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Structure of finite nilspaces and inverse theorems for the Gowers

norms in bounded exponent groups.
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Abstract

A result of the author shows that the behavior of Gowers normson bounded exponent abelian

groups is connected to finite nilspaces. Motivated by this, we investigate the structure of finite

nilspaces. As an application we prove inverse theorems for the Gowers norms on bounded exponent

abelian groups. It says roughly speaking that if a function onA has non negligibleUk+1-norm then

it correlates with a phase polynomial of degreek when lifted to some abelian group extension ofA.

This result is closely related to a conjecture by Tao and Ziegler. In prticular we obtain a new proof

for the Tao-Ziegler inverse theorem.
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1 Introduction

In a recent paper [9] the author proved a general regularity lemma and inverse theorem for Gowers’s

uniformity normsUk+1. The results in [9] connect the theory of certain algebraic structures, called

nilspaces [5],[1], with the theory of Gowers norms. Note that nilspaces are parallelepiped structures

(introduced in a fundamental paper by Host and Kra [5]) in which cubes of every dimension are

defined.

The main result in [9] says (very roughly speaking) that every functionf : A→ C with |f | ≤ 1

on a compact abelian group can be decomposed asf = fs + fe + fr wherefe is a small error term,

fs is a structured function related to an algebraic morphismφ : A → N whereN is a bounded

complexityk-step nilspace, and‖fr‖Uk+1
is very small in terms of the complexity ofN .

It turns out that ifA is chosen from the special family of groups in which the orderof every

element divides a fixed numberq (calledq exponent groups) then the nilspaceN in the previous

decomposition is finite and has exponentq in the sense that it is built up fromk abelian groups of

exponentq as an iterated bundle. This motivates us to analyze the structure of finite nilspaces.

Our main method is to produce every finite nilspaceN as a factor of a nilspaceM which is

the direct product ofcyclic nilspaces. (A cyclic nilspace is a cyclic abelian group endowed with a

k-degree structure for some natural numberk.) We show that every morphismφ : A → N from an

abelian groupA toN can be lifted as a morphismψ : B →M whereA is a factor group ofB.

Using these results combined with the results in [9] we get inverse theorems for the Gowers

norms in bounded exponent groups. The next definition is from[10]

Definition 1.1 A phase polynomialφ : A → {x|x ∈ C, |x| = 1} of degreek on an abelian group

A is a function which trivializes afterk + 1 consecutive application of operators∆t defined by

∆tf(x) = f(x)f(x+ t) andt ∈ A.

Theorem 1 (Inverse theorem for bounded exponent groups)Letq be a fixed natural number. For

everyǫ > 0 there isδ > 0 such that iff : A → C with |f | ≤ 1 is a function on the abelian group

A of exponentq with ‖f‖Uk+1
≥ ǫ then there is an extensionB ofA with the same rank asA and

phase polynomial functionφ : B → C of degreek such that(f, φ) ≥ δ.

Note that in the above theoremf is interpreted also as a function onB by composing the projec-

tionB → A with f . This makes it possible to take the scalar product(f, φ). We can also formulate

this inverse theorem in a trivially equivalent but slightlymore conventional form if we introduce the

notion of a projected phase polynomial.

Definition 1.2 A functionf is called aprojected phase polynomial(of degreek) on a finite abelian

groupA if there is an extension

0 → C → B
τ
→ A→ 0
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with rk(A) = rk(B) and a phase polynomialφ : B → C (of degreek) such that

f(a) = |C|−1
∑

b∈B,τ(b)=a

φ(b).

Using this definition, theorem 1 says the following.

If ‖f‖Uk+1
≥ ǫ thenf correlates with a projected phase polynomial of degreek.

It is clear that projected phase polynomials are ”purely structured” functions. This means that

correlation with them implies non negligibleUk+1 norm. To see this, assume thatg correlates with

a projected phase polynomial. Then on the extended groupB the functiong′ = τ ◦g correlates with

a phase polynomial of degreek and so‖g′‖Uk+1
is non negligible. On the other hang‖g′‖Uk+1

=

‖g‖Uk+1
.

It will be important that theorem 1 can be strengthened in twoways.

Theorem 2 (Extended inverse theorem)In theorem 1 we can also assume that

1. φm = 1 for somem = qi wherei is bounded in terms ofǫ,

2. φ = φ1φ2 whereφ1 is a degreek−1 phase polynomial andφ2 takes onlyq-th roots of unities.

We will show that theorem 2 implies the next theorem by Tao andZiegler [10].

Theorem 3 (Tao-Ziegler) Letp be a fixed prime andk ≤ p−1. For everyǫ > 0 there isδ > 0 such

that if f : A→ C with |f | ≤ 1 is a function on the abelian groupA of exponentp with ‖f‖Uk+1
≥ ǫ

then there is a phase polynomial functionφ : A→ C of degreek and withφp = 1 such(f, φ) ≥ δ.

Note that in [10] the authors also prove an inverse theorem for k > p − 1 in which the function

correlates with a phase polynomial of degree bounded in terms ofk.

2 Structure of finite nilspaces

Roughly speaking, a nilspace is a structure in which cubes ofevery dimension are defined and they

behave very similarly as cubes in abelian groups. An abstract cube of dimensionn is the set{0, 1}n.

A cube of dimensionn in an abelian groupA is a functionf : {0, 1}n → A which extends to an

affine homomorphism (a homomorphism plus a translation)f ′ : Zn → A. Similarly, a morphism

ψ : {0, 1}n → {0, 1}m between abstract cubes is a map which extends to an affine morphism from

Zn → Zm.

Definition 2.1 (Nilspace axioms)A nilspace is a setN and a collectionCn(N) ⊆ N{0,1}n

of

functions (or cubes) of the formf : {0, 1}n → N such that the following axioms hold.

1. (Composition) If ψ : {0, 1}n → {0, 1}m is a cube morphism andf : {0, 1}m → N is in

Cm(N) then the compositionψ ◦ f is inCn(N).
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2. (Ergodictiry) C1(N) = N{0,1}.

3. (Gluing) If a mapf : {0, 1}n\{1n} → N is inCn−1(N) restricted to eachn−1 dimensional

face containing0n thenf extends to the full cube as a map inCn(N).

If N is a nilspace and in the third axiom the extension is unique for n = k+1 then we say thatN

is ak-step nilspace. If a spaceN satisfies the first axiom (but the last two are not required) then we

say thatN is acubespace. A functionf : N1 → N2 between two cubespaces is called amorphism

if φ ◦ f is in Cn(N2) for everyn and functionφ ∈ Cn(N1). The set of morphisms betweenN1

andN2 is denoted by Hom(N1, N2). With this notationCn(N) = Hom({0, 1}n, N). If N is a

nilspace then every morphismf : {0, 1}n → {0, 1}m induces a map̂f : Cm(N) → Cn(N) by

simply composingf with maps inCm(N).

Every abelian groupA has a natural nilspace structure in which cubes are mapsf : {0, 1}n → A

which extend to affine homomorphismsf ′ : Zn → A. We refer to this as the linear structure on

A. For every natural numberk we can define a nilspace structureDk(A) on A that we call the

k-degree structure. A functionf : {0, 1}n → A is in Cn(Dk(A)) if for every cube morphism

φ : {0, 1}k+1 → {0, 1}n we have that

∑

v∈{0,1}k+1

f(φ(v))(−1)h(v) = 0

whereh(v) =
∑k+1

i=1 vi. We will use the next elementary lemma in this paper.

Lemma 2.1 Letφ : Di(A) → Dj(B) be a morphism. Then ifi > j thenφ is constant. If1 ≤ i ≤ j

thenφ is also a morphism fromD1(A) toDj−i+1(B).

This follows directly by applying the operators∂x (defined in [1]) to the cub structures onDi(A)

andDj(B).

It was shown in [1] that higher degree abelian groups are building blocks of everyk-step

nilspace. To state the precise statement we will need the following formalism. LetA be an abelian

group andX be an arbitrary set. AnA bundle overX is a setB together with a free action ofA such

that the orbits ofA are parametrized by the elements ofX . This means that there is a projection map

π : B → X such that every fibre is anA-orbit. The action ofa ∈ A onx ∈ B is denoted byx+ a.

Note that ifx, y ∈ B are in the sameA orbit then it make sense to talk about the differencex − y

which is the unique elementa ∈ A with y + a = x. In other words theA orbits can be regarded as

affine copies ofA.

A k-fold abelian bundleXk is a structure which is obtained from a one element setX0 in k-

steps in a way that in thei-th step we produceXi as anAi bundle overXi−1. The groupsAi are the

structure groups of thek-fold bundle. We call the spacesXi thei-th factors.
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Definition 2.2 LetXk be ak-fold abelian bundle with factors{Xi}
k
i=1 and structure groups{Ai}

k
i=1.

Letπi denote the projection ofXk toXi. Assume thatXk admits a cubespace structure with cube

sets{Cn(Xk)}
∞
n=1. We say thatXk is ak-degree bundleif it satisfies the following conditions

1. Xk−1 is ak − 1 degree bundle.

2. Every functionf ∈ Cn(Xk−1) can be lifted tof ′ ∈ Cn(Xk) with f ′ ◦ πk−1 = f .

3. If f ∈ Cn(Xk) then the fibre ofπk−1 : Cn(Xk) → Cn(Xk−1) containingf is

{f + g|g ∈ Cn(Dk(Ak))}.

The next theorem form [1] says thatk-degree bundles are the same ask-step nilspaces.

Theorem 4 Everyk-degree bundle is ak-step nilspace and everyk-step nilspace arises as ak-

degree bundle.

We say that ak-step nilspace is of exponentq if all the structure groupsAi are of exponentq.

Definition 2.3 Let x, y be two elements in the nilspaceN . We say thatx ∼i y if the mapc :

{0, 1}i+1 → N with c(0i+1) = x and c(v) = y if v 6= 0i+1 is an element inCi+1(N). It was

proved in [1] that∼i is an equivalence relation and the classes form a factor ofN denoted by

Fi(N). The factorFi coincides with the factorXi in definition 2.2.

We introduce special morphisms betweenk-step nilspaces which have very strong surjectivity

properties and behave consistently with respect to the equivalence classes∼i.

Definition 2.4 LetN andM bek-step nilspaces. A morphismφ : N → M is called a factor map

if for every1 ≤ i ≤ k the image of every∼i class inN is a∼i class inM .

Notice that every morphism maps a∼i class into a∼i class. In the above definition we require

the surjectivity of these local maps. These type of maps werealso investigated in [1]. IfN andM

are compact nilspaces then factor maps are measure preserving which is useful. In this paper we

will use this notion to obtain finite nilspaces from free nilspaces as factors.

2.1 Extensions

Definition 2.5 LetN be an arbitrary nilspace. A degreek-extension ofN is an abelian bundleM

overN which is a cube space with the following properties.

1. For everyn ∈ N andc ∈ Cn(N) there isc′ ∈ Cn(N) such thatπ(c′) = c,

2. If c1 ∈ Cn(M) andc2 : {0, 1}n → M with π(c1) = π(c2) thenc2 ∈ Cn(M) if and only if

c1 − c2 ∈ Cn(Dk(A)).
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The mapπ is the projection fromM toN . The extensionM is called a split extension if there is a

cube preserving morphismm : N →M such thatm ◦ π is the identity map ofN .

Lemma 2.2 LetN be ak-step nilspace. IfM is a degreei extension ofN by an abelian group

A thenFi(M) is a degreei extension ofFi(N) byA. Furthermore the projectionτ : Fi(M) →

Fi(N) is the composition of the projectionπ : M → N by the projectionπi : N → Fi(N).

Proof. First of all observe thatFi(M) is somei-degree extension ofFi(N). All we need to show

is that the structure group of this extension isA. In other wordsA does not collapse when we look

at the situation modulo∼i. To see this we show that ifx, y are in the same fibre ofπ andx 6= y

thenx is different fromy mod∼i. LetF be the fibre containingx andy. Since the structure ofM

restricted toF is Di(A) and∼i separates every element inDi(A) the proof is complete.

Lemma 2.3 LetN be ak-step nilspace. IfM is a degreei extension ofN by an abelian groupA

(with projectionπ) thenM is a sub direct product ofN with a degreei extensionK ofFi(N) byA.

The sub direct product is the set of pairs(a, b) such thatπi(a) = τ(b) such thatπi : N → Fi(N)

andτ : K → Fi(N) are the projection maps.

Proof. LetK = Fi(M) andτ : M → Fi(M) be the projection. Letφ = π × τ be the morphism

fromM toN ×K. According to the previous lemma the image ofφ gives an isomorphism between

M and the subdirect product ofN andK defined in the lemma.

2.2 Translation groups

For an arbitrary subsetF in {0, 1}n and mapα : N → N we define the mapαF from Cn(N) to

N{0,1}n

such thatαF (c)(v) = α(c(v)) if v ∈ F andαF (c)(v) = c(v) if v /∈ F .

Definition 2.6 LetN be a nilspace. A mapα : N → N is called a translation of highti if for every

natural numbern ≥ i, n − i dimensional faceF ⊆ {0, 1}n andc ∈ Cn(N) the mapαF (c) is in

Cn(N). We denote the set of highti translations byTransi(N). We will use the short hand notation

Trans(N) for Trans1(N).

It is not hard to see that ifN is a k-step nilspace thenTrans(N) is a k-nilpotent group and

{Transi(N)}ki=1 is a central series inTrans(N). In this chapter we are interested in the following

question.

LetN be ank-degree extension of ak − 1 step nilspaceM and letα ∈ Transi(M). Under what

circumstances can we liftα to an elementα′ ∈ Transi(N) such thatπ(α′(n)) = α(π(n)) for every

n ∈ N (π : N →M is the projection.)?

We will need the definition of the arrow spaces. Letf1, f2 : {0, 1}n → N be two maps. We

denote by(f1, f2)i the mapg : {0, 1}n+i → N such thatg(v, w) = f1(v) if w ∈ {0, 1}i \ {1i} and

6



g(v, w) = f2(v) if w = 1i. If f : {0, 1}n → N ×N is a single map with componentsf1, f2 then

we denote by(f)i the map(f1, f2)i. A mapf : {0, 1}n → N ×N is a cube in thei-th arrow space

if (f)i is a cube inN .

LetT = T (α,N, i) be the set of pairs(x, y) ∈ N2 whereα(πk−1(x)) = πk−1(y). We interpret

T as a subset of thei-th arrow space overN . It is easy to see that ifk ≥ i+ 1 thenT is an ergodic

nilspace with the inherited cubic structure. We defineT ∗ asFk−1(T ). We have [1] thatT ∗ is a

degreek − i extension ofFk−1(N) byAk. The next theorem was proved in [1]

Proposition 2.1 LetN be ak-step nilspace andα ∈ Transi(Fk−1(N)). If T ∗ = T ∗(α,N, i) is a

split extension thenα lifts to an elementβ ∈ Transi(N).

2.3 Free nilspaces and their extensions

Definition 2.7 Leta1, a2, . . . , ak be a sequence of natural numbers. We denote byF (a1, a2, . . . , ak)

the nilspace
k
∏

i=1

Di(Z
ai).

We say thatF (a1, a2, . . . , ak) is the free nilspace of rank(a1, a2, . . . , ak).

Lemma 2.4 LetN be a nilspace. Ifc ∈ Cn(Di(Z)), f ∈ Cn(N) andα ∈ Transi(N). Thenf c

defined byv → αc(v)(f(v)) (wherev ∈ {0, 1}n) is inCn(N).

Proof. If c has the special structure that it takes a valuea ∈ Z on a face of co-dimensioni and

takes0 on the rest of{0, 1}n then the statement follows directly from the definition ofTransi(N).

Every other cube inCn(Di(Z)) can be generated by such simple cubes, so we get the general case

by iterating the special case.

The main result of this chapter is the following.

Theorem 5 LetM be a degreed extension of the free nilspaceF = F (a1, a2, . . . , ak) by an abelian

groupA. ThenM is a split extension.

Proof. We prove the statement by induction ond. If d = 1 then using lemma 2.3 we get that the

spaceM is the direct product ofF (0, a2, a3, . . . , ak) with an abelian group extension ofZa1 byA.

Since such an extension splits the cased = 1 is done.

Assume that the statement holds ford − 1 andd ≥ 2. Using lemma 2.3 we get thatM is the

direct product of
∏k

i=d+1 Di(Z
ai) with a degreed extensionMd of Fd = F (a1, a2, . . . , ad) byA.

We also have that thed-th structure groupB of Md is ad-degree extension ofZad byA. It follows

thatB is thed-degree structure on an abelian group extension ofZad byA. Such an extension splits

so it remains to show that the degreed extensionMd of Fd−1 = F (a1, a2, . . . , ad−1) byB splits.
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In other words we reduced the problem to the case whenk = d − 1. By abusing the notation let us

assume thatk = d− 1,B = A andF = Fd−1.

We use thatDi(Z
ai) is embedded intoF by setting all the other coordinates to0. Let Si be a

free generating system inZai embedded intoF this way (for every1 ≤ i ≤ d− 1). Every element

in g ∈ Si acts onF by x 7→ x + g using the abelian group addition in
∏d−1

i=1 Zai . Let us denote

this action byα(g). It is clear thatα(g) ∈ Transi(F ). We claim thatα(g) can be lifted toM . Let

T = T (α(g),M, i). We have by proposition 2.1 thatT is and− i degree extension ofFd−1 byA.

Using our induction this extension splits and so there is a lift α′(g) of α(g) to Transi(M).

The last step of the proof is to create a complement ofA in M using the group elementsα′(g)

whereg ∈ Si. Assume thatSi = {gi,1, gi,2, . . . , gi,ai
}. We represent every elementx in F in a

unique way as

x =

d−1
∑

i=1

ai
∑

j=1

λi,jgi,j .

Letm ∈M be a fixed element in the fibre of0 ∈ F in M . We define the maph : F →M such that

h(x) is the image ofm under the transformation

d−1
∏

i=1

ai
∏

j=1

α′(gi,j)
λi,j . (1)

Note that the order in the above product is important since wemultiply non commuting trans-

formations. It remains to show thath is cube preserving andh(F ) is a diagonal embedding ofF

intoM . Lemma 2.4 shows that if a product of the form (1) gets extended by one more term then it

remains cube preserving. By induction on the length of (1) weget thath is a morphism. It is clear

from its definition thath creates a diagonal embedding.

2.4 Finite nilspaces as factors of free nilspaces

In this chapter we establish finite nilspaces as factors of free nilspaces. Note that in this paper free

nilspaces are defined to have finite rank.

Theorem 6 For every finitek-step nilspaceN there is a factor maph : F → N from ak-step free

nilspaceF with the following property. Ifφ : Zn → N is a morphism then there is a morphism

φ′ : Zn → F such thatφ′ ◦ h = φ.

Proof. We proceed by induction onk. If k = 1 theN is an (affine) abelian group and then the

result is classical. Assume thatk ≥ 2 and assume that the statement holds fork − 1. LetN be a

fixed k-step nilspace. We can regardN as ak-degree extension of ak − 1 step nilspaceM by an

abelian groupA. Let π : N → M be the projection. We use the induction hypothesis forM and

construct a free nilspaceFk−1 = F (a1, a2, . . . , ak−1) and factor maph′ : Fk−1 → M satisfying

the requirement of the lemma. LetQ be the subdirect product ofFk−1 andN in the following way.
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The setQ consists of the pairs(a, b) such thata ∈ Fk−1,b ∈ N andh′(a) = π(b). It is clear that

Q as a subset of the nilspaceFk−1 × N is a nilspace which is ak degree extension ofFk−1 byA.

It follows form theorem 5 thatQ is a split extension and soQ ≃ Fk−1 × Dk(A). Let β : Zr → A

be a surjective homomorphism between abelian groups for some natural numberr. Thenβ is also a

morphism fromDk(Z
r) to Dk(A). LetF = Fk−1 × Dk(Z

r) andγ : F → Q be the identity map

onFk−1 timesβ. Leth : F → N be the composition ofγ with the projection fromQ to the second

coordinate. It is clear thath is a factor map. We claim thath has the desired lifting property.

Let φ : Zn → N be a morphism. First we liftφ toQ. According to induction we can liftφ ◦ π

to a morphismφ2 : Zn → Fk−1. Let φ3 = φ2 × φ. It is clear thatφ3 mapsZn toQ and it liftsφ.

Now we have to further liftφ3 fromQ toF . SinceQ = Fk−1 ×Dk(A) we can writeφ3 asφ4 × φ5

whereφ4 : Zn → Fk−1 andφ5 : Zn → Dk(A). It remains to show thatφ5 can be lifted toDk(A).

The mapφ5 is a degreek polynomial map fromZn to A. An easy lemma in [9] show exactly that

such a map can be lifted.

2.5 Periodicity of morphisms

Lemma 2.5 LetA be a finite abelian group of ordern. Then for everyk ∈ N there is a natural

numberα depending onn andk such that any morphismφ : Di(Z) → Dk(A) is nα periodic.

Proof. We use lemma 2.1. Ifi > k thenφ is constant. Ifi ≤ k thenφ is a morphism fromD1(Z) to

Dk−i+1(A). It was proved in [9] (but it is also very easy to see) that sucha function is of the form

m→
∑k−i+1

j=0 xj
(

m
j

)

wherexi ∈ A for everyi. Such functions arenk−i+1 periodic.

Lemma 2.6 LetN be a finitek-step nilspace of size|N | = n. then there is a natural numberα ∈ N

such that any morphismφ : Di(Z) → N is nα periodic.

Proof. We prove the statement by induction onk. If k = 1 then the statement (by lemma 2.5) is

trivial since in this caseφ is an affine morphism ofDi(Z) into an abelian group. Assume thatk ≥ 2

and the statement if true fork − 1. Assume that the structure groups ofN areA1, A2, . . . , Ak. Let

n2 = |Fk−1(N)| =
∏k−1

i=1 |Ai|. We have thatn2 dividesn. We also have by induction that any

morphismφ : Z → N composed with the projection mapπ : N → Fk−1(N) is nα2

2 periodic for

some natural numberα2. This means that for any natural numberm the sequencej 7→ φ(m+nα2

2 j)

is a morphism ofDi(Z) into a single fibre of the projectionπ.

The cube structure of a fibre ofπ isDk(A). Lemma 2.5 finishes the proof.

Theorem 7 Let φ : F → N be a morphism from a free groupF = F (a1, a2, . . . , ak) to a finite

nilspaceF with |F | = n. Then there is a natural numberα such thatφ factors through the map

ψ : F → F/nα whereF/nα is the space
∏k

i=1 Di((Z/(n
α))ai ) andψ is the map which takes every

coordinate modnα.
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Proof. It follows from lemma 2.6 that ifg is an element inF which has only one nonzero coordinate

then the mapj → φ(z+g(jnα)) onZ is constant for everyz ∈ F using addition in the abelian group
∏k

i=1 Z
ai . This periodicity using all the generators of each component Zai implies the statement.

2.6 Lifting morphisms

Definition 2.8 A hight i extension of an abelian groupA of rank r and exponente is an abelian

groupB which is an extension ofA with rankr and exponent dividingei.

Definition 2.9 We denote byFn(a1, a2, . . . , ak) =
∏k

i=1 Di(Z
ak
n ) and we call it the modulon free

nilspace.

Lemma 2.7 Let N be a finite nilspace of exponente, A be an abelian group of exponente and

φ : A→ N be a morphism. Then there is a morphismψ : B → F from some highti extensionB of

A to a moduloeα free nilspaceF = Feα(a1, a2, . . . , ak) such that there is a factor mapβ : F → N

withψ ◦ β = π ◦ φ whereπ : B → A is the projection map. The valueα and the numberi depends

only on the structure ofN .

Proof. Assume thatA is of rankr. This means that we can writeA as a factor group ofZr.

Theorem 6 and theorem 7 imply that the statement is true ifB is replaced byZd. It remains to show

that a morphismsψ′ : Zd → Feα(a1, a2, . . . , ak) factors through a bounded hight extension ofA.

This follows form lemma 2.6 sinceψ′ has to be periodic in each coordinate with a bounded power

of e.

We get a further strengthening of the previous lemma from using the fact thatβ is a factor map.

Since the∼k−1 classes ofF are mapped surejectively to the∼k−1 classes inN (and the∼k−1

classes are copies ofDk(Ak)) the mapβ factors through the map

Feα(a1, a2, . . . , ak) → Feα(a1, a2, . . . , ak−1)×Dk(Ak) = F ′ (2)

whereAk is thek-th structure group ofN . We formulate it as a separate lemma.

Lemma 2.8 In Lemma 2.7 the nilspaceF can be replaced byF ′ in (2).

3 Applications to the Gowers norms

Let Ae denote the family of finite abelian groups of exponente. A Ae nilspace is a nilspace whose

structure groups are all inAe. In particular such nilspaces are all finite. AAe nilspace polynomial

onA ∈ Ae is a composition of a morphismφ : A → N with g : N → C whereN is aAe nilspace

and|g| ≤ 1.

The next regularity lemma was proved in [9].
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Theorem 8 (Regularization inAe.) Let k be a fixed number andF : R+ × N → R
+ be an arbi-

trary function. Then for everyǫ > 0 there is a numbern = n(ǫ, F ) such that for every measurable

functionf : A→ C onA ∈ Ae with |f | ≤ 1 there is a decompositionf = fs+ fe+ fr and number

m ≤ n such that the following conditions hold.

1. fs is a degreek, complexitym andF (ǫ,m)-balancedAe-nilspace-polynomial,

2. ‖fe‖1 ≤ ǫ,

3. ‖fr‖Uk+1
≤ F (ǫ,m) , |fr| ≤ 1 and|(fr, fs + fe)| ≤ F (ǫ,m).

The notion ofb-balanced is not crucial in this paper but it expresses a strong measure preserving

property. According to this theorem, if we want to get an inverse theorem inAe all we need to do is

to writeAe nilspace polynomials as linear combinations in a suitable basisB. If we can have such a

linear combination with boundedly many elements then we getcorrelation with a function fromB.

Let φ : A → N be a morphism fromA ∈ Ae to aAe-nilspaceN . Assume thatN is ak-step

nilspace and has size at mostm. We use lemma 2.8 forφ. We obtain a morphismψ : B → F ′

whereF ′ has the form (2). The groupB ∈ Aei is a bounded hight extension ofA. Let φ′ denote

the composition of the projectionB → A with φ. We have thatφ′ factors throughψ. This means

that nilspace polynomials usingφ′ can be also obtained as nilspace polynomials usingψ. LetB be

the set of functions onB which are obtained by composing a linear characterχ of
∏k−1

i=1 Z
ai

eα ×Ak

with ψ. Let χ =
∏k

i=1 χi whereχi is a character ofZai

eα is 1 ≤ i ≤ k − 1 andχk is a character

of Ak. We have thatχ(ψ(x)) =
∏k

i=1 χi(ψi(x)) whereψi is a morphism fromB to Di(Z
ai

eα). In

other wordsψi is a polynomial map of degreei andx 7→ χi(ψi(x)) is a phase polynomial of degree

i. Furthermore sinceAk has exponente we have thatχk(ψk) takes onlye-th roots of unities.

This completes the proof of both theorem 1 and theorem 2

3.1 On the Tao-Ziegler theorem

Let p be a fixed prime number. We apply theorem 2 inductively onk. Assume that the inverse

theorem is established for degreek − 1 andk ≤ p − 1. Let f be a function onA = Zn
p such that

|f | ≤ 1 and‖f‖Uk+1
≥ ǫ. We have by theorem 2 that there is a group extensionB → A (whereB

has rankn) and a phase polynomialφ onB of degreek such that(τ ◦ f, φ) > δ. Furthermore we

have thatφ = φ1φ2 whereφ1 is of degreek − 1 andφ2 takes onlyp-th roots of unities.

We claim thatφ2 = τ ◦ φ3 whereφ3 is a phase polynomial onA. SinceB has rankn we

can writeB as a factor group ofZn with homomorphismτ ′ : Zn → B. Let us lift φ2 to a phase

polynomialφ4 onZn by composing it withτ ′. Sinceφp4 = 1 we can obtainφ4 from a polynomial

mapl : Zn → Zp of degreek. Such polynomial maps (see [9]) are linear combinations of functions

(x1, x2 . . . , xn) →
∏n

i=1

(

xi

ri

)

where
∑

ri = k. This show that the value of any such map depends

only of the residue classes ofxi modulop. The claim is proved.
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Let γ be the projection ofφ1φ2 toA. Sinceφ2 factors throughτ we have thatγ = γ2φ3 where

γ2 is the projection ofφ1. To finish the proof we need to show thatγ2 can be well approximated by

a bounded linear combination of phase polynomials onA of degreek − 1. Intuitively this follows

from our induction hypothesis and the fact thatγ2 is a ”purely structured” degreek− 1 function. In

the rest of the proof we show a lemma which makes this intuition precise.

Lemma 3.1 Letk be a value such that theorem 3 holds. Then for everyǫ1, ǫ2 > 0 there is a number

m such that if‖f‖Uk+1
≥ ǫ1 holds for a projected phase polynomialf onA then

‖f −
m
∑

i=1

λiβi‖2 ≤ ǫ2

holds for some linear combination
∑

λiβi of degreek phase polynomialsβi with |λi| ≤ 1.

Proof. We proceed by contradiction. Letǫ1, ǫ2 be such that there is a sequence of groupsAi = Zni
p

with extensionsBi and phase polynomialsφi onBi such that the projectionfi of φi hasUk+1 norm

at leastǫ1, but there is no required linear combination withi elements.

Let A (resp. B) be the ultra product of the sequence{Ai}
∞
i=1 (resp. {Bi}

∞
i=1). Let φ be the

ultra limit of the sequence{φi}∞i=1 andf be the ultra limit of{fi}∞i=1. The theory developed in [6]

says that there is a maximalσ-algebraFk(B) onB such thatUk+1 is a norm onL∞(Fk(B)).

The next step is to show that the projection ofφ to A (which is equal tof ) is measurable in

Fk(A). We can think about the projection toA as the projection to aσ algebra generated by the

factor mapB → A. Suchσ-algebras are called cosetσ-algebras in [6] since measurable sets are

unions of cosets of the kernel of the morphism fromB toA. It was proved in[6] that the projection

of a function measurable in a shift invariantσ-algebra to a cosetσ algebra is measurable in the

originalσ algebra. We obtain that a function inFk(B) projected toA is measurable inFk(A). In

particularf is measurable inFk(A).

Next we observe thatL2(Fk(A)) is generated by ultra limits of phase polynomials. Assume

that it is not true. Then there is a nonzero functiong (with |g| ≤ 1) measurable inFk(A) which is

orthogonal to the space generated by the ultra limits of phase polynomials. SinceUk+1 is a norm on

L∞(Fk(A)) we have that‖g‖Uk
= g > 0. Then we choose a sequence of functionsgi onai whose

ultra limit is g. This sequence would contradict the assumption that theorem 3 holds fork.

We obtain thatf =
∑∞

i=1 wiλi wherewi are ultra limits of phase polynomials{wj
i }

∞
j=1 of

degreek. By repeating termswi many times we can assume the each lambda has absolute value

at most1. Then there ism such that‖f −
∑m

i=1 λiwi‖2 ≤ ǫ2/2. This gives a contradiction since

‖fi −
∑m

r=1 λrw
i
r‖2 < ǫ2 holds for infinitely many indicesi.
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