′| (11)

is the 2D Coulomb potential. Let H = α
2
c2 + µ′

2
r2 + ψ.

Solving 10 for the density,

g = Ae−β
′ΓH , (12)

where A = exp[−(ν +1)] is a normalization constant that gives the particle number N . Let

β = β ′Γ. Showing the equipartition of energy, the average kinetic energy per filament is

∫

d2c f α
2
c2

∫

d3c f
=

∫

d2c exp
(

−1
2
βαc2

)

1
2
αc2

∫

d2c exp
(

−1
2
βαc2

) =
1

β
. (13)

To solve for the spatial density, ρ, we can integrate equation 12 over all “velocities”, ~c,

ρ =

∫

d2c f = B exp[−β(ψ + µ′r2/2)], (14)

where B = A(2π/β).

Replacing ρ in the potential with the above equation gives an integral equation for the

most-probable potential inside the circle,

ψ(~r) = −

∫

d~r′Be−β(ψ(~r
′)+µ′r2/2) log |~r − ~r′|. (15)

This integral equation is equivalent to the Poisson equation,

∇2ψ(~r) = −
4π

ǫ
ρ =







−4πB exp[−β(ψ + µ′

2
r2)]/ǫ |~r| < R

0 |~r| ≥ R
(16)

with boundary conditions such that ψ and dψ/dr are continuous at the boundary r = R. Be-

cause of the axisymmetry of the energy the potential must also be statistically axisymmetric.

Converting to polar coordinates and 16 gives the ODE,

1

r

d

dr

(

r
dψ

dr

)

= −
4π

ǫ
Be−β(ψ(r)+µ

′r2/2), (17)

for r < R.

Because the potential is repulsive, the only solutions to this equation have finite den-

sity everywhere (unlike gravitational systems, infinite densities such as black holes are not

possible in a repulsive Coulomb system). To simplify, we make the change of variables,
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v1 = β(ψ−ψ(0)) and r1 =
√

4πβA exp[−βψ(0)]/ǫ · r =
√

4πβρ(0)/ǫ · r, which simplifies the

ODE (17) to,
d2v1
dr21

+
1

r1

dv1
dr1

+ e−v1−βµ
′r2

1
(R2/z2)/2 = 0, (18)

where z =
√

4πρ(0)β/ǫR and with boundary conditions,

v1(0) = v′1(0) = 0, (19)

where v′1 = dv1/dr1. Note that the plasma density can be written ρ = ρ(0)e−v1 or (v1 =

− log[ρ/ρ(0)]); therefore, the variable v1 describes how the density changes as the distance

from the origin changes and decreases monotonically from 0 at r1 = 0.

The viral theorem of Clausius may be applied,

2T + V = 3pV, (20)

where

p =

∫

r=R

d2cf
1

3
αc2, (21)

is the surface “pressure” and V = πR2 is the area of the circle. From the equipartition

theorem, where Λ is the total circulation,

T =
Λ

β
. (22)

Using the Virial theorem,

E = 3pV − T = 3pV −
Λ

β
, (23)

and

V = 3pV − 2
Λ

β
. (24)

Evaluating the surface pressure,

p =

∫

r=R

d2c f
1

3
αc2 =

2

3

1

β

∫

r=R

d2c f =
2ρ(R)

3β
, (25)

where

f = A exp

[

−β

(

α
c2

2
+ µ′

r2

2
+ ψ

)]

. (26)

Integrating 17, circulation Λ is given by,

Λ

ǫ
= −

(

r
dψ

dr

)

r=R

= −
1

β

(

r1
dv1
dr1

)

r1=z

. (27)
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Then

β = −
ǫzv′1(z)

Λ
. (28)

For the rest of this section, v′1 and v1 shall refer to v′1(z) and v1(z) only.

The pressure is,

p =
2

3

ρ(R)

β
=

2

3

ρ(0)e−v1−βµR
2/2

β
. (29)

Since r21/r
2 = |4πβρ(0)/ǫ|, and eliminating instances of β with 28,

p =
2

3

ǫz2

4πR2

e−v1−βµ
′R2/2

β2
=

Λ2

6πR2ǫ

z2e−v1+µ
′zv′

1
ǫR2/(2Λ)

(−zv′1)
2

. (30)

Let µ = ǫµ′R2/(2Λ), then

3pV =
Λ2

2ǫ

z2e−v1+µzv
′

1

(−zv′1)
2
, (31)

and the energy from 23 is

E =
Λ2

ǫ

(

z2e−v1+µzv
′

1

2(−zv′1)
2

−
1

(−zv′1)

)

. (32)

The entropy, obtained from 7, is given by,

S =
1

Γ

{

β

(

E −
Λ2

ǫ
logR

)

− Λ log pβ2 + Λ log 2πΓ

}

. (33)

The specific heat is,

cv =
dE

dT
=

dE
dz
dT
dz

. (34)

When µzv′1r
2/R2 = v1(z) we have a constant density solution, where the potential energy

and the confinement are perfectly balanced. For µzv′1r
2/R2 > v1(z) the potential dominates,

and the density tends to favor expansion with higher density toward the wall of the container.

These profiles, although stable, are not suitable for containment. For µzv′1r
2/R2 < v1(z)

the magnetic confinement dominates and a more Gaussian density profile is preferred with

higher density toward the middle. These profiles are useful for containment.

Numerically evaluating v1 and v′1 for a range of z values (Fig. III) in the strong rotation

regime µ > 0.5, we have negative specific heat. At µ = 0.5 the energy is zero indicating

that the potential energy, which is the only energy component that can take negative values,

perfectly balances the kinetic energy and the confinement potential; at this point the specific

heat is zero. In the weak rotation regime with µ < 0.5, the specific heat remains positive

(Fig. 3).
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III. RESULTS

Entropy maximization of the model yields the following results:

1. An expression for the energy in terms of z, v1(z), and v
′

1(z),

E =
Λ2

ǫ

(

z2e−v1+µzv
′

1

2(−zv′1)
2

−
1

(−zv′1)

)

, (35)

where Λ is the total circulation, ǫ is the coupling constant for vorticity, and µ is a

parameter determining strength of the angular kinetic energy;

2. An expression of the inverse temperature of the filaments (Boltzmann’s constant, kB =

1),
1

T
= β = −

ǫzv′1(z)

Λ
; (36)

3. An expression for the central density,

ρ(0) =
ǫz2

4πβR2
, (37)

where R is the radius of the confinement area;

4. A second ODE governing the density at a particular energy/temperature,

d2v1
dr21

+
1

r1

dv1
dr1

+ e−v1(r1)+µr
2

1
v′
1
(z)/z = 0; (38)

with boundary conditions,

v1(0) = v′1(0) = 0, (39)

where v′1 = dv1/dr1;

5. And an expression for the density:

ρ(r) = ρ(0) exp(−v1(r) + µr2zv′1(z)/R
2), (40)

where r = r1/
√

4πβρ(0)/ǫ is the distance from the center.

From numerical evaluation of 38 the energy (35), inverse temperature (36), and core density

(37) are computed as functions of z. These are plotted for several values of µ (Fig. III, Fig.

3, Fig. 4).
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FIG. 2: For regimes with µ < 0.5, confinement is weak enough that stable states exist, indicated by

energy decreasing with z, but beyond that all states are metastable, indicating that equilibrium is

not possible. When energy increases with z, the system is metastable, and, because this leads the

system to run away to hotter temperatures where the central density decreases, runaway expansion

results.

IV. DISCUSSION

Negative specific heat indicates a metastable state where the entropy, rather than being

globally maximal, is at a saddle point or local maximum, and the system evolves out of

this state by increasing temperature, where the term “temperature” refers to the amount of

kinetic energy per unit circulation and not the electron temperature. Because the specific

heat is negative, increasing temperature lowers the total energy. In gravitational systems

where this phenomenon was first described, this results in gravothermal catastrophe where

a globular cluster, for example, experiences a core collapse. The collapse of the core results

in reduced gravitational potential and increased stellar velocities. Thus, the overall energy

decreases while the temperature increases. It has been argued by analogy that negative

specific heat in magnetically confined, neutral electron-positron plasmas would result in

core collapse leading to the possibility of nuclear fusion as columns of electrons and ions

collapse into one another [4]. In a previous paper, however, we showed that self-energy
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FIG. 3: Temperature decreases with z. Therefore, if energy increases with z, the specific heat is

negative. If energy decreases with z the system has stable equilibria.

causes an anomalous expansion in the mean radius of the density profile and developed

a mean-field formula for it, confirming it with Monte Carlo simulations [19]. The same

approach in a microcanonical ensemble shows that the system exhibits negative specific

heat [20]. Therefore, while magnetically confined quasi-2D plasmas exhibit negative specific

heat indicating metastable energy states where no equilibrium exists, because the potential

is repulsive, the instability is a runaway expansion.

This expansion arises because increases in kinetic energy and decreases in potential energy

both cause expansion. Analyzing Figs. III, 3, and 4, the mechanism works as follows: (1)

The potential energy decreases. If the magnetic confinement is sufficiently weak at the

given density, expanding it decreases the potential energy. (2) The kinetic energy increases

in response, but, because the system has expanded, energy is lost at the outer edges of

the plasma. Thus, the filament temperature has increased but energy decreased. (3) The

increased kinetic energy causes the density profile to spread (by increasing the variance),

causing further expansion, and returning the cycle to step (1). As the potential energy

continues to decrease, the kinetic energy continues to increase, and the system experiences

a runaway expansion directly analogous to the runaway collapse of a gravitational system.

Unlike in the gravitational systems, however, because the specific heat is negative for all

11



1 2 3
0

0.05

0.1

0.15

ρ
0
 vs. z

z

R
2  ρ

0/Λ

 

 

µ=0.2
µ=0.3
µ=0.4
µ=0.5

FIG. 4: As µ increases, confinement becomes stronger and the central density decreases less with

increasing z, but, because it is decreasing in the metastable regime, this indicates a core expansion.

energy values, no equilibrium states exist and the plasma never settles. Because the system

is forced, like a forced snow-pile (with continuous snow fall), as long as the metastable state

persists, the energy input into the system from the externally applied currents balances the

energy loss. When the metastable state ceases, however, the rate of energy loss increases

dramatically and the rate of energy input no longer balances the rate of energy loss. This

expansion causes a dramatic loss of core electron temperature which has been observed in

experiment [21], a direct result of heat transport from the core to the outer edge via the

runaway expansion mechanism. Recovery occurs when the filaments expand far enough

apart that the rate and magnitude of their collisions decreases, and the expansion slows.

Supposing that complete plasma disruption does not occur, the input current allows the

energy to increase again, returning the plasma to a metastable state. Hence, the instability

is regular and repeated.

This instability is a direct result of the confinement as Fig. 3, where confinement is weak,

shows. In the strong confinement regime, expansion decreases the potential because v1(r)

increases from the core showing that density (40) decreases; when confinement is weak,

however, expansion increases it because v1(r) decreases from the core, and any further
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expansion increases the density at the edge of the confinement area. In a real system,

weakly confined plasmas do not persist for long before complete disruption however, so this

regime is not useful for sustained fusion.

Negative specific heat has been found in neutral, two-component, electron-positron plas-

mas [4]. This model, however, ignores Coulomb interactions between charged particles and

does not take into account that the positively charged ion lines move far more slowly than

the negatively charged electron lines. For a neutral electron/ion plasma, a two-fluid magne-

tohydrodynamical model is appropriate. At 100 million degrees K (the minimum target of

tokamak reactors although we are not assuming a toroidal geometry here) electrons travel

at a mean velocity of 40,000 kps while deuterons travel at “only” 600 kps. Instabilities in

tokamak plasmas such as the sawtooth instability may be related to the metastable state

described in this paper [2]. Future research will focus on toroidal geometries to determine

if this is likely.
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