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Structure of finite nilspaces and inverse theorems for thede®

norms in bounded exponent groups.

BALAZS SZEGEDY

November 5, 2010

Abstract

A result of the author shows that the behavior of Gowers nambounded exponent abelian

groups is connected to finite nilspaces. Motivated by thig,investigate the structure of finite

nilspaces. As an application we prove inverse theorem&&Gowers norms on bounded exponent

abelian groups. It says roughly speaking that if a functiomddas non negligiblé/;., 1 -norm then

it correlates with a phase polynomial of degteehen lifted to some abelian group extensiordof

This result is closely related to a conjecture by Tao andlgredn prticular we obtain a new proof

for the Tao-Ziegler inverse theorem.
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1 Introduction

In a recent papel [9] the author proved a general regulanitya and inverse theorem for Gowers’s
uniformity normsUy_ 1. The results in[[9] connect the theory of certain algebraiecsures, called
nilspaces[5]I[1], with the theory of Gowers norms. Note thitspaces are parallelepiped structures
(introduced in a fundamental paper by Host and Kia [5]) inchhtubes of every dimension are
defined.

The main result in[9] says (very roughly speaking) that gfenctionf : A — C with |f| <1
on a compact abelian group can be decomposgday; + f. + f- wheref, is a small error term,
fs is a structured function related to an algebraic morphismA — N whereN is a bounded
complexityk-step nilspace, anlf, ||, ., is very small in terms of the complexity o¥.

It turns out that ifA is chosen from the special family of groups in which the orofeevery
element divides a fixed number(calledq exponent groups) then the nilspabein the previous
decomposition is finite and has exponernh the sense that it is built up frof abelian groups of
exponent as an iterated bundle. This motivates us to analyze thetstruof finite nilspaces.

Our main method is to produce every finite nilspaéeas a factor of a nilspac&/ which is
the direct product o€yclic nilspaces (A cyclic nilspace is a cyclic abelian group endowed with a
k-degree structure for some natural numbkgrwe show that every morphisi: A — N from an
abelian groupd to N can be lifted as a morphisth: B — M whereA is a factor group of3.

Using these results combined with the results’in [9] we getiise theorems for the Gowers

norms in bounded exponent groups. The next definition is fdh

Definition 1.1 A phase polynomiab : A — {z|x € C, |x| = 1} of degreek on an abelian group
A is a function which trivializes aftek + 1 consecutive application of operators; defined by

Ayf(z) = f(x)f(x +t) andt € A.

Theorem 1 (Inverse theorem for bounded exponent groups).etq be a fixed natural number. For
everye > 0 there isd > 0 such that iff : A — C with |f| < 1 is a function on the abelian group
A of exponent with || f||y,,, > € then there is an extensiaBl of A with the same rank ad and

phase polynomial functiop : B — C of degreek such that(f, ¢) > 4.

Note that in the above theorefris interpreted also as a function éhby composing the projec-
tion B — A with f. This makes it possible to take the scalar prodiict). We can also formulate
this inverse theorem in a trivially equivalent but slighttypre conventional form if we introduce the

notion of a projected phase polynomial.

Definition 1.2 A functionf is called aprojected phase polynomialof degreet) on a finite abelian
group A if there is an extension

0=C—=B3 A0



with rk(A) = rk(B) and a phase polynomial : B — C (of degreek) such that
flay=1c7t > o).
beB,T(b)=a

Using this definition, theorefd 1 says the following.
If [| f||v,... > ethenf correlates with a projected phase polynomial of degree

Itis clear that projected phase polynomials are "purelycttired” functions. This means that
correlation with them implies non negligibié, ; norm. To see this, assume thiatorrelates with
a projected phase polynomial. Then on the extended ghotiye functiong’ = 7o g correlates with
a phase polynomial of degréeand so||¢'||v,.., is non negligible. On the other hatig’||v, ., =

||gHUk+1'

It will be important that theorefl 1 can be strengthened inwags.
Theorem 2 (Extended inverse theorem)in theoreni ]l we can also assume that

1. ¢™ = 1 for somem = ¢* wherei is bounded in terms af

2. ¢ = ¢p1¢2 Whereg, is a degred: — 1 phase polynomial and, takes only;-th roots of unities.
We will show that theoreinl 2 implies the next theorem by TaoZiedler [10].

Theorem 3 (Tao-Ziegler) Letp be a fixed prime anél < p—1. For everye > 0 thereisé > 0 such
thatif f : A — Cwith |f| < 1is afunction on the abelian group of exponenp with || |, , > ¢

then there is a phase polynomial function A — C of degreek and with¢? = 1 such(f, ¢) > 9.

Note that in [10] the authors also prove an inverse theorank fo p — 1 in which the function

correlates with a phase polynomial of degree bounded insteifri.

2 Structure of finite nilspaces

Roughly speaking, a nilspace is a structure in which cubevefy dimension are defined and they
behave very similarly as cubes in abelian groups. An alistrdee of dimensiom is the sef0, 1}™.

A cube of dimensiom in an abelian group! is a functionf : {0,1}" — A which extends to an
affine homomorphism (a homomorphism plus a translatjon)Z™ — A. Similarly, a morphism

¥ :{0,1}™ — {0, 1}™ between abstract cubes is a map which extends to an affinehisorfrom

e —7m.

Definition 2.1 (Nilspace axioms)A nilspace is a sefV and a collectionC”(N) € N101}" of

functions (or cubes) of the forgh: {0, 1} — N such that the following axioms hold.

1. (Composition) If ¢ : {0,1}™ — {0,1}™ is a cube morphism and : {0,1}"" — N isin
C™(N) then the compositioth o f isin C™(N).
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2. (Ergodictiry) C*'(N) = N{0:1},

3. (Gluing) Ifamapyf : {0,1}"\{1"} — NisinC"~!(N) restricted to eact— 1 dimensional

face containind™ then f extends to the full cube as a mapaft (V).

If N is anilspace and in the third axiom the extension is unique fe k+ 1 then we say thav
is ak-step nilspace. If a spacg satisfies the first axiom (but the last two are not requireel) the
say thatV is acubespaceA functionf : Ny — N, between two cubespaces is callesi@rphism
if ¢ o fisinC"™(N2) for everyn and functionp € C™(N;7). The set of morphisms betweévy
and N is denoted by HonmiVy, N3). With this notationC™(N) = Hom({0,1}",N). If Nis a
nilspace then every morphisih: {0,1}" — {0,1}™ induces a mag : C™(N) — C™(N) by
simply composing’ with maps inC"™ (N).

Every abelian groupl has a natural nilspace structure in which cubes are fiage, 1} — A
which extend to affine homomorphisnfs: Z" — A. We refer to this as the linear structure on
A. For every natural numbér we can define a nilspace structuPg(A) on A that we call the
k-degree structure. A functiofi : {0,1}" — Ais in C"(Dy(A)) if for every cube morphism
¢ :{0,1}*+1 — {0,1}" we have that

> fe) (=) =0

ve{0,1}k+1

whereh(v) = Zf;l v;. We will use the next elementary lemma in this paper.

Lemma 2.1 Let¢ : D;(A) — D;(B) be amorphism. Thenif> j theng is constant. Ifl <i < j
theng is also a morphism fror®; (A) to D;_; 11 (B).

This follows directly by applying the operatofs (defined in[[1]) to the cub structures @ (A)
andD;(B).

It was shown in[[1] that higher degree abelian groups aredimgl blocks of everyk-step
nilspace. To state the precise statement we will need th@nfivlg formalism. LetA be an abelian
group andX be an arbitrary set. AA bundle overX is a setB together with a free action of such
that the orbits ofd are parametrized by the elementsof This means that there is a projection map
m: B — X such that every fibre is af-orbit. The action ofi € A onz € B is denoted byt + a.
Note that ifz,y € B are in the samel orbit then it make sense to talk about the differemce y
which is the unique elemente A with y + a = x. In other words thed orbits can be regarded as
affine copies ofd.

A k-fold abelian bundleX}, is a structure which is obtained from a one elementXgin k-
steps in a way that in thieth step we producé&’; as anA; bundle overX; ;. The groups4; are the
structure groups of the-fold bundle. We call the spacé$; thei-th factors.



Definition 2.2 Let X}, be ak-fold abelian bundle with factorsX; }¥_, and structure group$4;}~_;.
Let; denote the projection ok, to X;. Assume thak;, admits a cubespace structure with cube

sets{C"(Xj)}>2 ;. We say thafX;, is a k-degree bundleif it satisfies the following conditions
1. X)_q1isak — 1 degree bundle.
2. Every functionf € C™(X}_1) can be lifted tof’ € C™(X}) with f' o 7,1 = f.

3. If f € C™(X}) then the fibre ofr;,_; : C" (X)) — C™(X\—1) containingf is
{f +glg € C"(Dr(Ax))}
The next theorem formi [1] says thatdegree bundles are the samekastep nilspaces.

Theorem 4 Every k-degree bundle is &-step nilspace and everystep nilspace arises as fa

degree bundle.
We say that &-step nilspace is of exponeqtf all the structure groupsl; are of exponeny.

Definition 2.3 Let 2,y be two elements in the nilspadé. We say thatr ~; y if the mapc :
{0,131 — N with ¢(0"1) = z andc(v) = y if v # 0T is an element iIC*TL(N). It was
proved in [1] that~; is an equivalence relation and the classes form a factoNoflenoted by

Fi(N). The factorF; coincides with the factok;; in definition 2.2.

We introduce special morphisms betwédestep nilspaces which have very strong surjectivity

properties and behave consistently with respect to thevelguice classes;.

Definition 2.4 Let N and M be k-step nilspaces. A morphisth: N — M is called a factor map

if for everyl < i < k the image of every,; class inN is a~; class inM.

Notice that every morphism maps-g class into av; class. In the above definition we require
the surjectivity of these local maps. These type of maps ak@®investigated iri [1]. IfV and M
are compact nilspaces then factor maps are measure praserich is useful. In this paper we

will use this notion to obtain finite nilspaces from free pases as factors.

2.1 Extensions

Definition 2.5 Let NV be an arbitrary nilspace. A degrdeextension ofV is an abelian bundlé/
over N which is a cube space with the following properties.

1. Foreveryn € Nandc € C™(N) there isc¢’ € C™(N) such thatr(¢') = ¢,

2. Ife; € C™"(M) andesy : {0,1}" — M with 7w(c1) = 7(c2) theney € C™(M) if and only if
c1 — C € Cn(Dk(A))



The mapr is the projection from\/ to N. The extensio/ is called a split extension if there is a

cube preserving morphism : N — M such thatn o 7 is the identity map oiN.

Lemma 2.2 Let N be ak-step nilspace. I/ is a degreei extension ofV by an abelian group
A thenF;(M) is a degree extension ofF;(N) by A. Furthermore the projection : F;(M) —
F:(N) is the composition of the projection: M — N by the projectionr; : N — F;(N).

Proof. First of all observe thaF; (M) is somei-degree extension of; (N ). All we need to show
is that the structure group of this extensiomlisin other wordsA does not collapse when we look
at the situation module-;. To see this we show that if, y are in the same fibre of andx # y
thenz is different fromy mod~;. Let F' be the fibre containing andy. Since the structure ot/

restricted toF is D;(A) and~; separates every elementlin(A) the proof is complete.

Lemma 2.3 Let N be ak-step nilspace. I\ is a degree extension ofV by an abelian groupA
(with projectionr) thenM is a sub direct product oV with a degree extensionk of 7;(V) by A.
The sub direct product is the set of pairs b) such thatr;(a) = 7(b) such thatr; : N — F;(N)

andr : K — F;(N) are the projection maps.

Proof. Let K = F;(M) and7 : M — F;(M) be the projection. Lep = = x 7 be the morphism
from M to N x K. According to the previous lemma the imagesafives an isomorphism between

M and the subdirect product 6f and K defined in the lemma.

2.2 Translation groups

For an arbitrary subsdt in {0,1}" and mapx : N — N we define the map!” from C"(N) to
N1 such that ™' (c)(v) = a(c(v)) if v € F andaX (¢)(v) = c(v) if v ¢ F.

Definition 2.6 Let N be a nilspace. Amap : N — N is called a translation of hightif for every
natural numbem > i, n — i dimensional facé” C {0,1}" andc € C"(N) the mapa’ (c) is in
C™(N). We denote the set of hightranslations byIrans; (V). We will use the short hand notation
Trans(NV) for Trans; (V).

It is not hard to see that iV is a k-step nilspace thefirans(/N) is a k-nilpotent group and
{Trans;(N)}%_, is a central series ifirans(V). In this chapter we are interested in the following

question.

Let N be ank-degree extension ofla— 1 step nilspaceV/ and leta € Trans;(M). Under what
circumstances can we lifi to an elemend’ € Trans;(N) such thatr(a/(n)) = «(w(n)) for every

n € N (m: N — M is the projection.)?

We will need the definition of the arrow spaces. lfetf, : {0,1}" — N be two maps. We

denote by(f1, f2); the mapy : {0,1}"** — N such thay(v,w) = f1(v) if w € {0,1}%\ {1} and
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g(v,w) = fo(v) if w=1°1f f:{0,1}" — N x N is a single map with componenfs, f- then
we denote by f); the map(fi, f2);. Amapf : {0,1}" — N x N is a cube in the-th arrow space
if (f);isacubeinN.

Let7 = T (a, N, i) be the set of pairér, y) € N? wherea(my—1(z)) = mr—1(y). We interpret
T as a subset of thieth arrow space ovel. Itis easy to see thatif > i 4+ 1 then7 is an ergodic
nilspace with the inherited cubic structure. We defifieas F,_1(7). We havel[[l] that7 * is a
degree: — i extension ofF;,_1(N) by A,. The next theorem was proved f [1]

Proposition 2.1 Let N be ak-step nilspace and € Trans;(Fx_1(N)). If T* = T*(a, N,i) is a

split extension then lifts to an elemeng € Trans; (V).

2.3 Free nilspaces and their extensions

Definition 2.7 Letas, as, ..., ar be asequence of natural numbers. We denof€(ay, as, . . . , ax)

the nilspace
k

[IDiz).

i=1

We say that' (a1, aq, . .., ay) is the free nilspace of ranluy , as, . . . , ag).

Lemma 2.4 Let N be a nilspace. It € C"(D;(Z)), f € C"(N) anda € Trans;(N). Thenf¢
defined by — o) (f(v)) (wherev € {0,1}")is in C™(N).

Proof. If ¢ has the special structure that it takes a value Z on a face of co-dimensiohand
takes0 on the rest off 0, 1}" then the statement follows directly from the definitionTatns, (V).
Every other cube i€ (D;(Z)) can be generated by such simple cubes, so we get the gengzal ca
by iterating the special case.

The main result of this chapter is the following.

Theorem 5 Let M be a degred extension of the free nilspaée= F'(aq, as, . .., a;) by an abelian

group A. ThenM is a split extension.

Proof. We prove the statement by induction énlf d = 1 then using lemmBa_2.3 we get that the
spacel! is the direct product of'(0, as, as, . . ., a;) with an abelian group extension @f* by A.
Since such an extension splits the cdse 1 is done.

Assume that the statement holds fbr 1 andd > 2. Using lemma2]3 we get thatl is the
direct product off[f:dJrl D;(Z*) with a degreel extensionM, of Fy = F(ay,az,...,aq) by A.
We also have that thé-th structure grouB of M, is ad-degree extension &“¢ by A. It follows
that B is thed-degree structure on an abelian group extensidirofby A. Such an extension splits

so it remains to show that the degréextensionM,; of F;_; = F(ay,as,...,aq—1) by B splits.



In other words we reduced the problem to the case whend — 1. By abusing the notation let us
assumethat =d—1,B=AandF = Fy_;.

We use that;(Z) is embedded intd” by setting all the other coordinates@o Let S; be a
free generating system ¥« embedded intd" this way (for everyl < i < d — 1). Every element
ing € 5; acts onl’ by x — x + g using the abelian group addition ]ﬂf;ll 7% . Let us denote
this action bya(g). It is clear thain(g) € Trans;(F'). We claim thaix(g) can be lifted to)/. Let
T =T(a(g), M,i). We have by propositidn 2.1 thdtis and — i degree extension df,_; by A.
Using our induction this extension splits and so there it alig) of a(g) to Trans; (M).

The last step of the proof is to create a complemem @i M using the group elementg(g)
whereg € S;. Assume thaiS; = {g;1,9i2,---, i }- We represent every elementn F' in a

unique way as
d—1 a;

Tr = ZZ)\ljglj

i=1 j=1
Letm € M be afixed element in the fibre 6fc F'in M. We define the map : F — M such that
h(z) is the image ofn under the transformation

d—1 a;

[T (i) (1)

i=1 j=1

Note that the order in the above product is important sincenuétiply non commuting trans-
formations. It remains to show thatis cube preserving ankl(F') is a diagonal embedding df

into M. LemmdZ.} shows that if a product of the folnh (1) gets extdrmeone more term then it

remains cube preserving. By induction on the lengtiibf (1gegthath is a morphism. It is clear

from its definition that creates a diagonal embedding.

2.4 Finite nilspaces as factors of free nilspaces

In this chapter we establish finite nilspaces as factorse# fiilspaces. Note that in this paper free

nilspaces are defined to have finite rank.

Theorem 6 For every finitek-step nilspaceV there is a factor map : F© — N from ak-step free
nilspaceF' with the following property. It : Z" — N is a morphism then there is a morphism

¢' : Z™ — F such thatp’ o h = ¢.

Proof. We proceed by induction oh. If £ = 1 the N is an (affine) abelian group and then the
result is classical. Assume thlat> 2 and assume that the statement holdsifer 1. Let N be a
fixed k-step nilspace. We can regaid as ak-degree extension of a— 1 step nilspacé/ by an
abelian groupA. Letw : N — M be the projection. We use the induction hypothesisiifband
construct a free nilspacg,_, = F(a1,as,...,a,—1) and factor mapg’ : F,_; — M satisfying

the requirement of the lemma. Létbe the subdirect product &, _; and N in the following way.
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The setQ consists of the pairgs, b) such thate € Fj,_1,b € N andh/(a) = = (b). Itis clear that
@ as a subset of the nilspaég_; x N is a nilspace which is & degree extension df,_; by A.
It follows form theorenfib thaf) is a split extension and 99 ~ Fj,_; x Dy(A). Let3:Z" — A
be a surjective homomorphism between abelian groups foe s@tural number. Theng is also a
morphism fromDy(Z") to D (A). Let F = F,_1 X Di(Z") and~ : F — @ be the identity map
on Fy_, timesg. Leth : F — N be the composition of with the projection fron( to the second
coordinate. Itis clear thdt is a factor map. We claim thathas the desired lifting property.

Leto : Z™ — N be a morphism. First we lifb to Q. According to induction we can lif o 7
to a morphismp, : Z™ — Fy_1. Letops = ¢ X ¢. Itis clear thatps mapsZ™ to @ and it lifts ¢.
Now we have to further lift)s from Q to F'. Since@ = Fj,_1 x Dy (A) we can writeps asds X ¢s
whereg, : Z" — Fj,—1 andg¢s : Z" — Dy (A). It remains to show that; can be lifted taDy, (A).
The mapgs is a degreé: polynomial map fronfZ™ to A. An easy lemma in [9] show exactly that

such a map can be lifted.

2.5 Periodicity of morphisms

Lemma 2.5 Let A be a finite abelian group of ordet. Then for every: € N there is a natural

numbera depending om andk such that any morphisi : D;(Z) — Dy (A) isn® periodic.

Proof. We use lemmBg2l1. if > k theng is constant. If < & then¢ is a morphism fronD, (Z) to
Dr—i+1(A). It was proved in[[B] (but it is also very easy to see) that saiélinction is of the form

k—i+1 m . ; k—i+1 indi
m= i :z:j(j) wherez; € A for everyi. Such functions are”~*** periodic.

Lemma 2.6 Let N be a finitek-step nilspace of sizéV| = n. then there is a natural numbere N

such that any morphism: D;(Z) — N isn® periodic.

Proof. We prove the statement by induction bnlf k¥ = 1 then the statement (by lemmal.5) is
trivial since in this case is an affine morphism db;(Z) into an abelian group. Assume that> 2
and the statement if true far— 1. Assume that the structure groupsiéfare A;, A,, ..., Ai. Let

ny = |Fr—1(N)| = Hf;ll |A;|. We have thah, dividesn. We also have by induction that any
morphism¢ : Z — N composed with the projection map: N — Fj,_1(N) is ny? periodic for
some natural number,. This means that for any natural numbethe sequence — ¢(m+n52j)

is a morphism oD;(Z) into a single fibre of the projection.

The cube structure of a fibre afis Dy, (A). LemmdZ.5 finishes the proof.

Theorem 7 Let¢ : F — N be a morphism from a free grouf = F(aq,as, ..., ax) to a finite
nilspaceF with |F| = n. Then there is a natural number such thaty factors through the map
Y F— F/n®whereF/n® is the space}_[f:1 D;((Z/(n%))*) andy is the map which takes every

coordinate mocd:®.



Proof. It follows from lemmdZ2.b that iff is an element id” which has only one nonzero coordinate
thenthe mag — ¢(z+g(jn*)) onZis constant for every € F' using addition in the abelian group

Hle 7. This periodicity using all the generators of each compb@énimplies the statement.

2.6 Lifting morphisms

Definition 2.8 A hight: extension of an abelian group of rank» and exponent is an abelian

group B which is an extension of with rankr and exponent dividing'.

Definition 2.9 We denote by, (a1, as,...,ax) = Hle D;(Z2+) and we call it the modula free

nilspace.

Lemma 2.7 Let N be a finite nilspace of exponeat A be an abelian group of exponeatand
¢ : A — N be amorphism. Then there is a morphism B — F' from some hight extensionB of
A'to amodula:® free nilspaceF’ = F.a (a1, as,...,a;) such thatthere is a factormap: F — N
with ) o 8 = 7o ¢ whererr : B — A is the projection map. The valueand the numbei depends

only on the structure ai.

Proof. Assume thatd is of rankr. This means that we can writé as a factor group of.".
Theoreni b and theordmh 7 imply that the statement is trisisfreplaced byZ?. It remains to show
that a morphisms’ : Z¢ — F.« (a1, as,...,a;) factors through a bounded hight extensiondof
This follows form lemm& 216 since’ has to be periodic in each coordinate with a bounded power
of e.

We get a further strengthening of the previous lemma fromgigie fact thap is a factor map.
Since the~;,_; classes off’ are mapped surejectively to the, | classes inV (and the~;

classes are copies o, (A )) the map3 factors through the map
F.o(ay,as,...,ar) — Fea(ay,az,...,ax_1) X Dp(Ag) = F’ (2)
whereAy is thek-th structure group olV. We formulate it as a separate lemma.

Lemma 2.8 In Lemmad Z.]7 the nilspacE can be replaced by” in [@).

3 Applications to the Gowers norms

Let 2, denote the family of finite abelian groups of exponenA L. nilspace is a nilspace whose
structure groups are all #.. In particular such nilspaces are all finite.28 nilspace polynomial
on A € 2, is a composition of a morphisg: A — N with g : N — C whereN is a®l. nilspace
and|g| < 1.

The next regularity lemma was proved|in [9].
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Theorem 8 (Regularization in®(..) Letk be a fixed number anfl : Rt x N — R be an arbi-
trary function. Then for every > 0 there is a numben = n(e, F') such that for every measurable
functionf : A — Con A € 2, with|f| < 1 there is a decompositioh= f, + f. + f and number

m < n such that the following conditions hold.
1. fsis a degreé:, complexityn and F'(e, m)-balanced(.-nilspace-polynomial,
2. |[felh <
3. fellnsy < Fle,m), [fe| < Tand|(fy, fs + fe)| < F(e,m).

The notion ofb-balanced is not crucial in this paper but it expresses agtroeasure preserving
property. According to this theorem, if we want to get an inisegheorem i, all we need to do is
to write 2l nilspace polynomials as linear combinations in a suitab&d8. If we can have such a
linear combination with boundedly many elements then wesgeelation with a function frons.

Leto : A — N be a morphism from € 2. to a2.-nilspaceN. Assume thatV is ak-step
nilspace and has size at mest We use lemmBa2.8 fap. We obtain a morphisnp : B — F’
whereF’ has the form[(2). The group € 2.: is a bounded hight extension df Let ¢’ denote
the composition of the projectioB — A with ¢. We have thaty’ factors through). This means
that nilspace polynomials using can be also obtained as nilspace polynomials uginget 3 be
the set of functions o which are obtained by composing a linear charagtef Hf;ll 73 x A
with . Lety = Hle xi Wherey; is a character oZ%: is1 < i < k — 1 andy is a character
of A;. We have thaf (v (z)) = Hle xi(¥;i(x)) where; is a morphism fromB to D;(Z¢%). In
other wordsy; is a polynomial map of degréeandx — x;(v;(x)) is a phase polynomial of degree
i. Furthermore sincel;, has exponent we have thaj (1) takes onlye-th roots of unities.

This completes the proof of both theorEim 1 and thedrem 2

3.1 Onthe Tao-Ziegler theorem

Let p be a fixed prime number. We apply theorEm 2 inductivelykonAssume that the inverse
theorem is established for degree- 1 andk < p — 1. Let f be a function oM = Zj such that
|f| < 1and||f]lv,,, > e We have by theorefd 2 that there is a group extensien A (whereB
has rank:) and a phase polynomiglon B of degreek such that(r o f, ¢) > ¢. Furthermore we
have that) = ¢1¢> whereg, is of degreg: — 1 andg, takes onlyp-th roots of unities.

We claim that¢g, = 7 o ¢35 wheregs is a phase polynomial od. SinceB has rankn we
can write B as a factor group df™ with homomorphism’ : Z" — B. Let us lift ¢2 to a phase
polynomialg, onZ™ by composing it withr’. Since¢’ = 1 we can obtainp, from a polynomial
mapl : Z"" — Z, of degreé:. Such polynomial maps (s€€ [9]) are linear combinationsio€fions
(z1,22. .., @) = [y (f) where>" r; = k. This show that the value of any such map depends

only of the residue classes of modulop. The claim is proved.
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Let v be the projection of; ¢ to A. Sinceg, factors through- we have thaty = y2¢3 where
~2 is the projection ofp; . To finish the proof we need to show thatcan be well approximated by
a bounded linear combination of phase polynomialsioof degreek — 1. Intuitively this follows
from our induction hypothesis and the fact thats a "purely structured” degree— 1 function. In

the rest of the proof we show a lemma which makes this intujtiecise.

Lemma 3.1 Letk be a value such that theorérh 3 holds. Then for evgry > 0 there is a number

m such that if|| ||, > €1 holds for a projected phase polynomiabn A then

If - Z&ﬂillz <e

i=1

holds for some linear combination, \;3; of degreek phase polynomials; with |\;| < 1.

Proof. We proceed by contradiction. Let, 2 be such that there is a sequence of gradips- Z;
with extensiond3; and phase polynomials on B; such that the projectiofi of ¢; hasUy., norm
at least, but there is no required linear combination withlements.

Let A (resp. B) be the ultra product of the sequengcé, }°, (resp. {B;}2,). Let ¢ be the
ultra limit of the sequencég; } 2, and f be the ultra limit of{ f;}5°,. The theory developed if][6]
says that there is a maximalalgebraZ;,(B) on B such thatUy1; is a norm onL>(F(B)).

The next step is to show that the projectiongofo A (which is equal tof) is measurable in
Fir(A). We can think about the projection # as the projection to & algebra generated by the
factor mapB — A. Suchco-algebras are called cosetalgebras in[[5] since measurable sets are
unions of cosets of the kernel of the morphism frBmo A. It was proved iffg] that the projection
of a function measurable in a shift invariastalgebra to a coset algebra is measurable in the
original o algebra. We obtain that a function f, (B) projected toA is measurable itF(A). In
particularf is measurable itgF;, (A).

Next we observe that?(F,(A)) is generated by ultra limits of phase polynomials. Assume
that it is not true. Then there is a nonzero functiofwith |g| < 1) measurable iF;(A) which is
orthogonal to the space generated by the ultra limits of@pat/nomials. Sincé&/,; is a norm on
L>(F,(A)) we have thallg||u, = g > 0. Then we choose a sequence of functignsn a; whose
ultra limit is ¢g. This sequence would contradict the assumption that th&@rieolds fork.

We obtain thatf = Y 2, w;\; wherew; are ultra limits of phase polynomia{au-z?'}.;?O:1 of
degreek. By repeating termsy; many times we can assume the each lambda has absolute value
at mostl. Then there isn such that] f — Z;’;l Aw;|l2 < e2/2. This gives a contradiction since

| fi — 27, Awl|e < ez holds for infinitely many indices:
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