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LIOUVILLE-TYPE THEOREMS AND APPLICATIONS TO

GEOMETRY ON COMPLETE RIEMANNIAN MANIFOLDS

CHANYOUNG SUNG

Abstract. On a complete Riemannian manifold M with Ricci curva-
ture satisfying

Ric(∇r,∇r) ≥ −Ar
2(log r)2(log(log r))2 · · · (logk r)2

for r ≫ 1, where A > 0 is a constant, and r is the distance from an
arbitrarily fixed point in M . we prove some Liouville-type theorems for
a C2 function f : M → R satisfying ∆f ≥ F (f) for a function F : R → R.

As an application, we obtain a C0 estimate of a spinor satisfying the
Seiberg-Witten equations on such a manifold of dimension 4. We also
give applications to the Yamabe problem and isometric immersions of
such a manifold.

1. Introduction

According to Liouville’s theorem, any f ∈ C2(R2) which is subharmonic
(∆f ≥ 0) and bounded above must be constant. This is not true in higher
dimensions, but various types of extensions to general complete Riemannian
manifolds have been found. We are here concerned with the case ∆f ≥ F (f),
where ∆ is the Laplace-Beltrami operator and F is a real-valued function
on R.

L. Karp [4] showed that on a complete Riemannian manifold M satisfying

lim sup
r→∞

log Vol B(p, r)

r2
< ∞

for a point p ∈ M where B(p, r) is the geodesic ball centered at p with radius
r, there exists no f ∈ C2(M) which is strongly subharmonic (∆f ≥ c for a
constant c > 0) and bounded above. (This volume growth condition holds
when the Ricci curvature satisfies

Ric ≥ −A(1 + r2)
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where A > 0 is a constant and r is the distance from p.)
S.M. Choi, J.H. Kwon, and Y.J. Suh [2] proved that on a complete Rie-

mannian manifold with Ricci curvature bounded below, every nonnegative
C2 function f satisfying ∆f ≥ cfd for constants c > 0 and d > 1 must
vanish identically.

In this article, we consider the general type F (f) to prove :

Theorem 1.1. Let M be a smooth complete Riemannian manifold with Ricci

curvature satisfying

Ric(∇r,∇r) ≥ −Ar2(log r)2(log(log r))2 · · · (logk r)2

for r ≫ 1, where A > 0 is a constant, r is the distance from an arbitrarily

fixed point in M , and logk denotes the k-fold composition of log.
Suppose that a C2 function f : M → R is bounded below and satisfies

∆f ≥ F (f) for a real-valued function F on R.

• If lim infx→∞
F (x)
xν > 0 for some ν > 1, then f is bounded such that

F (sup f) ≤ 0.

• If lim infx→∞
F (x)
xν ≤ 0 for any ν > 1, then sup f = ∞ or f is bounded

such that F (sup f) ≤ 0.

The proof is based on a generalized Omori-Yau maximum principle which
holds under the above Ricci curvature condition.

In section 3, we give a similar result for bounded-above f , which leads to
an improvement of L. Karp’s theorem [4] :

Theorem 1.2. Let M be as in theorem 1.1.

Then there exists no f ∈ C2(M) which is strongly subharmonic and

bounded above, and any f ∈ C2(M) which is nonpositive and satisfies ∆f ≥
c|f |d for some positive constants c and d must be identically zero.

In later sections, we discuss the geometric application of these theorems on
manifolds of theorem 1.1. We derive a C0 estimate of the spinor satisfying
the Seiberg-Witten equations on 4-manifolds, and we give slight improve-
ments on well-known applications such as the Yamabe problem and isometric
immersions of such a manifold by using our Liouville-type theorems.

Finally we remark that in all the theorems of this article the Ricci cur-
vature assumption can be replaced by a weaker condition that M admits a
tamed-exhaustion, which guarantees the Omori-Yau maximum principle by
K.-T. Kim and H. Lee [3].

2. Proof of theorem 1.1

We follow the idea of [2]. Since f is bounded below, we take a constant a

bigger than inf f . Define a C2 function G : M → R
+ by (f + a)

1−q

2 where
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q > 1 is a constant. By a simple computation,

∇G =
1− q

2
G

q+1

q−1∇f,(2.1)

and

∆G = −q + 1

2
G

2

q−1∇G · ∇f +
1− q

2
G

q+1

q−1∆f.(2.2)

By Plugging (2.1) to (2.2), we get

1− q

2
G

2q

q−1∆f = G∆G− q + 1

q − 1
|∇G|2.(2.3)

Since G is bounded below, we can apply the generalized Omori-Yau max-
imum principle due to A. Ratto, M. Rigoli, and A.G. Setti [7] to have that
for any ǫ > 0 there exists a point p ∈ M such that

|∇G(p)| < ǫ, ∆G(p) > −ǫ, and inf G+ ǫ > G(p).

We take a sequence ǫm > 0 converging to 0 asm → ∞, and get corresponding
pm ∈ M . Observe that G(pm) → inf G, and hence f(pm) → sup f .

Evaluating (2.3) at pm gives

1− q

2
G(pm)

2q

q−1∆f(pm) > −ǫmG(pm)− q + 1

q − 1
ǫ2m.(2.4)

Applying ∆f ≥ F (f) and replacing G by (f + a)
1−q

2 , we get

F (f(pm))

(f(pm) + a)q
<

2ǫm
q − 1

1

(f(pm) + a)
q−1

2

+
2(q + 1)

(q − 1)2
ǫ2m.(2.5)

Suppose sup f < ∞. Then as m → ∞, the RHS converges to 0 while the

LHS converges to F (sup f)
(sup f+a)q . Thus we can conclude that F (sup f) ≤ 0.

Now it only remain to show that when lim infx→∞
F (x)
xν > 0 for some

ν > 1, f must be bounded. Let’s assume sup f = ∞. Then for q < ν, the
LHS diverges to ∞, while the RHS converges to 0 as m → ∞. This is a
contradiction completing the proof.

Remark In the second case, unbounded examples exist a lot. For instance,
on R

n with the Euclidean metric, consider

f(x1, · · · , xn) = ex1 + · · · + exn

or

f(x1, · · · , xn) = ex1+···+xn .

Then f is bounded below but not bounded above, while ∆f = f . This
answers the question raised in [2]. 2



4 CHANYOUNG SUNG

Remark Note that Ricci curvature condition is needed only for the appli-
cation of the Omori-Yau maximum principle. According to the result of A.
Ratto, M. Rigoli, and A.G. Setti [7], the maximum principle holds if

Ric(∇r,∇r) ≥ −B2ρ(r)

for some constant B > 0, and some smooth nondecreasing function ρ(r) on
[0,∞) which satisfies

ρ(0) = 1, ρ(2k+1)(0) = 0 ∀k ≥ 0,

√

ρ(t) /∈ L1, lim sup
t→∞

tρ(
√
t)

ρ(t)
< ∞.

Moreover K.-T. Kim and H. Lee [3] found that the Omori-Yau maximum
principle holds in a weaker condition that M admits a tamed-exhaustion,
i.e. a nonnegative continuous function u : M → R such that {p : u(p) ≤ r}
is compact for every r ∈ R, and at every p ∈ M there exists a C2 function
v defined on an open neighborhood of p satisfying

v ≥ u, v(p) = u(p), |∇v(p)| ≤ 1, ∆v(p) ≤ 1.

2

3. Proof of theorem 1.2

The results follow from

Theorem 3.1. Let M be as in theorem 1.2. For a C2 function f : M → R

which is bounded above and satisfies ∆f ≥ F (f) where F : R → R,

• if lim infx→−∞
F (x)
(−x)ν > 0 for some ν < 1, then f is bounded such

that F (inf f) ≤ 0.

• if lim infx→−∞
F (x)
(−x)ν ≤ 0 for any ν < 1, then inf f = −∞ or f is

bounded such that F (inf f) ≤ 0.

Proof. The method is similar to theorem 1.1. Since −f is bounded below,
we apply the proof of theorem 1.1 to −f with q < 1 to get

1− q

2
G(pm)

2q

q−1∆(−f)(pm) > −ǫmG(pm)− |q + 1|
|q − 1|ǫ

2
m

from (2.4), and hence

∆f(pm)

(−f(pm) + a)q
<

2ǫm
1− q

1

(−f(pm) + a)
q−1

2

+
2|q + 1|
(q − 1)2

ǫ2m.
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Applying ∆f ≥ F (f) and simplifying, we have

F (f(pm))

(−f(pm) + a)
q+1

2

<
2ǫm
1− q

+
2|q + 1|
(q − 1)2

ǫ2m(−f(pm) + a)
q−1

2 .

Now if inf f > −∞, then we get F (inf f) ≤ 0 by letting m → ∞.

In case lim infx→−∞
F (x)
(−x)ν > 0 for some ν < 1, to show the boundedness

of f let’s assume inf f = −∞. Then taking q such that q+1
2 < ν and letting

m → ∞, the LHS diverges to ∞, while the RHS converges to zero. From
this contradiction, we conclude that f must be bounded, completing the
proof.

If f is bounded-above and satisfies ∆f ≥ c for a constant c > 0, applying
the above theorem with F = c, it follows that f is bounded and F (inf f) ≤ 0.
This is contradictory to F ≡ c > 0.

For the second one, applying the above theorem with F (f) = c|f |d, one
can conclude that f is bounded and c| inf f |d ≤ 0 implying f ≡ 0.

Remark P.-F. Leung [5] showed that on a complete noncompact Riemann-
ian manifold M with λ1(M) = 0, there exists no bounded C2 function f
satisfying ∆f ≥ c for a positive constant c. Here

λ1(M) := lim
r→∞

λ1(B(p, r))

for any p ∈ M , where λ1(B(p, r)) is the Dirichlet eigenvalue of ∆ in B(p, r),
and it is known that λ1(M) = 0 if the Ricci curvature of M is nonnegative.
2

4. Application to Seiberg-Witten equations

We now use theorem 1.1 to derive an upper bound of a solution of the
Seiberg-Witten equations of which we give here a brief account. Let M
be a smooth oriented Riemannian 4-manifold. Consider oriented R

3-vector
bundles ∧2

+ and ∧2
− consisting of self-dual 2-forms and anti-self-dual 2-forms

respectively. Let’s let P1 and P2 be associated SO(3) frame bundles. Unless
M is spin, it is impossible to lift these to principal SU(2) bundles. Instead
there always exists the Z2-lift, a principal U(2) = SU(2) ⊗Z2

U(1) bundle,
of a SO(3) ⊕ U(1) bundle, when the U(1) bundle on the bottom, denoted
by L, has first Chern class equal to w2(TM) modulo 2. We call this lifting
a Spinc structure on M .

Let W+ and W− be C
2-vector bundles associated to the above-obtained

principal U(2) bundles. One can define a connection ∇A on them by lifting
the Levi-Civita connection and a U(1) connection A on L. Then the Dirac
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operator DA : Γ(W+) → Γ(W−) is defined as the composition of ∇A :
Γ(W+) → T ∗M ⊗ Γ(W+) and the Clifford multiplication.

For a section Φ of W+, the Seiberg-Witten equations of (A,Φ) is given by
{

DAΦ = 0

F+
A = Φ⊗ Φ∗ − |Φ|2

2 Id,

where F+
A is the self-dual part of the curvature dA of A, and the identification

of both sides in the second equation comes from the Clifford action.
It is essential and the first step to obtain a C0 bound on the spinor part

of a solution in order to obtain the compactness of its moduli space of so-
lutions. It is also essential for proving the emptiness of the moduli space
when the Riemannian metric of M has positive scalar curvature. When M
is compact, such a bound can be easily derived, because there exists a point
in M where the maximum norm is attained. When M is noncompact, one
cannot guarantee such a bound in general, but we prove :

Theorem 4.1. Let M be a smooth oriented complete Riemannian 4-manifold

with the Ricci curvature condition as in theorem 1.1. Suppose (A,Φ) is a

solution of the Seiberg-Witten equations for a Spinc structure on M . Then

sup |Φ|2 ≤ sup s−,

where s−(x) := max(−s(x), 0) and s : M → R is the scalar curvature.

Proof. We may assume sup s− < ∞, otherwise there is nothing to prove.
Recall the Weitzenböck formula

DADAΦ = ∇∗
A∇AΦ+

s

4
Φ +

F+
A

2
· Φ.

For a solution (A,Φ),

0 = ∇∗
A∇AΦ+

s

4
Φ +

|Φ|2
4

Φ.

Taking the inner product with Φ gives

0 = −1

2
∆|Φ|2 + |∇Φ|2 + s

4
|Φ|2 + 1

4
|Φ|4,

and hence we get

∆|Φ|2 ≥ −sup s−

2
|Φ|2 + 1

2
|Φ|4.

Now we apply theorem 1.1 with f = |Φ|2 and F (f) = − sup s−

2 f + 1
2f

2, and
obtain

−sup s−

2
sup |Φ|2 + 1

2
(sup |Φ|2)2 ≤ 0,

which implies
sup |Φ|2 ≤ sup s−.
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Remark One can also derive the corresponding estimate for perturbed
Seiberg-Witten equations in the same way.

It is interesting to ask whether this estimate still holds without the Ricci
curvature condition. 2

5. Application to the Yamabe problem

Theorem 5.1. Let (M,g) be as in theorem 1.1. Suppose that the scalar

curvature of g is nonnegative. If s̃(x) is a smooth nonpositive function on

M such that

sup
x∈M−K

s̃(x) < 0

for a compact subset K ⊂ M , then g cannot be conformally deformed to a

metric of scalar curvature s̃.

Proof. We may let n := dimM ≥ 2, otherwise there is nothing to prove.
First, let’s consider the case when n ≥ 3. Suppose there exists a smooth

positive function f on M such that the scalar curvature of f
4

n−2 g is s̃. Then

4
n− 1

n− 2
∆f − sf + s̃f

n+2

n−2 = 0,

where s is the scalar curvature of g. Obviously f is not constant. Applying
the maximum principle to the inequality

4
n − 1

n − 2
∆f − sf ≥ 0,

we have that the maximum does not occur on M .
Now we apply theorem 1.1 to

4
n− 1

n− 2
∆f ≥ −s̃f

n+2

n−2 .

Although F is not only a function of f but also x ∈ M , the proof of theorem
1.1 works well all the way to give (2.5). Since f(pm) → sup f , pm ∈ M −K

for sufficiently large m. Then in (2.5) replacing F (f(pm)) with cf
n+2

n−2 where
c = − supx∈M−K s̃(x), and proceeding the argument as in theorem 1.1, we
conclude that f is bounded and

c(sup f)
n+2

n−2 ≤ 0,

meaning sup f = 0. This yields a desired contradiction.
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When n = 2, the proof is almost the same. Assume to contrary that
there exists a smooth positive function f on M such that the fg has scalar
curvature s̃. The scalar curvature equation is now

∆ ln f − s+ s̃f = 0.

To convert it into the form applicable to theorem 1.1, consider

∆f = ∆eln f

= eln f |∇ ln f |2 + eln f∆ ln f

= f |∇ ln f |2 + sf − s̃f2.

Then the maximum of f is not attained on M by applying the maximum
principle to ∆f ≥ 0, and the application of theorem 1.1 to ∆f ≥ −s̃f2 as
above yields sup f = 0, which is a contradiction.

Remark It is worth mentioning that on a complete Riemannian manifold
whose scalar curvature s̃ satisfies

s̃ ≤ −c

for a constant c > 0 outside a compact subset, there is conformal complete
metric with scalar curvature ≡ −1. (For a proof, see [1].)

When the Ricci curvature of M satisfies sharper estimates, better results
hold as obtained by [7]. For example, if

Ric(∇r,∇r) ≥ −A(1 + r2),

then the same conclusion also holds for s̃ such that

s̃ ≤ − C

log r(log(log r)) · · · logk r
, r ≫ 1

for a constant C > 0. 2

6. Application to isometric immersions

We can give a slight generalization of L. Karp’s result [4].

Theorem 6.1. Let M be a smooth complete Riemannian manifold with

scalar curvature s satisfying

s ≥ −Ar2(log r)2(log(log r))2 · · · (logk r)2

for r ≫ 1, where A > 0 is a constant, r is the distance from an arbitrarily

fixed point in M , and logk denotes the k-fold composition of log.
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Suppose M is isometrically immersed in a geodesic ball of radius R in a

simply-connected complete Riemannian manifold N with higher dimension

and nonpositive curvature. Then

R ≥ 1

H0

where H0 = sup ||H|| and H is the mean curvature. In particular M cannot

be minimally immersed in a bounded subset of N .

Proof. We may assume sup ||H|| < ∞, otherwise there is nothing to prove.
The method of proof is almost the same as [4], and we briefly sketch the
proof. First, we need to have our desired Ricci curvature estimate under the
given situation. By the Gauss curvature equation, the sectional curvatures
KM and KN of M and N respectively are related by

KM (E1 ∧ E2) ≥ KN (E1 ∧ E2)− 2||α||2

= KN (E1 ∧ E2)− 2n2||H||2 + 2s− 2
∑

i 6=j

KN (Ei ∧Ej)

where α is the second fundamental form, and {Ei} is a local orthonormal
frame of M . Using that KN is nonpositive and sup ||H|| < ∞, we can
conclude that the sectional curvature and hence the Ricci curvature of M is
bounded below by

−A′r2(log r)2(log(log r))2 · · · (logk r)2

for some constant A′ > 0, for sufficiently large r.
Let’s let M be contained in a ball of radius R and center x0 ∈ N . As

shown in [4], for f(x) = r2N (x) ∈ C∞(N) where rN is the distance from x0
measured in N

∆Mf = trM (∇2
Nf) + n〈H,∇Nf〉N

≥ trM (∇2
Nf)− nH0 · 2rN

≥ 2n − 2nH0R,

where n is dimM , ∇N is the covariant derivative in N , and ∇2
Nr2N ≥ 2〈·, ·〉N

is due to the Hessian comparison theorem between N and the Euclidean
space.

Now we apply theorem 1.1 to ∆Mf ≥ 2n − 2nH0R to get the desired
inequality 2n − 2nH0R ≤ 0. In case H0 = 0, we have ∆Mf ≥ 2n, which
implies that f must be unbounded by theorem 1.2. Therefore R cannot be
finite. This completes the proof.



10 CHANYOUNG SUNG

References

[1] P. Aviles and R. McOwen, Conformal deformation to constant negative scalar curva-

ture on noncompact Riemannian manifolds, J. Diff. Geom. 27 (1988), 225–239.
[2] S. M. Choi, J.-H. Kwon, and Y. J. Suh, A Liouville-type theorem for complete Rie-

mannian manifolds, Bull. Korean Math. Soc. 35 (1998), 301–309.
[3] K.-T. Kim and H. Lee, On the Omori-Yau almost maximum principle, J. Math. Anal.

App. 335 (2007), 332–340.
[4] L. Karp, Differential inequalities on complete Riemannian manifolds and applications,

Math. Ann. 272 (1985), 449–459.
[5] P.-F. Leung, A Liouville-type theorem for strongly subharmonic functions on com-

plete non-compact Riemannian manifolds and some applications, Geom. Dedicata 66

(1997), 159–162.
[6] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19

(1967), 205–211.
[7] A. Ratto, M. Rigoli, and A.G. Setti, On the Omori-Yau maximum principle and its

application to differntial equations and geometry, J. Func. Anal. 134 (1995), 486–510.
[8] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure and

Appl. Math. 28 (1975), 201–228.

Dept. of Mathematics and Institute for Mathematical Sciences, Konkuk

University, 1 Hwayang-dong, Gwangjin-gu, Seoul, KOREA

E-mail address: cysung@kias.re.kr


	1. Introduction
	2. Proof of theorem ??
	3. Proof of theorem ??
	4. Application to Seiberg-Witten equations
	5. Application to the Yamabe problem
	6. Application to isometric immersions
	References

