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Abstract

In this paper we present a minimal list decoding algorithm for Reed-Solomon (RS) codes.
Minimal list decoding for a code C refers to list decoding with radius L, where L is the minimum
of the distances between the received word r and any codeword in C. We consider the problem
of determining the value of L as well as determining all the codewords at distance L. Our
approach involves a parametrization of interpolating polynomials of a minimal Gröbner basis
G. We present two efficient ways to compute G. We also show that so called re-encoding can be
used to further reduce the complexity. Finally, we demonstrate how our parametric approach
can be solved by a computationally feasible rational curve fitting solution from a recent paper
by Wu.

1 Introduction

Reed-Solomon (RS) codes are important linear block codes that are of significant theoretical and
practical interest. A (n, k) RS code C defined over a finite field F is a k dimensional subspace of
the n dimensional space F

n. For a message polynomial m(x) = m0 + m1x + · · · + mk−1x
k−1, the

encoding operation is to evaluate m(x) at x1, x2, . . . , xn, where the xi’s are n distinct elements of
F. The rich algebraic properties and geometric structures of RS codes lead to the invention of a
number of efficient decoding algorithms such as Sugiyama algorithm [24], Berlekamp-Massey (BM)
algorithm [3, 18], and Welch-Berlekamp (WB) algorithm [26]. These classical decoding algorithms
guarantee correct decoding as long as the number of errors is upper bounded by t = ⌊(d − 1)/2⌋,
where d = n− k + 1 is the minimum distance of the code.

In classical decoding, the error correcting radius of t = ⌊(d− 1)/2⌋ originates from the requirement
of unique decoding since for t > ⌊(d− 1)/2⌋ multiple codewords within distance t from the received
word r may exist. One way to circumvent this limitation is to increase the decoding radius beyond
⌊(d − 1)/2⌋ and allow the decoder to output a list of codewords rather than one single codeword.
However, such list decoding is only feasible if there are few codewords in the list. According to
the Johnson bound [8], for a code of relative distance δ = d/n, any Hamming sphere of radius ≤
n(1−

√
1− δ) around a received word r contains only a polynomial number of codewords. Therefore, a

(n, k) RS code with d = n−k+1 can be list decoded up to the error correcting radius of n−
√

n(k − 1).

A list decoding algorithm was first discovered for low rate RS codes by Sudan [23] and later improved
and extended for all rates by Guruswami and Sudan [7]. The Guruswami-Sudan algorithm can
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correct errors up to the Johnson bound n−
√

n(k − 1). Given a received word r, the essential idea
of the algorithm is to find all the polynomials u of degree less than k such that u(xi) 6= ri for at
most t values of i ∈ {1, 2, . . . , n}. The Guruswami-Sudan algorithm finds these polynomials in two
steps: the interpolation step and the factorization step. In the interpolation step, it computes a
bivariate polynomial Q(x, r) that passes through all the points (x1, r1), (x2, r2), . . . , (xn, rn) with a
prescribed multiplicity s satisfying a certain weighted degree constraint (see [7] for the definition of
weighted degree). Then the bivariate polynomial Q(x, r) is factorized to find all the factors of the
form r−u(x), where u is a polynomial of degree less than k. Now a polynomial u is a valid message
polynomial if it is of degree less than k and u(xi) 6= ri for at most t values of i ∈ {1, 2, . . . , n}.
The construction of Q(x, r) with the prescribed multiplicity and weighted degree constraint ensures
that for all valid message polynomials u, r − u(x) appears as a factor of Q(x, r). Even though the
algorithm may produce implausible polynomials, the total number of polynomials ℓ in the list will
satisfy the bound [19] ℓ < (s+ 0.5)

√

n/(k − 1).
The most computationally intensive operation in the Guruswami-Sudan algorithm is the construction
of the bivariate polynomial Q(x, r). Computation of Q(x, r) involves solving a system of O(ns2)
homogeneous equations which using Gaussian elimination can be done in time cubic in the number
of equations [25]. Clearly the algorithmic complexity of the interpolation step is dominated by the
multiplicity s. Recently Wu [27] transformed the interpolation problem to a ‘rational interpolation
problem’ which involves smaller multiplicity. Given the received word r, the Wu algorithm first
computes the syndrome s of r followed by the computation of the error locator polynomial Λ and
error correction polynomial B using the Berlekamp-Massey algorithm. Wu demonstrated that all
valid error locator polynomials can be expressed as a parametrization of Λ and B. More specifically,
given a list decoding radius t, the Wu algorithm aims at finding all polynomials λ and β such that
Λ′ = λΛ + βB has at most t distinct roots. Wu showed that similar to the Guruswami-Sudan
approach, this problem can be reduced to a curve fitting problem but with significantly smaller
multiplicity.
It may be observed that the set of all Q(x, r) ∈ F[x, r] passing through the points (xi, ri), for
i = 1, 2, . . . , n, with multiplicity s is an ideal Is. From this observation several authors including
Nielsen and Høholdt [21], Kuijper and Polderman [13], O’Keeffe and Fitzpatrick [22], and Lee and
O’Sullivan [17], formulated the interpolation step of the list decoding algorithm as the problem of
finding the minimal weight polynomial from the ideal Is. Clearly the minimal weight polynomial will
appear as the minimal polynomial in a minimal Gröbner basis of Is computed with respect to the
corresponding weighted term order. Lee and O’Sullivan also showed that the minimal polynomial in
the ideal Is can be computed more efficiently from a minimal Gröbner basis of a submodule of F[x]q

for a sufficiently large q. Let F[x, r]q = {f ∈ F[x, r] | r-deg(f) ≤ q}. Then F[x, r]q can be viewed
as a free module over F[x]q with a free basis 1, r, . . . , rq . Then the essential observation of Lee and
O’Sullivan is that the minimal polynomial of Is can be constructed from the minimal Gröbner basis
of a submodule of F[x]q along with the free basis 1, r, . . . , rq, for large enough q.
In this paper we employ the theory of minimal Gröbner bases to perform minimal list decoding.
Given the received word r, let L denote the value of dH(r, C) where

dH(r, C) := min
c∈C

{dH(r, c)}.

Our main objective is to determine the value of L as well as all codewords c which are at a distance L
from the received word r. Clearly, if L is larger than the classical error correcting radius ⌊(d−1)/2⌋,
the task is a list decoding operation. Our algorithm, unlike the Lee and O’Sullivan approach starts
with computing a minimal Gröbner basis G of a submodule of F[x]2, rather than in F[x]q . We then
demonstrate that all valid message polynomials can be extracted from a parametrization in terms
of the elements of G. For computational feasibility, we show that this parametric approach, like
Wu’s algorithm, can be translated into a ‘rational interpolation problem’. A distinguishing feature
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of this approach, in contrast to Wu’s algorithm, is in the computation of the valid codewords c. Wu’s
algorithm, for each valid Λ′, resorts to Forney’s formula to compute the error values. In contrast,
our algorithm immediately leads to a valid message polynomial.

The organization of the rest of the paper is as follows. In Section 2 we briefly review the relevant
theory of Gröbner bases. in Section 3 we develop the theory and present the main algorithm along
with two ways to compute the minimal Gröbner basis involved. We also explain how so-called
re-encoding can be applied to the proposed approach. In Section 4 we translate the parametric
approach into a ‘rational interpolation problem’. Finally we conclude the paper in Section 5.

2 Preliminaries

The theory of Gröbner bases for modules in F[x]q is generally recognized as a powerful conceptual
and computational tool that plays a role similar to Euclidean division for modules in F[x]. More
specifically, minimal Gröbner bases prove themselves as an effective tool for various types of interpo-
lation problems. In recent papers [14, 15, 16] this effectiveness was ascribed to a powerful property
of minimal Gröbner bases, explicitly identified as the ‘Predictable Leading Monomial Property’. The
proofs in this paper make use of this property. Before recalling the PLM property let us first recall
some terminology on Gröbner bases.

Let e1, . . . , eq denote the unit vectors in F
q. The elements xα ei with i ∈ {1, . . . , q} and α ∈ N0 are

called monomials. Let n1, . . . , nq be nonnegative integers. In this paper we define the following
two types of monomial orders:

• The (n1, · · · , nq)-weighted term over position (top) order, defined as

xα ei < xβ ej :⇔ α+ ni < β + nj or (α+ ni = β + nj and i < j).

• The (n1, · · · , nq)-weighted position over term (pot) order, defined as

xα ei < xβ ej :⇔ i < j or (i = j and α+ ni < β + nj).

Clearly, whatever order is chosen, every nonzero element f ∈ F[x]q can be written uniquely as

f =

L
∑

i=1

ciXi,

where L ∈ N, the ci’s are nonzero elements of F for i = 1, . . . , L and the polynomial vectors
X1, . . . , XL are monomials, ordered as X1 > · · · > XL. Using the terminology of [1] we define

• lm(f) := X1 as the leading monomial of f

• lt(f) := c1X1 as the leading term of f

• lc(f) := c1 as the leading coefficient of f

Writing X1 = xα1 ei1 , where α1 ∈ N0 and i1 ∈ {1, . . . , q}, we define

• lpos(f) := i1 as the leading position of f

• wdeg(f) := α1 + ni1 as the weighted degree of f .

3



Note that for zero weights n1 = · · · = nq = 0 the above orders coincide with the reflected versions
of the standard TOP order and POT order, respectively, as introduced in the textbook [1].

Also note that, unlike with TOP, the introduction of weights does not change the POT ordering of
monomials. In this paper we only need the weighted POT order because we need the associated
notion of ‘weighted degree’.

We now recall some basic definitions and results on Gröbner bases, see [1]. Below we denote the
submodule generated by a polynomial vector f by 〈f〉.

Definition 2.1 Let F be a subset of F[x]q. Then the submodule L(F ), defined as

L(F ) := 〈lt(f) | f ∈ F 〉

is called the leading term submodule of F .

Definition 2.2 Let M ⊆ F[x]q be a module and G ⊆ M . Then G is called a Gröbner basis of M
if

L(G) = L(M).

In order to define a concept of minimality we have the following definition.

Definition 2.3 ([1, Def. 4.1.1]) Let 0 6= f ∈ F[x]q and let F = {f1, . . . , fs} be a set of nonzero
elements of F[x]q. Let α1, . . . , αs ∈ N0 and let c1, . . . , cs be elements of F such that

1. lm(f) = xαi lm(fi) for i = 1, . . . , s and

2. lt(f) = c1x
α1 lt(f1) + · · ·+ csx

αs lt(fs).

Define
h := f − (c1x

α1f1 + · · ·+ csx
αsfs).

Then we say that f reduces to h modulo F and we write

f
F−→ h.

If f cannot be reduced modulo F , we say that f is minimal with respect to F .

Lemma 2.4 ([1, Lemma 4.1.3]) Let f , h and F be as in the above definition. If f
F−→ h then h = 0

or lm(h) < lm(f).

Definition 2.5 ([1]) A Gröbner basis G is called minimal if all its elements g are minimal with
respect to G\{g}.

It is well known [1, Exercise 4.1.9] that a minimal Gröbner basis exists for any module in F[x]q and
that all leading positions of its elements are different. In [14, 15, 16] another important property of
a minimal Gröbner basis is identified; the theorem below merely formulates a wellknown result.

Theorem 2.6 ( [14]) Let M be a submodule of F[x]q with minimal Gröbner basis G = {g1, . . . , gm}.
Then for any 0 6= f ∈ M , written as

f = a1g1 + · · ·+ amgm, (1)

where a1, . . . , am ∈ F[x], we have

lm(f) = max
1≤i≤m;ai 6=0

(lm(ai) lm(gi)). (2)
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The property outlined in the above theorem is called the Predictable Leading Monomial (PLM)
property, as in [14]. Note that this property involves not only degree information (as in the
‘predictable degree property’ first introduced in [4]) but also leading position information. Most
importantly, the above theorem holds irrespective of which monomial order is chosen, for a proof
see [14].

Clearly, in the above theorem m = dim (M) and all minimal Gröbner bases ofM must have dim (M)
elements, no matter which monomial order is chosen. Furthermore, we have the following theorem.

Theorem 2.7 Let n1, . . . , nq be nonnegative integers and let M be a module in F[x]q. Let G =
{g1, . . . , gm} be a minimal Gröbner basis of M with respect to the (n1, · · · , nq)-weighted top order;

denote ℓi := wdeg gi for i = 1, . . . ,m. Let G̃ = {g̃1, . . . , g̃m} be a minimal Gröbner basis of M with
respect to the (n1, · · · , nq)- weighted pot order; denote ℓ̃i := wdeg g̃i for i = 1, . . . ,m. Then

m
∑

i=1

ℓi =

m
∑

i=1

ℓ̃i. (3)

Proof We first prove the theorem for the case m = q. It follows easily from the fact that both
G and G̃ are bases for M (in a linear algebraic sense) that there exists a unimodular polynomial
matrix U ∈ F[x]q×q such that

col {g1, . . . , gq} = Ucol {g̃1, . . . , g̃q}.

Without restrictions we may assume that the leading positions within each Gröbner basis are strictly
increasing. Clearly it follows from the above equation that also

V = UW, (4)

where V = col {g1, . . . , gq}diag {xn1 , · · · , xnq} and W = col {g̃1, . . . , g̃q}diag {xn1 , · · · , xnq} Since
U is unimodular we must have deg det V = deg det W . Clearly deg det V =

∑m

i=1 ℓi and deg det

W =
∑m

i=1 ℓ̃i from which (3) follows. Next, we prove the general case m ≤ q. For this, we note that
it follows immediately from (4) that the maximum degree of all minors of V equals the maximum
degree of all minors of W . On the other hand, the maximum degree of all minors of V clearly equals
∑m

i=1 ℓi and similarly the maximum degree of all minors of W equals
∑m

i=1 ℓ̃i. The theorem now
follows. �

We call the sum in (3) the (n1, · · · , nq)-weighted degree of M , denoted by wdeg (M). For zero
weights n1 = · · · = nq = 0 the above result expresses that the sum of the degrees of a (reflected)
TOP minimal Gröbner basis of a module M coincides with the sum of the degrees of a (reflected)
POT minimal Gröbner basis of M . This result is merely a reformulation of the well known fact that
the McMillan degree of a row reduced polynomial matrix equals the sum of its row degrees, see [5].

Corollary 2.8 let M be a module in F[x]q. Let G = {g1, . . . , gm} be a Gröbner basis of M whose
(n1, · · · , nq)-weighted top degrees add up to wdeg (M). Then G is a minimal Gröbner basis of M
with respect to the (n1, · · · , nq)-weighted top order.

Proof Suppose that G is not minimal. Then there exists g ∈ G that can be reduced modulo G\{g}.
This implies that there exists a Gröbner basis of M whose sum of weighted degrees is strictly less
than wdeg (M), which contradicts the above theorem. �
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3 Minimal list decoding through division

Let us now consider a (n, k) RS code and a nonnegative integer t. The problem of ‘list decoding up
to t errors’ is the following:

List Decoding Problem: Given a received word (r1, · · · , rn) ∈ F
n, find all polynomials m ∈ F[x]

of degree < k such that

m(xi) = ri for at least n− t values of i ∈ {1, . . . , n}.

3.1 Main approach

We introduce the following two polynomials in F[x]:

Π(x) =

n
∏

i=1

(x− xi), (5)

and L as the Lagrange interpolating polynomial, i.e., the polynomial of least degree for which

L(xi) = ri for all i ∈ {1, . . . , n}. (6)

Definition 3.1 Let r = (r1, · · · , rn) ∈ F
n. The interpolation module M(r) is given by the

module in F[x]2 that is spanned by the vectors g̃1 := [Π(x) 0] and g̃2 := [L(x) − 1].

Note that {g̃1, g̃2} is a minimal pot Gröbner basis for M(r). The above defined interpolation module
is crucial to our approach. With g̃2 we associate the bivariate polynomial Q2(x, y) = L(x)−y; clearly
Q2(xi, ri) = 0 for all i ∈ {1, . . . , n}. Similarly, with g̃1 we associate the polynomial Q1(x, y) = Π(x);
trivially Q1(xi, ri) = 0 for all i ∈ {1, . . . , n}. Now consider an arbitrary bivariate polynomial Q of
the form Q(x, y) = N(x) − D(x)y for which Q(xi, ri) = 0 for all i ∈ {1, . . . , n}. It can be shown,
see [13], that [N −D] ∈ M(r). Recall that list decoding up to t errors amounts to finding all
polynomials m ∈ F[x] of degree < k such that

m(xi) = ri for all i ∈ {1, . . . , n} except i = j1, . . . , jL with L ≤ t.

In our context this amounts to looking for an interpolating bivariate polynomial Q of the form
Q(x, y) = D(x)m(x) −D(x)y, where D(x) =

∏L
ℓ=1(x − xjℓ). Note that then indeed Q(xi, ri) = 0

for all i ∈ {1, . . . , n}. Thus, to solve the above list decoding problem we are looking for particular
vectors [N −D] ∈ M(r) of weighted (0, k − 1)-degree ≤ t+ k − 1, that satisfy

1. N is a multiple of D and

2. D has L distinct zeros in F, where L denotes deg D.

In this paper we are interested in finding the smallest value L = dH(r, C) for which list decoding is
possible as well as performing the associated list decoding. Thus we occupy ourselves with maximum
likelihood list decoding. We have the following theorem.

Theorem 3.2 Let r = (r1, · · · , rn) ∈ F
n be a received word and let M(r) be the corresponding

interpolation module. Let f =
[

f1 f2
]

∈ F[x]2 be a vector in M(r) of weighted (0, k − 1)-degree L
that satisfies the following 3 requirements:

1. lpos(f) = 2,
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2. f1 is a multiple of f2 and

3. there is no vector in M(r) of weighted (0, k − 1)-degree < L that satisfies requirements 1) and
2).

Then

m :=
f1

f2

is a message polynomial corresponding to a minimal error pattern of L− k + 1 errors.

Proof From lpos(f) = 2 it follows immediately that deg m < k and deg f2 = L−k+1. It remains
to prove that f2 has L− k + 1 distinct zeros in F. Since f ∈ M(r) there exist polynomials α and β
such that

f = [α β]

[

Π 0
L −1

]

. (7)

Observe that α and β do not have a common factor, otherwise the weighted degree of f would not be
minimal (requirement 3). From (7) it follows that αΠ− f2L = f1 is a multiple of f2 by requirement
2. As a result, αΠ is a multiple of f2. Since α and β = −f2 have no common factor it follows that
Π must be a multiple of f2, i.e., f2 has L− k + 1 distinct zeros in F, which proves the theorem. �

Lemma 3.3 Let r = (r1, · · · , rn) ∈ F
n be a received word and let M(r) be the corresponding in-

terpolation module. Let {g1, g2} be a (0, k − 1)-weighted top minimal Gröbner basis for M(r) with
lpos(g2) = 2. Denote ℓ1 := wdeg g1 and ℓ2 := wdeg g2. Let t be a nonnegative integer. Then a
parametrization of all vectors f ∈ F[x]2 with lpos(f) = 2 and wdeg f = t+ k− 1 (with respect to the
(0, k − 1)-weighted top order) is given by

f = λg1 + βg2,

where λ ∈ F[x] with deg λ ≤ t+k−1−ℓ1 and β is a monic polynomial in F[x] of degree t+k−1−ℓ2.
In particular, there exist no such vectors f for t < ℓ2 − k + 1.

Proof According to Theorem 2.6, {g1, g2} has the PLM property with respect to the (0, k − 1)-
weighted top order. The parametrization now follows immediately from this property. �

Together, the above lemma and theorem give rise to the following heuristic list decoding algorithm.

An important feature of the above algorithm is that we use ℓ2 = wdeg g2 to decide how many errors
to decode. Indeed, it follows from the above lemma that it is not possible to perform list decoding
for t < ℓ2 − k + 1. We now present the main theorem of this section.

Theorem 3.4 Let r = (r1, · · · , rn) ∈ F
n be a received word and let M(r) be the corresponding

interpolation module. Let {g1, g2} be a (0, k− 1)-weighted top minimal Gröbner basis for M(r) with
lpos(g2) = 2. Write g2 =

[

g12 g22
]

. Then Algorithm 1 yields a list of all message polynomials m
such that

dH(c, r) is minimal, where c = (m(x1), . . . ,m(xn)). (8)

In particular, in case there exists an error pattern with only ≤ ⌊(n − k)/2⌋ errors, the list consists
of only

m =
−g12
g22

. (9)
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Algorithm 1 Minimal list decoding of (n, k) RS code

Input: Received word r = (r1, . . . , rn)
Output: A list of polynomials m of degree < k such that dH(c, r) is minimal, where c =
(m(x1), . . . ,m(xn)).

1. Compute the polynomials Π and L given by (5) and (6) ; define the interpolation module
M(r) := span {[Π 0] , [L − 1]}.
2. Compute a minimal Gröbner basis G = {g1, g2} of M(r) with respect to the (0, k− 1)-weighted
top monomial order, with lpos(g2) = 2. Denote ℓ1 := wdeg g1 and ℓ2 := wdeg g2; set j = 0.
3. Check requirement 2) of Theorem 3.2 for f = λg1+βg2, for all λ ∈ F[x] with degλ ≤ ℓ2− ℓ1+ j
and for all monic β ∈ F[x] with deg β = j; write f =

[

f1 f2
]

.
4. Whenever step 3) is successful, output all obtained quotient polynomials, i.e., polynomials m
of the form m = −f1/f2. In case step 3) is not successful increase j by 1 and repeat step 3).

Proof Firstly, it follows immediately from Theorem 3.2 and Lemma 3.3 that any polynomial m
that is output by Algorithm 1 has to have degree < k and satisfy (8). Vice versa, if m is a polynomial
of degree < k that satisfies (8) then it follows from Lemma 3.3 that it must be in the output list
of Algorithm 1. Finally, let us assume that there are only ≤ ⌊(n − k)/2⌋ errors. This implies that
there exists a vector f =

[

f1 f2
]

in M(r) with wdeg f ≤ ⌊(n− k)/2⌋+ k − 1 < (n+ k− 1)/2 that
satisfies the requirements of Theorem 3.2. Because of Lemma 3.3 it follows that ℓ2 < (n+ k− 1)/2.
Now, since ℓ1 + ℓ2 = n+ k − 1 by Theorem 2.7, this implies that ℓ1 > ℓ2. As a result, λ = 0 in step
3), so that step 4) immediately gives the unique solution for j = 0 as (9). �

Our next example illustrates the classical decoding scenario, showing that Algorithm 1 is an extension
of existing classical interpolation-based algorithms as in [17, 6].

Example 3.5 Consider the single-error correcting (7, 5) RS code over GF (7). The message poly-
nomial m(x) = 2x2 + x+ 3 is encoded as c = (m(0),m(1), . . . ,m(6)) = (3,−1,−1, 3,−3, 2,−3). Let
the received word be r = (3,2,−1, 3,−3, 2,−3). Thus an error occurred at locator position 1. The
polynomials L and Π are computed as L(x) = −3x6−3x5−3x4−3x3−x2−2x+3 and Π(x) = x7−x.
Thus the module M(r) is spanned by the rows of the matrix

(

x7 − x 0
−3x6 − 3x5 − 3x4 − 3x3 − x2 − 2x+ 3 −1

)

.

A minimal Gröbner basis {g1, g2} of M(r) with respect to the (0, 4)-weighted top monomial order is
computed as

col {g1, g2} =

(

−3x6 − 3x5 − 3x4 − 3x3 − x2 − 2x+ 3 −1
2x3 − x2 + 2x− 3 −x+ 1

)

Thus, in the terminology of Theorem 3.4 we have g12 = 2x3 −x2+2x− 3 and g22 = −x+1. Applying
Algorithm 1 we determine that g12 is a multiple of g22 and we recover

m(x) =
−g12
g22

= 2x2 + x+ 3.

Let us now move on to an example of decoding beyond the classical error bound. Our approach is
particularly feasible for the case that β = 1 and λ is restricted to a constant, as illustrated in the
next example. Note that the example is an instance of “one-step-ahead” list decoding [27].
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Example 3.6 Consider the single-error correcting (7, 4) RS code over GF (7); let the message poly-
nomial be m(x) = 2x2+x+3 which is encoded as c = (m(0),m(1), . . . ,m(6)) = (3,−1,−1, 3,−3, 2,−3).
Let the received word be r = (3,2,−1, 3,2, 2,−3) which differs from c at locations 1 and 4. The poly-
nomials L and Π are computed as L(x) = −x6 − 2x5 + x4 − x3 + 2x + 3 and Π(x) = x7 − x. The
interpolation module M(r) is spanned by the rows of the matrix

M(r) =

(

x7 − x 0
−x6 − 2x5 + x4 − x3 + 2x+ 3 −1

)

.

A minimal Gröbner basis {g1, g2} of M(r) with respect to the (0, 3)-weighted top monomial ordering
is computed as

col {g1, g2} =

(

x5 − 2x4 − x3 − x2 + x+ 3 −3x− 1
−2x4 + 2x3 + x2 − 3x+ 2 x2 + 2x− 3

)

.

Thus in this example ℓ1 = ℓ2 = 5, so that λ is a constant. Applying Algorithm 1, we consider
f = λg1 + g2 for λ = 0, . . . , 6. Writing f =

[

f1 f2
]

, we find that f2 divides f1 for λ = 0, 2, and 4,
giving a list of three message polynomials—we recover not only m(x) = 2x2 + x+ 3 (for λ = 0), but
also the message polynomials 3x3 − 2x2 + 3x− 2 (for λ = 2), and −2x3 − 2x2 + 3x+ 3 (for λ = 4).

3.2 Computation of g1 and g2

There are various ways in which the required minimal Gröbner basis {g1, g2} of the interpolation
module M(r) can be computed. One obvious way is to simply run an existing computer algebra
system such as Singular, specifying the required (0, k − 1)-weighted top order.

Because of the specific form of M(r) a more efficient way is to apply the Euclidean algorithm to the
polynomials Π and L. More specifically, we have the following algorithm.

Algorithm 2 Computation of g1 and g2 via Euclidean algorithm

Input: Received word r = (r1, . . . , rn); polynomials Π and L given by (5) and (6).
Output: Polynomials g1 and g2 in F[x]2, such that {g1, g2} is a minimal Gröbner basis of M(r)
with respect to the (0, k − 1)-weighted top monomial order, with lpos(g2) = 2.

1. Define polynomials h0, h1, t0 and t1 in F[x] as

[

h0 t0
h1 t1

]

:=

[

Π 0
L −1

]

;

set j := 0.
2. Check

deg tj+1 + k − 1 ≥ deg hj+1; (10)

if NO, go to Step 3. If YES, define g1 := [hj tj ] and g2 := [hj+1 tj+1] and STOP.
3. Apply the Euclidean algorithm to hj and hj+1, yielding hj = qj+1hj+1+hj+2, where deg hj+2 <
deg hj+1.
4. Write

[

hj+1 tj+1

hj+2 tj+2

]

:=

[

0 1
1 −qj+1

] [

hj tj
hj+1 tj+1

]

;

increase j by 1 and go back to Step 2.

9



Theorem 3.7 Let r = (r1, · · · , rn) ∈ F
n be a received word and let M(r) be the corresponding

interpolation module. Then Algorithm 2 yields a (0, k − 1)-weighted top minimal Gröbner basis
{g1, g2} for M(r) with lpos(g2) = 2.

Proof Firstly we note that the matrix
[

0 1
1 −qj+1

]

is unimodular, i.e., has a polynomial inverse. It then follows that, at each step j, the rows of the
matrix

[

hj tj
hj+1 tj+1

]

(11)

are a pot minimal Gröbner basis for M(r) whose (0, k−1)-weighted pot degrees add up to n+k−1.
By definition, with respect to the (0, k− 1)-weighted top order both these row vectors have leading
position 1, until the stopping condition (10) is met. At this point the second row vector has leading
position 2 and the sum of the (0, k−1)-weighted top degrees add up to n+k−1. It now follows from
Corollary 2.8 that the rows of the matrix (11) must be a (0, k − 1)-weighted minimal top Gröbner
basis for M(r). �

Yet another alternative is to use an iterative method, interpolating the xi’s step by step for i =
1, . . . , n. This method has the advantage that the Lagrange polynomial L does not need to be
computed upfront.

Algorithm 3 Computation of g1 and g2 via iterative algorithm

Input: Received word r = (r1, . . . , rn).
Output: Polynomials g1 and g2 in F[x]2, such that {g1, g2} is a minimal Gröbner basis of M(r)
with respect to the (0, k − 1)-weighted top monomial order, with lpos(g2) = 2.

1. Initialize L0 := k − 1 and R0 := I ∈ F
2×2; denote Rj :=

[

Qj −Kj

Nj −Dj

]

∈ F[x]2×2 for

j = 0, . . . , n.
2. Process the received values rj iteratively for j = 1 to n as follows. For j = 1 to n do

1. compute Γj := Qj−1(xj)− rjKj−1(xj) and ∆j := Nj−1(xj)− rjDj−1(xj)

2. define Rj := VjRj−1, where

• Vj :=

[

∆j −Γj

0 x− xj

]

and Lj := Lj−1 + 1 if ∆j 6= 0 and (Lj−1 < (j + k − 1)/2 or

Γj = 0),

• Vj :=

[

x− xj 0
∆j −Γj

]

and Lj := Lj−1 otherwise

3. Define g1 := [Qn −Kn] and g2 := [Nn −Dn].

Theorem 3.8 Let r = (r1, · · · , rn) ∈ F
n be a received word and let M(r) be the corresponding

interpolation module. Then Algorithm 3 yields a (0, k − 1)-weighted top minimal Gröbner basis
{g1, g2} for M(r) with lpos(g2) = 2.
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Proof For j = 1, . . . , n denote the interpolation module associated with r1, . . . , rj byM(r1, . . . , rj).
We show that the rows ofRj are a Gröbner basis ofM(r1, . . . , rj)of the required form for j = 1, . . . , n.
We interpret Lj as the (0, k−1)-weighted top degree of the second row of Rj . Clearly this is true for
j = 1. Let us now proceed by induction and assume that this is true for j − 1 ∈ {0, . . . , n− 1}. By
definition of Vj and the induction assumption the rows of Rj are a Gröbner basis for M(r1, . . . , rj).
Also, by construction, their (0, k − 1)-weighted top degrees add up to 1 more than the (0, k − 1)-
weighted top degrees of Rj−1. Then, by induction, the (0, k− 1)-weighted top degrees of Rj add up
to j + k − 1 = wdeg (M(r1, . . . , rj)). It then follows from Corollary 2.8 that the rows of Rj are a
(0, k − 1)-weighted top minimal Gröbner basis for M(r1, . . . , rj). Finally, by construction and the
induction hypothesis, it is easily seen that the second row of Rj has leading position 2. This proves
the theorem. �

3.3 The special case r = (y1, . . . , yn−k, 0, · · · , 0)
In this subsection we pay special attention to the case that the received word r is of the form
(y1, . . . , yn−k, 0, · · · , 0) ∈ F

n. This comes about when so-called ”re-encoding” is used in advance of
RS decoding, see e.g., [10, 9].

First we introduce the polynomial G ∈ F[x] of degree k − 1 as

G :=

n
∏

i=n−k+2

(x− xi). (12)

Clearly, the polynomials Π and L of the previous subsection can be written as

Π = ΠyG (13)

and
L = LyG, (14)

where Πy and Ly are in F[x]. The following lemma is straightforward.

Lemma 3.9 Let (y1, . . . , yn−k) ∈ F
n−k, r = (y1, . . . , yn−k, 0, · · · , 0) ∈ F

n and let Π,L, G,Πy and
Ly be defined as before. Let M(r) := span {[Π 0] , [L − 1]} as before and define M⋆(y) :=
span {[Πy 0] , [Ly − 1]}. Then the following two statements are equivalent:

• {g1, g2} is a minimal Gröbner basis of M⋆(y) with respect to the unweighted top order, with
lpos(g2) = 2

• {g̃1, g̃2} is a minimal Gröbner basis of M(r) with respect to the (0, k − 1)-weighted top order,
with lpos(g̃2) = 2,

where gi =
[

g1i g2i
]

and g̃i =
[

g1iG g2i
]

for i = 1, 2.

Because of the above lemma it is now straightforward to modify Algorithm 1 into Algorithm 4.
Again the Euclidean algorithm can be used to compute g1 and g2; for this, Algorithm 2 should be
initialized by Πy and Ly instead of Π and L and the stopping criterion (10) should be replaced by

deg tj+1 ≥ deg hj+1,

instead of (10).

An alternative way to compute g1 and g2 is to employ an algorithm that processes the values of
y1, . . . , yn−k iteratively. For this, Algorithm 3 is modified into Algorithm 5 which essentially coincides
with the well-known Welch-Berlekamp algorithm [26], see also [11, 12].
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Algorithm 4 Minimal list decoding of (n, k) RS code for re-encoded received word

Input: Received word y = (y1, . . . , yn−k) in F
n−k.

Output: A list of polynomials m of degree < k such that dH(c, r) is minimal, where c =
(m(x1), . . . ,m(xn)) and r = (y1, . . . , yn−k, 0. . . . , 0) in F

n.

1. Compute the polynomials Πy and Ly given by (13) and (14) ; define the interpolation module
M(y) := span {[Πy 0] , [Ly − 1]}.
2. Compute a minimal Gröbner basis G = {g1, g2} of M(y) with respect to the unweighted top

monomial order, with lpos(g2) = 2; set j = 0.
3. Compute f = λg1 + βg2, for all λ ∈ F[x] with degλ ≤ ℓ2 − ℓ1 + j and for all monic β ∈ F[x]
with deg β = j; write f =

[

f1 f2
]

. Check whether f1G is a multiple of f2, where G is given
by (12).
4. Whenever step 3) is successful, output all obtained quotient polynomials, i.e., polynomials m
of the form m = −f1G/f2. In case step 3) is not successful increase j by 1 and repeat step 3).

Algorithm 5 Computation of g1 and g2 via iterative algorithm for re-encoded received word

Input: Received word y = (y1, . . . , yn−k) in F
n−k.

Output: Polynomials g1 and g2 in F[x]2, such that {g1, g2} is a minimal Gröbner basis of M(y)
with respect to the unweighted top monomial order, with lpos(g2) = 2.

1. Denote Rj :=

[

Qj −Kj

Nj −Dj

]

for j = 0, . . . , n; initialize L0 := 0 and

R0 :=

[

x− xn−k+1 0
0 1

]

∈ F[x]2×2

2. Process the received values yj iteratively for j = 1 to n− k as follows. For j = 1 to n− k do

1. compute Γj := Qj−1(xj)− rjKj−1(xj) and ∆j := Nj−1(xj)− rjDj−1(xj)

2. define Rj := VjRj−1, where

• Vj :=

[

∆j −Γj

0 x− xj

]

and Lj := Lj−1 + 1 if ∆j 6= 0 and (Lj−1 < j/2 or Γj = 0),

• Vj :=

[

x− xj 0
∆j −Γj

]

and Lj := Lj−1 otherwise

3. Define g1 := [Qn−k −Kn−k] and g2 := [Nn−k −Dn−k].

4 Minimal list decoding through rational interpolation

The most computationally intensive task in Algorithm 1 is Step 3. Recall that in Step 3, we need
to determine all λ and β of degree k1 ≤ ℓ2 − ℓ1 + j and k2 = j such that f1 is a multiple of f2. A
brute force approach may be to consider

f =
[

f1 f2
]

= λ
[

g11 g21
]

+ β
[

g12 g22
]

12



and checks for all polynomials λ and β of bounded degree k1 and k2, respectively, whether f
2 divides

f1. Clearly this approach is feasible only when both k1 and k2 are very small. For large values of
k1 and k2, the computational complexity becomes prohibitively high, especially when the code is
defined over a large field. Fortunately, Step 3 can be formulated as an algebraic curve fitting problem
for which efficient polynomial time algorithms exist. We explain this approach in the following.
It follows from Theorem 3.2 that, in the context of Algorithm 1, f1 is a multiple of f2 if and only if
f2 has t = ℓ2 − k+1+ j distinct roots. Therefore, an alternative approach to Step 3 is to determine
all λ and β of degree k1 and k2, respectively, such that f2 has t distinct roots, i.e.,

λ(xi)g
2
1(xi) + β(xi)g

2
2(xi) = 0, for t values of xi

Now let us define

zi = −g22(xi)

g21(xi)
, for 1 ≤ i ≤ n

Then Step 3 can be formulated as the following rational interpolation problem.

Rational Interpolation Problem: Given n points (x1, z1), (x2, z2) · · · , (xn, zn), determine all
rational polynomials of the form Λ′ = λ/β, with λ and β of degree k1 and k2, respectively, such that
Λ′ passes through t of the n points.

This problem looks similar to the interpolation problem addressed in [7]. However, it is complicated
by the fact that now we look for a rational solution rather than a polynomial solution. Recently,
this rational interpolation problem has been addressed by Wu in [27]. In line with the Guruswami-
Sudan approach, Wu’s algorithm first computes a bivariate polynomial Q(x, z), satisfying certain
constraints, that passes through all the n points (x1, z1), (x2, z2) · · · , (xn, zn). Then the desired
rational solutions Λ′ = λ/β are obtained from the factorization of Q(x, z). More specifically, Wu’s
algorithm is based on the following theorem.

Theorem 4.1 ([20, Th. 4.3.3]) Consider the n points (x1, z1), (x2, z2), · · · , (xn, zn). Let the pa-
rameters k1, k2, and t be given. Then there exist some multiplicity s, list size ρ, and a bivariate
polynomial Q(x, z) =

∑ρ

j=0 z
jQj(x) such that

1. Q(x, z) passes through (xi, zi) with multiplicity at least s, for all i = 1, 2, . . . , n and

2. deg(Qj(x)) ≤ s(n− t)− j(k1 − k2)− ρk2 − 1, for all j = 0, . . . , ρ.

Moreover, any Q(x, z) satisfying 1) and 2) must have (zλ(x)− β(x)) as a factor, where Λ′ = λ/β is
a solution to the above rational interpolation problem.

In the above theorem, the requirement that (xi, zi)’s be zeros of Q(x, z) with multiplicity s, for all
i = 1, 2, . . . , n, leads to ns(s + 1)/2 constraints in the form of ns(s + 1)/2 homogeneous equations.
Besides, the second condition requires that the system of homogeneous equations involves (ρ +
1)(s(n− t)− 1

2
ρ(k1+k2)) unknowns. Now a nonzero solution to the system of homogeneous equation

exists if the number of constraints is less than number of unknowns, i.e.

ns(s+ 1)/2 < (ρ+ 1)(s(n− t)− 1

2
ρ(k1 + k2)) (15)

In [27], a suitable choice for the values of s and ρ satisfying (15) has been proposed as

s =

⌊

t(n− k + 1− t)

t2 − n(2t− (n− k + 1))

⌋

(16)

ρ =

⌊

st

2t− (n− k + 1)

⌋

. (17)
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After constructing the bivariate polynomial, according to Theorem 4.1 with values of s and ρ given
by (16) and (17), the solutions to the rational interpolation problem can be obtained by the rational
factorization procedure of [27]. It is worth noting that the construction of the bivariate polynomial
dominates the overall complexity of solving the rational interpolation problem. Computation of the
bivariate polynomial requires solving a system of homogeneous equations, which can be done using
Gaussian elimination in time cubic in the number of equations.

Clearly every solution (λ, β) to the rational interpolation problem gives a valid error locator poly-
nomial Λ′ = λg21 + βg22 . Given a valid error locator polynomial Λ′, Wu’s algorithm uses Forney’s
formula to compute the error magnitudes and hence the codeword. However, in our approach, the
message polynomial can be computed in a simpler way: for every solution (λ, β), it can be computed
as

m(x) =
λg11 + βg12
λg21 + βg22

.

5 Conclusions

In this paper we have taken a parametric approach to the problem of minimal list decoding. The
proposed algorithms have error correcting radius L, where L is the minimum of the Hamming
distances between the received word and any codeword in C. There are two important features of
the approach. Firstly, the minimality of L ensures that all solutions correspond to valid codewords
and therefore we do not need to check for validity. The parametrization can also be used for general
list decoding, however, then a check on the validity of the corresponding codewords needs to be
carried out. Secondly, upon computation of a solution of the rational interpolation problem or,
equivalently, of an error locator polynomial, we do not need to determine the error magnitudes via
Forney’s formula. Instead, solutions to the rational interpolation problem directly lead to message
polynomials. Finally, by using re-encoding as in subsection 3.3, the approach lends itself well to the
type of distributed source coding (DSC) proposed in [2].
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