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1. Introduction

In a smooth pseudoconvex domain Ω ⊂ C
n whose boundary bΩ has finite type M

(in the sense that the order of contact of all complex analytic varieties is at most M)
the ∂̄-Neumann problem shows an ǫ-subelliptic estimate for some ǫ (Catlin [C87]) and
conversely, an ǫ-estimate implies M ≤ 1

ǫ
(Catlin [C83]). Thus, index of estimate and

order of contact are related as inverse one to another. Contact of infinite order has also
been studied: α-exponential contact implies an 1

α
-logarithmic estimate (cf. e.g. [KZ10]).

What is proved here serves to explain the inverse: an 1
α
-logarithmic estimate, for α < 1,

implies exponential contact ≤ α (apart from an error α2). More generally, the gain in

the estimate, which is quantified by a function f(t), t → ∞, such as tǫ or (log t)
1
α , is

here related to the “type” of bΩ described by a function F (δ) (for δ = t), such as δM or

exp(− 1

δα
): the general result is that F is estimated from below by the inverse to f . In

similar way, it is estimated the rate of the Bergmann metric BΩ at bΩ and also the rate of
the Levi form of a bounded weight in the lines of the celebrated “P -property” by Catlin
[C84].

We fix our formalism. Ω is a bounded pseudoconvex domain of Cn with smooth bound-
ary bΩ defined, in a neighborhood of a point zo = 0, by r = 0 with ∂r 6= 0 and with
r < 0 inside Ω. We introduce the notion of “type” of bΩ along a q-dimensional complex
analytic variety Z ⊂ Cn as a quantitative description of the contact.
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2 TRAN VU KHANH AND GIUSEPPE ZAMPIERI

Definition 1.1. For a smooth increasing function F vanishing at 0, we say that the type
of bΩ along Z is ≤ F when

(1.1) |r(z)| <
∼
F (|z − zo|), z ∈ Z, z → zo.

Here and in what follows, <
∼
or >

∼
denote inequality up to a positive constant. We choose

local real coordinates (a, r) ∈ R2n−1×R ≃ Cn at zo and denote by ξ the dual variables to

the a’s. We denote by Λξ := (1+|ξ|2) 1
2 the standard elliptic symbol of order 1 and by f(Λξ)

a general pseudodifferential symbol obtained by the aid of a smooth increasing function f .
We associate to this symbol a pseudodifferential action defined by f(Λ)u = F−1(f(Λξ)Fu)
for u ∈ C∞

c , where F is the Fourier transform in R2n−1. In our discussion, f(Λ) ranges in

the interval log(Λ) ≪ f(Λ) ≤ Λǫ (any ǫ ≤ 1

2
) where the symbol “≪” means that f

log
→ ∞

at∞. By means of Λǫ we can also define the tangential Sobolev ǫ-norm as |||u|||ǫ := ‖Λǫu‖.
We set ωn = ∂r and complete to an orthonormal basis of (1, 0)-forms ω1, ..., ωn; we denote
by L1, ..., Ln the dual basis of vector fields. A q-form u is a combination of differentials
ω̄J := ω̄j1 ∧ ... ∧ ωjq over ordered indices J = j1 < j2 < ... < jq with smooth coefficients

uJ , that is, an expression
∑′

|J |=q

uJ ω̄J . We decompose a form as u = uτ + uν where uτ is

obtained by collecting all coefficients uJ such that n /∈ J and uν is the complementary
part; we have that u ∈ D∂̄∗ , the domain of ∂̄∗, if and only if uν |bΩ ≡ 0.

Definition 1.2. An f -estimate in degree q is said to hold for the ∂̄-Neumann problem in
a neighborhood U of zo when

(1.2) ‖f(Λ)u‖ <
∼
‖∂̄u‖+ ‖∂̄∗u‖+ ‖u‖ for any u ∈ C∞

c (Ω̄ ∩ U)q ∩D∂̄∗ ,

where the upscript q denotes forms of degree q. Since uν |bΩ ≡ 0, then uν enjoys an elliptic
estimate (for f(Λ) = Λ) on account of Garding Theorem; thus (1.2) for the only uτ implies
(1.2) for the full u.

It has been proved by Catlin [C83] that an ǫ-subelliptic estimate of index q implies that
bΩ has finite typeM ≤ 1

ǫ
along any q-dimensional Z, that is, (1.2) holds for F = |z−zo|M

when z ∈ Z. Notice that F = δM is inverse to the reciprocal of f = tǫ, t = δ−1. In full
generality of f , with the only restraint f ≫ log, we define

(1.3) G(δ) :=

((

f

log

)∗)−1

(δ−1),

where the upper script “∗” denotes the inverse function. Up to a logarithmic loss, we get
the generalization of Catlin’s result, that is, we prove that F >

∼
G.

Another goal of this work consists in describing the effect of an f -estimate on the growth
at the boundary of the Bergmann metric. The Bergmann kernel KΩ : Ω×Ω → C provides
the integral representation of the orthogonal projection P : L2(Ω) → hol(Ω)∩L2(Ω), f 7→
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P (f) :=
∫

Ω
f(ζ)K(z, ζ)dVζ where dVζ is the element of volume in the ζ-space. On a

bounded smooth pseudoconvex domain, the projection P is related to the ∂̄-Neumann
operator N , the inverse of � = ∂̄∂̄∗ + ∂̄∗∂̄, by Kohn’s formula P = id − ∂̄∗N∂̄. The

Bergmann metric is defined by BΩ =
√

∂∂̄ log KΩ(z, z). It has been proved by McNeal
in [McN92] that an ǫ-subelliptic estimate for q = 1 implies BΩ(z,X) >

∼
δǫ−η(z)|X|,

X ∈ T 1,0Cn|Ω, for any fixed η > 0 where δ(z) denotes the distance of z to bΩ. We
extend this conclusion to a general f -estimate and get a bound from below with δǫ−η(z)
replaced by G(δ−1+η(z)). This behavior has relevant potential theoretical consequences.
Historically, the equivalence of a subelliptic estimate with finite type has been achieved
by triangulating through a quantitative version of Catlin’s “P -Property”. This consists in
the existence of a family of weights {ϕδ} on the δ-strips Sδ := {z ∈ Ω : δ(z) < δ}, whose
Levi-form have a lower bound δ−ǫ for some ǫ. We extend this notion for general f .

Definition 1.3. We say that Ω satisfies Property (f -P ) over a neighborhood U of zo, if
there exists a family of weights ϕ = ϕδ which are absolutely bounded in Sδ∩U and satisfy

(1.4) ∂∂̄ϕδ >
∼
f 2(δ−1) × id for any z ∈ Sδ ∩ U.

According to Straube [S10], this property can be described by a single weight, instead
of a family with parameter δ. As already recalled from [C83], f -estimate (f = tǫ) implies

F -type (F = δM). In turn, this implies (f̃ -P )-Property (f̃ = tǫ̃ for ǫ̃ (much) smaller

than 1
M

[C87]), and this yields f̃ -estimate ([C87]). So the cycle is closed but in going
around, ǫ has decreased to ǫ̃. In this process, the critical point is the rough relation
between the type M and the exponent ǫ̃ and this cannot be improved significantly: one
must expect that ǫ̃ is much smaller than 1

M
. Reason is that the type only describes the

order of contact of a complex variety Z tangent to bΩ, whereas what really matters is
how big is the diameter of a Zδ that we can insert inside Ω at δ-distance from bΩ. This
can be bigger than δM as in the celebrated example by D’Angelo of the domain defined
by r = Re z3 + |z21 − zl2z2|2 + |z22 |2 + |zm3 z1|2 (cf. [C83] p. 149). However, an estimate has
effect over the families Zδ ⊂ Ω and not only over Z tangential to bΩ. So the subsistence
of a direct proof of the implication from estimate to generalized P -property, which was
suggested by Straube, not only offers a shortcut in Catlin’s theory, but also gains a good
accuracy about indices. For a general f ≫ log and for any η we define f̃ = f̃η by

(1.5) f̃(t) =
f

log
3
2
+η

(t1−η);

then we prove the direct implication from f -estimate to (f̃ -P )-Property. In particular,
from an ǫ-subelliptic estimate, the ǫ̃ we get is any index slighly smaller than ǫ. We collect
the discussion in a single statement which is the main result of this paper.

Theorem 1.4. Let Ω ⊂ Cn be a bounded pseudoconvex domain with smooth boundary in
which the ∂̄-Neumann problem has an f -estimate in degree q at zo ∈ bΩ for f ≫ log. Let
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G, resp. f̃ = f̃η for any η > 0, be the function associated to f by (1.3), resp. (1.5), and
let δ(z) denote the distance from z to bΩ. Then

(i) If bΩ has type ≤ F along a q-dimensional complex analytic variety Z, then F >
∼
G,

(ii) If q = 1, the Bergmann metric satisfies BΩ(z) >
∼

f

log
(δ−1+η(z)) × id, z ∈ U , for

any η and for suitable U = Uη,

(iii) If q = 1, Property (f̃ -P ) holds for any η and for suitable U = Uη.

We say a few words about the technique of the proof. The main tool is an accurate
localization estimate. By localization estimate, we mean an estimate which involves a
fundamental system of cut-off functions χ0, χ1, χ2 in a neighborhood of zo with χ0 ≺
χ1 ≺ χ2 (in the sense that χj+1|suppχj

≡ 1) of the kind

(1.6) ‖χ0u‖s <
∼
‖χ1�u‖s + cs‖χ2u‖0 for any u ∈ (C∞)q ∩D�.

If (1.6) holds for a fundamental system of cut-off functions as above, then � is “exactly”
Hs-hypoelliptic or, with equivalent terminology, its inverse N is exactly Hs-regular in
degree q. If this holds for any s, then � and N are C∞- hypoelliptic and regular respec-
tively. To control commutators with the cut-off functions, Kohn introduced in [K02] a
pseudodifferential modification Rs of Λs (cf. Section 2 below) which is equivalent to Λs

over χ0u but has the advantage that χ̇1R
s is of order 0. This yields quite easily (1.6) for

some cs. However, the precise description of cs is a hard challage; it is in the achievement
of this task that consists this paper. Now, if the system of cut-off χj, j = 0, 1, 2 shrinks
to 0 depending on a parameter t→ ∞ as χt

j(z) := χj(tz), then we are able to show that

(1.7) cs = ((
f

log
)∗(t))2s+1.

In particular, when �u = 0, (1.6), with the constant cs specified by (1.7), yields a con-
straint to the geometry of bΩ which produces all the above listed three consequences about
type, lower bound for BΩ and P -property.

2. Localization estimate with parameter

Let Ω be a bounded smooth pseudoconvex domain of Cn, zo a boundary point, χ0 ≺
χ1 ≺ χ2 a triplet of cut-off functions at zo and χt

0 ≺ χt
1 ≺ χt

2 a fundamental system of
cut-off functions defined by χt

j(z) = χ(tz), j = 0, 1, 2 for t → ∞. The content of this
Section is the following

Theorem 2.1. Assume that an f -estimate holds in degree q at zo with f ≫ log. Then,
for any positive integer s, we have

‖χt
0u‖2s .t2s‖χt

1�u‖2s +
((

f

log

)∗

(t)

)2(s+1)

‖χt
2u‖2,(2.1)

for any u ∈ (C∞)q ∩Dom(�), where “∗” denotes the inverse.
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Remark 2.2. In [C83], Catlin proves the same statement for the particular choice f = tǫ

ending up with f itself, instead of f

log
. In fact, starting from subelliptic estimates, (2.1) is

obtained by induction over j such that jǫ ≥ s. For us, who use Kohn method of [K02], a
logarithmic loss seems to be unavoidable.

Remark 2.3. A byproduct of Theorem 2.1 is the local Hs regularity of the Neumann
operator N = �−1. For this, the accuracy in the decription of the constant in the last
norm in (2.1) is needless and the conclusion is obtained from (2.1) by the standard method
of the elliptic regularization.

Proof of Theorem 2.1. Apart from the quantitative description of the constant in the
error term of (2.1), the proof follows [K02] Section 7. Let U be the neighborhood of zo
where the f -estimate holds; the whole discussion takes place on U . For each integer s ≥ 0,
we interpolate two families of cut-off functions {ζm}sm=0 and {σm}sm=1 with support in U
and such that ζj ≺ σj ≺ ζj−1. It is assumed that ζ0 = χ1 and ζs = χ0. We define two new
sequences {ζ tm} and {σt

m} shrinking to zo by ζ tm(z) = ζm(tz) and σ
t
m(z) = σm(tz).

We also need a pseudodifferential partition of the unity. Let λ1(|ξ|) and λ2(|ξ|) be real
valued C∞ functions such that λ1 + λ2 ≡ 1 and

λ1(|ξ|) =
{

1 if |ξ| ≤ 1

0 if |ξ| ≥ 2.

Recall that Λm is the tangential pseudodifferential operator of order m. Denote by Λm
t

the pseudodifferential operator with symbol λ2(t
−1|ξ|)(1 + |ξ|2)m

2 and by Et the operator
with symbol λ1(t

−1|ξ|). Note that

‖Λmζ tmu‖2 . ‖Λm
t ζ

t
mu‖2 + t2m‖ζ tmu‖2.(2.2)

In this estimate, it is understood that t ≤
(

f

log

)∗

(t). Fom now on, to simplify notations,

we write g instead of f

log
.

Following Kohn [K02], we define for m = 1, 2, . . . , the pseudodifferential operator Rm
t by

Rm
t ϕ(a, r) = (2π)−2(n−1)

∫

R2n−1

eia·ξλ2(t
−1|ξ|)(1 + |ξ|2)

mσt
m(a,r)

2 F(ϕ)(ξ, r)dξ

for ϕ ∈ C∞
c (U ∩ Ω̄). Since ζ tm ≺ σt

m, the symbol of (Λm
t − Rm

t )ζ
t
m is of order zero and

therefore

||Λm
t ζ

t
mu||2 .‖Rm

t ζ
t
mu‖2 + ‖ζ tmu‖2

.‖ζ tmRm
t ζ

t
m−1u‖2 + ‖[Rm

t , ζ
t
m]ζ

t
m−1u‖2 + ‖ζ tmu‖2

.‖f(Λ)ζ tm−1R
m
t ζ

t
m−1u‖2 + ‖[Rm

t , ζ
t
m]ζ

t
m−1u‖2 + ‖ζ tmu‖2.

(2.3)
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By Proposition 2.4 below, the commutator in the last line of (2.3) is dominated by
∑m

j=1 t
2j |||ζ tm−ju|||2m−j. From (2.2) and (2.3), we get the estimate for the tangential norm

|||ζ tmu|||2m . ‖f(Λ)ζ tm−1R
m
t ζ

t
m−1u‖2 +

m
∑

j=1

t2j |||ζ tm−ju|||2m−j.(2.4)

As for the normal derivative Dr, we have

|||DrΛ
−1ζ tmu|||2m .‖DrΛ

−1f(Λ)ζ tm−1R
m
t ζ

t
m−1u‖2

+

m
∑

j=1

t2j |||DrΛ
−1ζ tm−ju|||2m−j.

(2.5)

We define the operator Am
t := ζ tm−1R

m
t ζ

t
m−1 and remark that Am

t is self-adjoint; also, we
have Am

t u ∈ (C∞
c )q ∩Dom(∂̄∗) if u ∈ (C∞)q ∩Dom(∂̄∗). In particular, the f -estimate can

be applied to Am
t u; using also the decomposition Dr = L̄n + Tan, where Tan denotes a

combination of the ∂aj ’s, this yields

‖f(Λ)Am
t u‖2 + ‖DrΛ

−1f(Λ)Am
t u‖2 . Q(Am

t u,A
m
t u).(2.6)

Next, we estimate Q(Am
t u,A

m
t u). We have

‖∂̄Am
t u‖2 = (Am

t ∂̄u, ∂̄A
m
t u) + ([∂̄, Am

t ]u, ∂̄A
m
t u)

=
(

(Am
t ∂̄

∗∂̄u, Am
t u)− ([∂̄, Am

t ]
∗u, ∂̄∗Am

t u)

− f(Λ)−1[[Am
t , ∂̄

∗], ∂̄]u, f(Λ)Am
t u)

)

+ ([∂̄, Am
t ]u, ∂̄A

m
t u).

(2.7)

Similarly,

‖∂̄∗Am
t u‖2 =

(

(Am
t ∂̄∂̄

∗u,Am
t u)− ([∂̄∗, Am

t ]
∗u, ∂̄Am

t u)

− (f(Λ)−1[[Am
t , ∂̄], ∂̄

∗]u, f(Λ)Am
t u)

)

+ ([∂̄∗, Am
t ]u, ∂̄

∗Am
t u)

(2.8)

Taking summation of (2.7) and (2.8), and using the “small constant - large constant”
inequality, we obtain

Q(Am
t u,A

m
t u) .(Am

t �u,A
m
t u) + error

.Cǫ|||ζ tm−1�u|||2m + ǫ‖Am
t u‖2 + error,

(2.9)

where

error =‖[∂̄, Am
t ]u‖2 + ‖[∂̄∗, Am

t ]u‖2 + ‖[∂̄, Am
t ]

∗u‖+ ‖[∂̄∗, Am
t ]

∗u‖
+ ‖f(Λ)−1[Am

t , ∂̄]
∗, ∂̄∗]u‖2 + ‖f(Λ)−1[Am

t , ∂̄
∗]∗, ∂̄]u‖2 + ‖f(Λ)Am

t u‖2.
(2.10)
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Using Proposition 2.4 below, the error is dominated by

(2.11) ǫQ(Am
t u,A

m
t u) + Cǫ(g

∗(t))2(m+1)‖χt
2u‖2 +

m
∑

j=1

t2j‖ζ tm−ju‖2m−j.

Therefore

Q(Am
t u,A

m
t u) . |||ζ tm−1�u|||2m +

m
∑

j=1

t2j‖ζ tm−ju‖2m−j

+ (g∗(t))2(m+1)‖χt
2u‖2 + ǫ‖Am

t u‖2.
(2.12)

Combining (2.4), (2.5), (2.6) and (2.12), and absorbing ǫ‖Am
t u‖2 in the left side of (2.6),

we obtain

|||ζ tmu|||2m + |||DrΛ
−1ζ tmu|||2m .|||ζ tm−1�u|||2m

+

m
∑

j=1

t2j ||ζ tm−ju||2m−j + (g∗(t))2(m+1)‖χt
2u‖2.

(2.13)

Since the operator � is elliptic, and therefore non-characteristic with respect to the
boundary, we have for m ≥ 2

‖ζ tmu‖2m . ‖�ζ tmu‖2m−2 + |||ζ tmu|||2m + |||Drζ
t
mu|||2m−1.(2.14)

Replace the first term in the right of (2.14) by ‖ζ tm�u‖2m−2 + ‖[�, ζ tm]u‖2m−2 and observe
that the commutator is estimated by t2‖ζ tm−1u‖2m−1+t

4‖ζ tm−1u‖2m−2. Application of (2.13)
to the last two terms of (2.14), yields

‖ζ tmu‖2m .‖ζ tm−1�u‖2m +

m
∑

j=1

t2j ||ζ tm−ju||2m−j + (g∗(t))2(m+1)‖χt
2u‖2, m = 1, ..., s.(2.15)

Iterated use of (2.15) to estimate the terms of type ζ tm−ju by those of type ζ tm−1�u in
the right side yields

‖ζ tsu‖2s .
s
∑

m=0

t2m‖ζ ts−m�u‖2s−m + (g∗(t))2(s+1)‖χt
2u‖2

.t2s‖ζ t0�u‖2s + (g∗(t))2(s+1)‖χt
2u‖2.

(2.16)

Choose χt
0 = ζ ts and χ

t
1 = ζ t0; we then conclude

‖χt
0u‖2s .t2s‖χt

1�u‖2s + (g∗(t))2(s+1)‖χt
2u‖2,(2.17)

for any u ∈ (C∞)q ∩D�.
�

The proof of the theorem is complete but we have skipped a crucial technical point that
we face now.
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Proposition 2.4. We have

(i) ‖[Rm
t , ζ

t
m]ζ

t
m−1u‖2 .

∑m

j=1 t
2j |||ζ tm−ju|||2m−j

(ii) Assume that an f -estimate holds with f ≫ log, then for any ǫ and for suitable Cǫ,
the error term in (2.9) is dominated by (2.11).

Proof. (i). It is well known that the principal symbol σP ([A,B]) of the commutator of
two operators A and B is the Poisson brcket {σP (A), σP (B)}. For the full symbol, and
with tangential variables a and dual variables ξ, we have the formula

(2.18) σ([A,B]) =
∑

|κ|>0

Dκ
ξ σ(A)D

κ
aσ(B)−Dκ

ξσ(B)Dκ
aσ(A)

κ!
.

This formula, applied to [Rm
t , ζ

t
m] proves (i).

(ii). First, we show

‖[∂̄, Am
t ]u‖ ≤ ǫQ(Am

t u,A
m
t u) + Cǫ(g

∗(t))2(m+1)‖χt
2u‖2 +

m
∑

j=1

t2j‖ζ tm−ju‖2m−j.(2.19)

By Jacobi identity,

[∂̄, Am
t ] =[∂̄, ζ tm−1R

m
t ζ

t
m−1]

=[∂̄, ζ tm−1]R
m
t ζ

t
m−1 + ζ tm−1[∂̄, R

m
t ]ζ

t
m−1 + ζ tm−1R

m
t [∂̄, ζ

t
m−1].

(2.20)

Since the support of the derivative of ζ tm−1 is disjoint from the support of σt
m, the first

and third terms in the second line of (2.20) are bounded by |ζ̇ tm| ∼ t in L2. The middle
term in (2.20) is treated as follows. Let b be a function which belongs to the Schwartz
space S and D be Daj or Dr; we have

[bD,Rm
t ] = [b, Rm

t ]D + b[D,Rm
t ].(2.21)

Now, if D = Daj , the term first term of (2.21) is bounded by Rm
t ; if, instead, D = Dr, we

decompose Dr = L̄n+Tan, so that [b, R
m
t ]D is bounded by Λ−1L̄nR

m
t +Rm

t . (“Bounded” is
always meant up to a multiplicative constant.) As for the second term, we have [D,Rm

t ] =
mD(σt

m) log(Λ)R
m
t ; in particular, [D,Rm

t ] is bounded by t log(Λ)Rm
t . Therefore,

‖[∂̄, Am
t ]u‖2 .t‖log(Λ)Am

t u‖2 + ǫ‖L̄nA
m
t u‖2 + Cǫ‖χt

2u‖2 +
m
∑

j=1

t2j‖ζ tm−ju‖2m−j .(2.22)

To estimate the first term in (2.22), we check that

t log t ≤ ǫf(t) in the set {t : λ1(g∗−1(ǫ−1t)t) 6= 1}
and hence

t log t . ǫf(Λξ) + tλ1

(

g∗−1(ǫ−1t)t
)

log t.(2.23)



NECESSARY GEOMETRIC AND ANALYTIC CONDITIONS... 9

It follows
1

t
‖log ΛAm

t u‖2 ≤ǫ‖f(Λ)Am
t u‖2 + t2(g∗(ǫ−1t))2m log2

(

g∗(ǫ−1t)
)

‖χt
2u‖2

≤ǫ‖f(Λ)Am
t u‖2 + Cǫ(g

∗(t))2(m+1)‖χt
2u‖2.

(2.24)

Since we are supposing that an f -estimate holds, we get the proof of the inequality
(2.19). By a similar argument, we can estimate all subsequent error terms in (2.10) and
obtain the conclusion of the proof of Theorem 2.1.

�

3. From estimate to type - Proof of Theorem 1.4 (i)

Proof of Theorem 1.4 (i). We follow the guidelines of [C83] and begin by recalling two
results therein. The first is stated in [C83] Theorem 2 for domains of finite type, that is
for F = δM , but it holds in full generality of F .

(a) Let Ω be a domain in Cn with smooth boundary and assume that there is a function
F and a q-dimensional complex-analytic variety Z passing through zo such that
(1.1) is satisfied for z ∈ Z. Then, in any neighborhood U of zo, there is a family
{Zδ} of q-dimensional complex manifolds of diameter comparable to δ such that

sup
z∈Zδ

|r(z)| . F (δ).

The proof is just a technicality for passing from variety to manifold. The second re-
sult, consists in exhibiting, as a consequence of pseudoconvexity, holomorphic functions
bounded in L2 norm which blow up approaching the boundary.

(b) Let Ω ⊂ Cn be a bounded pseudoconvex domain in a neighborhood of zo ∈ bΩ.
For any point z ∈ Ω near zo there is G ∈ hol (Ω) ∩ L2(Ω) such that
(1) ‖G‖20 . 1

(2)
∣

∣

∣

∂mG
∂zn

(z)
∣

∣

∣
>
∼
δ−(m+ 1

2
)(z) for all m ≥ 0.

(We always denote by δ(z) the distance of z to bΩ and assume that ∂
∂zn

is a normal

derivative.) By (a), for any δ there is a point γδ ∈ Zδ, which satisfies δ(γδ) . F (δ) and
by (b) there is a function Gδ ∈ hol(Ω) ∩ L2(Ω) such that

‖Gδ‖ ≤ 1

and
∣

∣

∣

∂mGδ

∂zmn
(γδ)

∣

∣

∣
>
∼
F−(m+ 1

2
)(δ(γδ)).

We parametrize Zδ over C
q × {0} by

z′ 7→ (z′, hδ(z
′)) for z′ = (z1, ..., zq).

We observe that it is not restrictive to assume that γδ is the “center” of Zδ, that is, the
image of z′ = 0 (by the properties of uniformity of the parametrization with respect to
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δ). Let ϕ be a cut-off function on R+ such that ϕ = 1 on [0, 1) and ϕ = 0 on [2,+∞). We
use our standard relation t = δ−1 and define, for some c to be chosen later

ψt(z
′) = ϕ

(8t|z′|
c

)

.

Choose the datum αt as
αt = ψt(z

′)Gt(z)dz̄1 ∧ ... ∧ dz̄q.
Clearly the form αt is ∂̄-closed and its coefficient belongs to L2. Let Pt be the q-polydisc
with center z′ = 0 and radius ct−1, let wt be the q-form

wt = ϕ(
8t|z′|
3c

)dz̄1 ∧ ... ∧ dz̄q,

and define

(3.1) Km
t :=

∫

Pt

〈 ∂
m

∂zmn
αt(z

′, ht(z
′)), wt〉dV.

Using the mean value property for ∂m

∂zmn
Gt(z

′, ht(z
′)) over the spheres |z′| = s and integrat-

ing over s with 0 ≤ s ≤ t, we get, by Property (2) of G

(3.2) Km
t >

∼
t−2qF (t−1)−(m+ 1

2
).

Let vt be the canonical solution of ∂̄vt = αt, that is, vt = ∂̄∗ut for ut = Nαt where
N = �−1. If ϑ is the adjoint of ∂̄, then integration by parts yields

Km
t =

∫

Pt

〈∂̄ ∂
m

∂zmn
vt(ht), wt〉dV =

∫

Pt

〈 ∂
m

∂zmn
vt(ht), ϑwt〉dV.

We define a set St = {z′ ∈ Ck : 3c
8t

≤ |z′| . 6c
8t
}. Since ϑwt is supported in St and |ϑwt| . t,

then (for δ = t−1)

(3.3) Km
t . t−2q+1 sup

Zδ

| ∂
m

∂zmn
vt(ht)| . t−2q+1 sup

Zδ

| ∂
m

∂zmn
∂̄∗ut| . t−2q+1 sup

Zδ

| Dβ

|β|=m+1
ut|.

Recall the notation g := f

log
; before completing the proof of Theorem 1.4 (i), we need to

state an upper bound for Km
t , which follows from

(3.4) sup
Zδ

| Dβ

|β|=m+1
ut| . g∗(t)m+n+3.

To prove (3.4), we start by noticing that, since the set St has diameter 0(t) and the
function ht satisfies |dht(z′)| ≤ C for z′ ∈ Pt, then the set Zδ = (id× ht)(St) (for δ = t−1)
has diameter of size 0(t). Moreover, by construction, there exists a constant d such that

inf{|z1 − z2| : z1 ∈ suppαt, z2 ∈ Zδ} > 2dt−1.

Therefore, we may choose χ0 and χ1 such that if we set χt
k(z) = χk(

tz
d
) for k = 0, 1, we

have the properties
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(1) χt
0 = 1 on Zδ

(2) αt = 0 on suppχt
1.

Hence

sup
Zδ

| Dβ

|β|=m+1
ut| . sup

Ω∩Zδ

| Dβ

|β|=m+1
χt
0ut| . ‖χt

0ut‖m+n+1,(3.5)

where the last inequality follows from Sobolev Lemma since χt
0ut is smooth by Remark 2.3.

We use now Theorem 2.1 and observe that χt
1�ut = 0 (by Property (2) of χt

1). It follows

‖χt
0ut‖2m+n+1 . g∗(t)2(m+n+2)‖ut‖2

<
∼
g∗(t)2(m+n+2),

where for the last inequality we have to observe that, Ω being bounded and pseudoconvex,
then ‖ut‖2 . ‖�ut‖2 = ‖αt‖2 . 1. This completes the proof of (3.4). We return to the
proof of Theorem 1.4 (i). Combining (3.2) with (3.3) and (3.4), we get the estimate

t2kF (t)−(m+ 1
2
) ≤ Ct2k−1g∗(t)m+n+2.

Taking m-th root and going to the limit for m→ ∞, yields

F (t)−1 ≤ g∗(t).

This concludes the proof of Theorem 1.4 (i).
�

4. From estimate to lower bound for the Bergman metric BΩ - Proof of
Theorem 1.4 (ii)

The Bergman kernelKΩ has been introduced in Section 1: as already recalled, it provides
the integral representation of the orthogonal projection P : L2(Ω) → hol(Ω)∩L2(Ω). From

KΩ one obtains the Bergman metric BΩ :=

√

∂∂̄ log
(

KΩ(z, z)
)

. Let

bij(z) =
∂2

∂zi∂z̄j
logK(z, z);(4.1)

then the action of BΩ over a (1, 0) vector field X =
∑

j aj∂zj is expressed by

BΩ(z,X) =
(

n
∑

ij=1

bijaiāj

)
1
2
.(4.2)

This differential metric is primarily interesting because of its invariance under a biholo-
morphic transformation on Ω.
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One can obtain the value of the Bergman kernel on the diagonal of Ω×Ω and the length
of a tangent (1, 0)-vector X in the Bergman metric by solving the following extremal
problems :

KΩ(z, z) = inf{‖ϕ‖2 : ϕ ∈ hol(Ω), ϕ(z) = 1}−1

= sup{|ϕ(z)|2 : ϕ ∈ hol(Ω), ‖ϕ‖ ≤ 1}
(4.3)

and

BΩ(z,X) =
inf{‖ϕ‖ : ϕ ∈ hol(Ω), ϕ(z) = 0, Xϕ(z) = 1}−1

√

KΩ(z, z)

=
sup{|Xϕ(z)| : ϕ ∈ hol(Ω), ϕ(z) = 0, ‖ϕ‖ ≤ 1}

√

KΩ(z, z)
.

(4.4)

The purpose of this section is to study the boundary behavior of BΩ(z,X) for z near
a point zo ∈ bΩ, when a f -estimate for the ∂̄-Neumann problem holds. We prove Theo-
rem 1.4 (ii) for a general f -estimate; this extends [McN92] which deals with subelliptic
estimates. For the proof of Theorem 1.4 (ii), we recall two results from [McN92]. The first
is about locally comparable properties of Bergman kernel and Bergman metric, that is,

(a) Let Ω1,Ω2 be bounded pseudoconvex domains in Cn such that a portion of bΩ1

and bΩ2 coincide. Then

KΩ1(z, z)
∼= KΩ2(z, z);

BΩ1(z,X) ∼= BΩ2(z,X), X ∈ T 1,0
z C

n,

for z near the coincidental portion of the two boundaries (cf. [McN92] or [DFH84]).

To apply (a), we construct a smooth pseudoconvex domain Ω̃, contained in Ω, that
shares a piece of its boundary with bΩ near zo. The crucial property that Ω̃ has, for our
purpose, is the exact, global regularity of the ∂̄-Neumann operator. In fact, one can show
that

(b) Let Ω be a smooth, bounded, pseudoconvex domain in Cn and let zo ∈ bΩ. Then,
there exist a neighborhood U of zo and a smooth, bounded, pseudoconvex domain
Ω̃ satisfying the following properties:

- Ω̃ ⊂ Ω ∩ U ,
- bΩ̃ ∩ bΩ contains a neighborhood of zo in bΩ,
- all points in bΩ̃ \ bΩ are points of strong pseudoconvexity.

A proof can be found in [McN92]. We need some further preliminary. Let ψ be a cut-off
function such that

ψ(z) =

{

0 if z ∈ B1(zo),

1 if z ∈ Cn \ B2(zo),
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where Bc(zo) is the ball in Cn with center zo and radius c; we also set ψt = ψ(tz). By
(b) above, it is not restrictive to assume, in the proof of Theorem 1.4 (ii), that Ω has a
∂̄-Neumann operator N which is exactly globally regular.

Proposition 4.1. Let an f -estimate in degree q hold at zo and N be exactly globally
regular on Ω. Then if α ∈ C∞

c (B 1
8t
(zo) ∩ Ω̄)q, for any nonnegative integer s1, s2, we have

(4.5) ‖ψtNα‖2s1 . g∗(t)2(s1+s2+4)‖α‖2−s2
.

Proof. We choose a triplet of cut-off functions χt
0, χ

t
1 and χ

t
2 in Theorem 2.1, such that

χt
0 ≡ 1 on a neighborhood of the support of the derivative of ψt and supp χt

2 ⊂ B3t−1(zo)\
B 1

2
t−1(zo); hence χt

1α = 0. We notice that for t sufficiently small, suppχt
j ⊂⊂ U for

j = 0, 1, 2, so that we can apply Theorem 2.1 to this triplet of cut-off functions. Using the
global regularity estimate and Theorem 2.1 for an arbitrary q-form u ∈ (C∞)q ∩Dom(�),
we have

‖ψtu‖2s1 .‖�ψtu‖2s1
.‖ψt�u‖2s1 + ‖[�, ψt]u‖2s1
.‖ψt�u‖2s1 + t2‖χt

0u‖2s1+1 + t4‖χt
0u‖2s1

.‖ψt�u‖2s1 + t2(s1+2)‖χt
1�u‖2s1+1 + g∗(t)2(s1+3)‖χt

2u‖2.

(4.6)

Recall that we are supposing that the ∂̄-Neumann operator is globally regular. If
α ∈ C∞(Ω̄)q, then Nα ∈ C∞(Ω̄)q ∩ Dom(�). Substituting u = Nα in (4.6) for α ∈
C∞

c (B 1
8t
(zo) ∩ Ω̄)q, we obtain

‖ψtNα‖2s1 . g∗(t)2(s1+3)‖χt
2Nα‖2.(4.7)

However,
‖χt

2Nα‖ = sup{|(χt
2Nα, β)| : ‖β‖ ≤ 1},

and the self-adjointness of N and the Cauchy-Schwartz inequality yield

|(χt
2Nα, β)| =|(α,Nχt

2β)|
=|(α, χ̃t

0Nχ
t
2β)|

.‖α‖−s2‖χ̃t
0Nχ

t
2β‖s2,

(4.8)

where χ̃t
0 is a cut-off function such that χ̃t

0 ≡ 1 on supp α. Let χ̃t
0 ≺ χ̃t

1 ≺ χ̃t
2 with

supp χ̃t
1 ⊂⊂ B 1

4t
(zo); in particular, supp χ̃t

1 ∩ suppχt
2 = ∅. Using again Theorem 2.1 for

the triplet of cut-off functions χ̃t
0, χ̃

t
1 and χt

2, we obtain

‖χ̃t
0Nχ

t
2β‖2s2 .t2s2‖χ̃t

1χ
t
2β‖2s2 + g∗(t)2(s2+1)‖χ̃t

2Nχ
t
2β‖2

.g∗(t)2(s2+1)‖χ̃t
2Nχ

t
2β‖2

.g∗(t)2(s2+1)‖β‖2.
(4.9)



14 TRAN VU KHANH AND GIUSEPPE ZAMPIERI

Taking supremum over ‖β‖ ≤ 1, we get (4.5).
�

Proof of Theorem 1.4 (ii). We follow the guidelines of [McN92]. Let (ζ, z) be local com-
plex coordinates in a neighborhood of (zo, zo) in which X(zo) = ∂ζ1 with the normalization
∂ζnr|zo = 1. If z ∈ U and z 6∈ bΩ, we define

hz(ζ) =
KΩ(ζ, z)
√

KΩ(z, z)

so that ‖hz‖ = 1 and |hz(z)|√
KΩ(z,z)

= 1. We also define

γz(ζ) = R(z)(ζ1 − z1)hz(ζ) for R(z) = g(δ−1+η(z)).

It is obvious that γz ∈ hol(Ω) and γz(z) = 0. We claim that ‖γz‖ ≤ 1; once this is proved,
then (4.4) assures that

BΩ(z,X) ≥ |Xγz(z)|
√

KΩ(z, z)
=

|R(z)hz(z)|
√

KΩ(z, z)
= |R(z)| = g(δ−1+η(z)),(4.10)

and the proof of Theorem 1.4 (ii) is complete. We prove the claim. In all what follows, z is
fixed in U ; we set t = g(δ−1+η(z)) and, for ψt as in Proposition 4.1, put ψt

z(ζ) = ψt(ζ−z).
We decompose

γz(ζ) = ψt
z(ζ)γz(ζ) + (1− ψt

z(ζ))γz(ζ).(4.11)

The second term satisfies

‖(1− ψt
z)γz‖ . |R(z)|t−1 = 1.(4.12)

As for the first term, multiplying and dividing by Ḡm := ∂m

∂z̄mn
Ḡ where G is the function

introduced in the beginning of Section 3, we get

ψt
z(ζ)γz(ζ) = R(z)(ζ1 − z1)

1

Ḡm(z)

1
√

KΩ(z, z)

(

ψt
z(ζ)KΩ(ζ, z)Ḡ

m(z)
)

.(4.13)

We denote by cz the term, constant in ζ , before parentheses; since KΩ(z, z) ≥ |G(z)|2 >
∼

δ−1(z), then |cz| <
∼
g(δ−1+η(z))δm+1(z). On the other hand, if ϕt

z is a cut-off with support

in B 1
10t
(0) with unit mass, then

KΩ(ζ, z)Ḡ
m(z) =

∫

K(ζ, w)Ḡm(w)ϕt
z(w)dVw

=P
(

Ḡm(ζ)ϕt
z(ζ)

)

=Ḡm(ζ)ϕt
z(ζ)− ∂̄∗N∂̄

(

Ḡm(ζ)ϕt
z(ζ)

)

,

(4.14)

where the first equality follows from the mean value theorem for antiholomorphic func-
tions, the second from the definition of P and the third from the relation of P with N .
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Notice that the supports of ψt
z and ϕt

z are disjoint, and that supp ∂̄
(

Ḡmϕt
z

)

is contained

in B 1
8t

for all z ∈ U . We call the attention of the reader to the fact that in Theorem 1.4

(ii) and (iii), it is assumed that an f -estimate holds in degree q = 1. We may therefore

apply Proposition 4.1 to the 1-form ∂̄
(

Ḡmϕt
z

)

for zo replaced by z and for s1 = 1, and

obtain

‖ψt
zKΩ(·, z)Ḡm(z)‖2 =‖ψt

z∂̄
∗N∂̄

(

Ḡmϕt
z

)

‖2

.‖ψt
zN∂̄

(

Ḡmϕt
z

)

‖21 + ‖[ψt
z , ∂̄

∗]N∂̄
(

Ḡmϕt
z

)

‖2

.g∗(t)2(s2+5)‖∂̄
(

Ḡmϕt
z

)

‖2−s2

.g∗(t)2(s2+5)t2‖Ḡmϕt
z‖2−s2+1

.g∗(t)2(s2+6)‖Ḡm‖−m‖ϕt
z‖−s2+m+1,

(4.15)

where the last inequality follows from the Cauchy-Schwartz inequality and from g(t) <
∼
t.

We notice that ‖Ḡm‖−m . ‖Ḡ‖ ≤ 1 (because Ḡm = ∂m

∂m
zn

Ḡ); besides, for s2 −m − 1 > n

we have by Sobolev’s Lemma

‖ϕt
z‖2−s2+m+1 =sup{(|(ϕt

z, h)| : h ∈ C∞
c , ‖h‖s2−m−1 ≤ 1}

.‖ϕt
z‖ = 1.

(4.16)

Therefore, remembering that t = g(δ−1+η(z)),

‖ψt
zKΩ(·, z)Ḡm(z)‖2 . δ(z)(−1+η)2(m+n+8).(4.17)

We go back to (4.13); combining (4.17) with the estimate for cz and with R =
g(δ−1+η(z)) ≤ δ−1(z), we obtain

‖ψt
zγz‖ <

∼
δ(z)−1+(m+1)+(−1+η)(m+n+8)

<
∼
1,

(4.18)

for m → ∞. We thus conclude that ‖γz‖ . 1, and then from (4.10) we get BΩ(z,X) >
∼

|R(z)| = g(δ−1+η) which concludes the proof of Theorem 1.4 (ii)
�

5. From estimate to P -property - Proof of Theorem 1.4 (iii)

Proof of Theorem 1.4 (iii). The notations KΩ(z, z), δ(z), η and Uη are the same as
in the section above. Again, the hypothesis is that an f -estimate holds in degree q = 1.
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Recall from the introduction that uτ denotes a “tangential” form. Define

ϕ(z) =
logKΩ(z, z)

(

log(δ−1(z))
)1+2η − 1

(

log(δ−1(z))
)η(5.1)

for z ∈ U . Recall that KΩ(z, z) >
∼
δ−1(z) whereas KΩ(z, z) <

∼
δ−(n+1)(z) is obvious because

Ω contains an osculating ball at any boundary point. Thus ϕ(z) → 0 as δ(z) → 0 (and in

particular, ϕ is bounded). To prove (1.4), for f̃ defined by (1.5), it is the same as to show

that ∂∂̄ϕ(z)(uτ ) >
∼
f̃(δ−1(z))|uτ |2 for any uτ in degree 1. Now,

∂∂̄ϕ(z)(uτ ) =
∂∂̄ logKΩ(z, z)(u

τ )
(

log(δ−1(z))
)1+2η + (1 + 2η)

logKΩ(z, z) · ∂∂̄δ(z)(uτ )
δ(z)

(

log(δ−1(z))
)2+2η

− η
∂∂̄δ(z)(uτ)

δ(z)
(

log(δ(−1(z))
)1+η

=
∂∂̄ logKΩ(z, z)(u

τ )
(

log(δ−1(z))
)1+2η +

∂∂̄δ(z)(uτ )

δ(z)
(

log(δ−1(z))
)1+2η×

×
(

(1 + 2η)
logKΩ(z, z)

log δ−1(z)
− η
(

log δ−1(z)
)η

)

.

(5.2)

Here, the last line between brackets is negative when z approaches bΩ because its first
term stays bounded whereas the second diverges to −∞. Since Ω is pseudoconvex at zo,
then ∂∂̄δ(z)(uτ ) ≤ 0. Combining with Theorem 1.4 (ii), we obtain

∂∂̄ϕ(z)(uτ ) ≥ BΩ(z, u
τ )2

log(δ−1(z))1+2η

>
∼

(f(δ−1+η(z)))2

(log δ−1+η(z))2(log(δ−1(z)))1+2η
|uτ |2

∼
(

f

log
3
2
+η

(

δ−1+η(z)
)

)2

|uτ |2, z near bΩ.

(5.3)

The inequality (5.3) implies the proof of the theorem.

�

References

[C83] D. Catlin—Necessary conditions for the subellipticity of the ∂-Neumann problem, Ann. of
Math. 117 (1983), 147–171.

[C84] D. Catlin—Global regularity of the ∂̄-Neumann problem. Complex analysis of several vari-
ables (Madison, Wis., 1982),Proc. Sympos. Pure Math., 41, (1984), 39–49.



NECESSARY GEOMETRIC AND ANALYTIC CONDITIONS... 17

[C87] D. Catlin—Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains,
Ann. of Math. 126 (1987), 131–191.

[D82] J. P. D’Angelo—Real hypersurfaces, orders of contact and applications, Ann. of Math. 115
(1982), 615–637.

[DFH84] K. Diederich, J. E. Fornæss and J. E. Herbort—G. Boundary behavior of the Bergman
metric. Complex analysis of several variables (Madison, Wis., 1982), Proc. Sympos. Pure
Math., 41, Amer. Math. Soc. , Providence, RI, (1984) , 59–67.

[DK99] J. P. D’Angelo and J. J. Kohn—Subelliptic estimates and finite type, in Several Complex
Variables (Berkeley, 1995–1996), M. S. R. I. Publ. 37, Cambridge Univ. Press, Cambridge
(1999), 199–232.

[FK72] G. B. Folland and J. J. Kohn—The Neumann problem for the Cauchy-Riemann complex,
Ann. Math. Studies, Princeton Univ. Press, Princeton N.J. 75 (1972).

[K79] J. J. Kohn—Subellipticity of the ∂-Neumann problem on pseudo-convex domains: sufficient
conditions, Acta Math. 142 (1979), 79–122.

[K02] J. J. Kohn—Superlogarithmic estimates on pseudoconvex domains and CR manifolds, An-
nals of Math.156 (2002), 213–248.

[Ke72] N. Kerzman —The Bergman Kernel Function. Differentiability at the Boundary. Math.
Ann. , 195 (1972) 149 – 158.

[KN65] J. J. Kohn and L. Nirenberg—Non-coercive boundary value problems, Comm. Pure Appl.
Math. 18 (1965), 443–492.

[KR81] J. J. Kohn and H. Rossi—On the extension of holomorphic functions from the boundary
of a complex manifold, Ann. of Math. 81 (1965), 451–472.

[Kh10] T.V. Khanh—A general method of weights in the ∂̄-Neumann problem, Ph.D. thesis,
arXiv:1001.5093v1.

[KZ10] T. V. Khanh and G. Zampieri—Regularity of the ∂̄-Neumann problem at a flat point,
(2008)

[KZ09] T. V. Khanh and G. Zampieri—Estimates for regularity of the tangential ∂̄ system, to
appear in Math. Nach.

[McN92] J. D. McNeal— Lower bounds on the Bergman metric near a point of finite type. Ann. of
Math. 136 (1992), 2, 339–360.

[S10] E. J. Straube— Lectures on the L
2-Sobolev Theory of the ∂̄-Neumann Problem, ESI Lec-

tures in Mathematics and Physics European Mathematical Society (EMS), Zurich (2010).

http://arxiv.org/abs/1001.5093

	1. Introduction
	2. Localization estimate with parameter
	3. From estimate to type - Proof of Theorem 1.4 (i)
	4. From estimate to lower bound for the Bergman metric B - Proof of Theorem 1.4 (ii)
	5. From estimate to P-property - Proof of Theorem 1.4 (iii)
	References

