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0 REMARKS ON THE MINIMIZING

GEODESIC PROBLEM IN INVISCID

INCOMPRESSIBLE FLUID MECHANICS

Yann Brenier∗

1 Abstract

We consider L2 minimizing geodesics along the group of volume preserving
maps SDiff(D) of a given 3-dimensional domain D. The corresponding
curves describe the motion of an ideal incompressible fluid inside D and
are (formally) solutions of the Euler equations. It is known that there is a
unique possible pressure gradient for these curves whenever their end points
are fixed. In addition, this pressure field has a limited but unconditional
(internal) regularity. The present paper completes these results by show-
ing: 1) the uniqueness property can be viewed as an infinite dimensional
phenomenon (related to the possibility of relaxing the corresponding mini-
mization problem by convex optimization) , which is false for finite dimen-
sional configuration spaces such as O(3) for the motion of rigid bodies; 2)
the unconditional partial regularity is necessarily limited.

Key words: calculus of variations, geodesics, fluid mechanics, global analysis
MSC: 35Q35 (49J45, 49N60)

2 Introduction

There are very few problems in mathematical fluid mechanics for which global
existence and uniqueness results are known without any restriction on the
data. (For instance, the Leray global existence result for 3D Navier-Stokes
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The minimizing geodesic problem in fluid mechanics

equations lacks uniqueness, the Yudovich theorem for 2D Euler equations re-
quires bounded vorticity, the Glimm-Bressan theory for 1D gas dynamics is
only valid for small initial data, etc...). One of them is the problem of min-
imizing geodesics (’shortest paths’) on the group of 3D volume preserving
diffeomorphisms with L2 metric, which, following Arnold’s geometric inter-
pretation [AK] of the Euler equations, is a secondary way to find solutions
of these equations without solving an initial value problem. Let us be more
specific.
Given a smooth enough bounded domain D in R3, we denote by SDiff(D)
the group of all volume and orientation preserving diffeomorphisms of D.
This group is a natural configuration space for the motion of an incom-
pressible fluid moving inside D which is mathematically described by a time
dependent curve t → gt ∈ SDiff(D). The minimizing geodesic (or shortest
path) problem can be defined as follows: given two such diffeomorphisms
g0, g1, find a curve t ∈ [0, 1] → gt ∈ SDiff(D) that achieves the geodesic
distance between g0 and g1:

∆(g0, g1) = inf

√

∫ 1

0
||dgt
dt

||2L2dt (1)

where || · ||L2 denotes the norm in L2(D,R3). The formal optimality equation
reads

d2gt
dt2

◦ g−1
t +∇pt = 0, (2)

where pt is a time dependent scalar field defined on D (called the ’pressure
field’) which balances the incompressibility constraint as a Lagrange multi-
plier. Equation (2) is precisely the Euler equation introduced in 1755 [Eu]
to describe the motion of an inviscid incompressible fluid moving inside D
without any external force. Let us empasize that the minimizing geodesic
problem is different from the more conventional Cauchy problem, for which
the initial ’velocity’ dg0

dt
is prescribed together with g0 (which is traditionnaly

normalized to be the identity map) and, of course, there is no prescribed
endpoint g1 at time t = 1. The minimizing geodesic (or shortest path) prob-
lem has been solved at the local level (together with the Cauchy problem) by
Ebin and Marsden [EM]: if g1 ◦ g−1

0 − I is sufficiently small in Sobolev norm
Hs, s > 5/2, there is a unique minimizing geodesic. In sharp contrast, a
striking result of Shnirelman [Sh1] shows that the minimizing geodesic prob-
lem may have no solution at all in the large. In the same paper, it is proven
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that, as a metric space, the completion of SDiff(D) for the geodesic dis-
tance (1) is the semi-group V PM(D) of all volume-preserving maps g of D
in the measure theoretic sense: g is Borel and

∫

D
f(g(x))dx =

∫

D
f(x)dx,

holds true for all continuous functions f . Notice that, in particular, any
map g(x) = (h(x1), x2, x3) , for which h is a Lebesgue measure-preserving
map of the unit interval [0, 1], belongs to the completion of SDiff(D) when
D = [0, 1]3! However, even in the completed configuration space V PM(D),
the minimizing geodesic problem may have no solution, as shown by the
author in [Br1] with the example:

D = [0, 1]3, g0(x), g1(x) = (h(x1), x2, x3), h(x1) = 1− x1.

More positively, it was proven in [Br2, Br3] that there is a unique pressure
field attached to the minimizing geodesic problem. With the help of a crucial
density result obtained by Shnirelman [Sh2], this result can be stated in the
following way:

Theorem 2.1 Let g0 and g1 given in V PM(D) where D = [0, 1]3. We say
that gǫt ∈ SDiff(D) is an approximate minimizing geodesic between g0 and
g1 if

∫ 1

0
||dg

ǫ
t

dt
||2L2dt→ ∆(g0, g1)

2, ||gǫ0 − g0||2L2 → 0, ||gǫ1 − g1||2L2 → 0, (3)

as ǫ ↓ 0. Then, there is a unique pressure gradient field ∇pt such that, for
all approximate minimizing geodesic,

d2gǫt
dt2

◦ (gǫt)−1 +∇pt → 0

holds true in the sense of distributions in the interior of [0, 1]×D.

The main idea of the proof is that the minimizing geodesic problem, which
apparently is a minimization problem lacking both compactness and convex-
ity, can be relaxed as a CONVEX minimization problem, in an appropriate
generalized framework, without relaxation gap, thanks to Shnirelman’s den-
sity result. This is strongly related to the fact that the completed configura-
tion space V PM(D) is a dense subspace (as shown in [Ne, BG]) of a weakly
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compact convex set, namely DS(D), the set of all doubly stochastic mea-
sures on D×D (i.e. all nonnegative measures on D×D having the Lebesgue
measure as projection on both copies of D), with respect to the weak conver-
gence of measures, through the embedding g ∈ V PM(D) → µg ∈ DS(D),
where

∫

D2

f(x, y)dµg(x, y) =
∫

D
f(x, g(x))dx, ∀f ∈ C(D ×D).

The uniqueness of p follows, quite easily, from a duality argument due to
this ’hidden’ convex structure, as shown in [Br2]. Nevertheless, geometri-
cally speaking, the uniqueness of p is quite surprising, since, between two
given points, minimizing geodesics are not necessarily unique (as can be eas-
ily checked) whenever they exist and there are no a priori reasons that the
corresponding acceleration fields −∇p should be identical. It is unlikely that
such a property could be proven using classical differential geometric tools.
Theorem 2.1 can be completed in various manners, as in [Br3] (existence of
generalized minimizing geodesics solving a generalized version of the Euler
equations, partial regularity of p, etc.) or, recently, by Ambrosio and Figalli
in [AF1, AF2], Bernot, Figalli, Santambrogio [BFS]. In particular, ∇p is
shown to be a locally bounded measure in the interior of [0, 1]×D in [Br3].
The time integrability of p has been improved since by Ambrosio and Figalli
[AF2]: p belongs to the space L2

loc(]0, 1[, BVloc(D
◦)). At this point, two nat-

ural questions can be asked:
Q1: Is the uniqueness of the pressure a specific property of minimizing
geodesics on the infinite dimensional group of volume preserving diffeomor-
phisms, which is not true for similar finite dimensional configuration spaces,
such as the special orthogonal group SO(3) for the motion of a rigid body?
Q2: Is the regularity of the pressure field only partial?
In both cases, the present paper provides a positive answer.

3 About the uniqueness of the pressure field

In this section, we give some evidence that the uniqueness of the pressure
field for the minimizing geodesic problem on SDiff(D) (or its completion
V PM(D)) is a genuine infinite-dimensional phenomenon. For this purpose,
we consider the finite dimensional situation where the special orthogonal
group SO(3) substitutes for SDiff(D) and rigid motions of solid bodies
substitute for incompressible inviscid fluid motions. (See [Ar].) As a matter
of fact, as shown below, rigid motions can be interpreted as particular solu-
tions of the Euler equations, in the special case when the fluid domain D is
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an ellipsoid D = KB1, where B1 is the unit ball in R3 and K a symmetric
positive matrix. To see that, we first notice that a volume preserving map
g : D = KB1 → D is a linear map if and only if:

g(x) = KUK−1x, x ∈ D = KB1, (4)

for some matrix U in the orthogonal group O(3). Indeed, by definition of
D = KB1, x → K−1g(Kx) must be a linear map preserving the unit ball
B1, i.e. an element of O(3). The condition U ∈ O(3) can be expressed in a
variational way by requiring

Tr(U∗MU) = Tr(M) (5)

for all 3× 3 real symmetric matrices M , where Tr and ∗ respectively denote
the trace and the transposition operator on 3× 3 real matrices.
Let us now look at geodesics (gt) on SDiff(D) with the additional constraint
that gt must be linear at each time t (’rigid motions’), i.e. of form (4):
gt = KUtK

−1 for some curve Ut valued in O(3). We have

∫

D
|dgt(x)
dt

|2dx =
∫

D
|KdUt

dt
K−1x|2dx

= r0

∫

B1

|KdUt

dt
x|2dx = r1 Tr(

dU∗
t

dt
K2dUt

dt
)

where r0, r1 > 0 are normalization factors. Thus, encoding the condition
U ∈ O(3), the geodesics we are looking for correspond to saddle points
(Ut,Mt; t ∈ [0, 1]) of the Lagrangian

∫ 1

0
{Tr(dU

∗
t

dt
K2dUt

dt
)− Tr(U∗

tMtUt) + tr(Mt)}dt. (6)

Here Mt is constrained to be symmetric and there is no more constraint on
Ut. The optimality conditions are straightforward:

K2d
2Ut

dt2
+MtUt = 0, (7)

with Ut orthogonal and Mt symmetric. At this point, we have exactly recov-
ered the usual equations for motions of a rigid body in classical Mechanics
(see [Ar]). They describe geodesic curves on SO(3) for the metric generated
by the ’inertia’ matrix K2 of the body.
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The point of our discussion is that rigid motions not only can be embedded
in the framework of fluid Mechanics but, more strikingly, are just special
solutions of the Euler equations. Indeed, from (7), we recover a solution of
the Euler equations just by setting

gt(x) = KUtK
−1x, pt(x) =

1

2
K−1MtK

−1x · x, x ∈ D = KB1. (8)

We conclude that geodesics on SO(3) are just special geodesics on SDiff(D)
for a special choice of the domain D (namely the ellipsoid D = KB1 associ-
ated to the inertia matrix K2).
Now, we can discuss the issue of minimizing, not just plain, geodesics. The
key point is that, for a solution of the rigid body motion (7) and the associated
solution (8) of the Euler equations, which corresponds to a geodesic curve
on both SO(3) and SDiff(D), it is NOT equivalent to be a minimizing
geodesic on SO(3) and SDiff(D). This makes sense, since rigid motions are
more restrained than fluid motion. So it is conceivable that Ut is a minimizing
geodesic on SO(3), meanwhile the corresponding gt = KUtK

−1x is a plain,
non minimizing, geodesic on SDiff(D). This suggests that the uniqueness
of the pressure field for fluid motions has no equivalent property in the case of
rigid motions. As a matter of fact, this follows from the following (stronger)
result:

Theorem 3.1 Let (Ut,Mt), (Vt, Nt) two distinct solutions of the rigid mo-
tion equations for t ∈ [0, 1] such that U0 = V0 = I (where I is the identity
matrix) and U1 = V1. Assume that Mt = Nt for all t ∈ [0, 1]. Then Ut and
Vt are exceptional in the sense that they must be rigid rotations with constant
angular speed around one of the inertia axis of the body (i.e. an eigenvector
of the inertia matrix K2).

In other words, generically, two distinct geodesics meeting at two different
points must have different accelerations. This is, a fortiori, also true for
minimizing geodesics. The group SO(3) is a smooth closed bounded set in
the finite dimensional Hilbert space of real 3 × 3 matrices and has a finite
geodesic diameter. Thus, every geodesic curve can be minimizing only on
finite time intervals, and, therefore, they are plenty of distinct minimizing
geodesics connecting a same pair of points.
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Proof of theorem 3.1

Let us consider two distinct minimizing geodesics on SO(3), (Ut,Mt), (Vt, Nt),
with same endpoints U0 = I, U1 at t = 0 and t = 1. It is classical to introduce
two fields of skew symmetric real matrices, Bt and Ct, such that

dUt

dt
= BtUt,

dVt
dt

= CtUt

(this is like introducing Eulerian coordinates in fluid Mechanics). Then, the
motion equation (7) can be written

dBt

dt
+B2

t = −K−2Mt, (9)

and, similarly
dCt

dt
+ C2

t = −K−2Nt.

Let us assume that Mt and Nt coincide, while Bt and Ct are distinct. Since
B2

t and C
2
t are symmetric meanwhile Bt and Ct are skew symmetric, it follows

that Ct = Bt +L for some constant skew symmetric matrix L different from
zero, meanwhile C2

t = B2
t . This implies BtL+LBt +L2 = 0. and, therefore,

dBt

dt
L+ L

dBt

dt
= 0.

Up to a change of orthonormal frame, we may assume, without loss of gen-
erality, Lx = (x2,−x1, 0)β for some constant β 6= 0. We deduce, by di-
rect calculation, that dBt

dt
= 0. So Bt = B0, Ct = B0 + L. Using again

BtL + LBt + L2 = 0. we get no other solution than B0x = (−x2, x1, 0)β/2
and C0 = −B0. This means that Ut = exp(B0t) and Vt = exp(−B0t) are just
rotations at constant angular speed +β/2 and −β/2, along the axis (0, 0, 1).
Notice that, since the time interval for which the geodesics are minimizing
has been fixed to be [0, 1], the only possibility is β2 = 4π2. Going back to
(9), we further deduce Mtx = M0x = −K2B2

0x = K(x1, x2, 0)π
2 where Mt

is supposed to be symmetric. This implies that the axis of rotation (0, 0, 1)
must be an eigenvector for the inertia matrix K2 (i.e. an inertia axis for
the rigid body), which is clearly an exceptional situation, as soon as K is
a generic symmetric positive matrix (which corresponds to a generic rigid
ellipsoid).
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4 Limited regularity of the pressure field

In this section, we provide an explicit, self-similar, solution of the minimizing
geodesics with limited regularity.

Theorem 4.1 Let L > 0, D = [−L, L]× [0, 1]2, L ≥ 1.
Then, for 0 ≤ t ≤ 1, x ∈ D,

gt(x) = t2/3(2
√

x1t−2/3 − 1, x2, x3), 0 < x1 < t2/3, (10)

gt(x) = t2/3(1− 2
√

−x1t−2/3, x2, x3), −t2/3 < x1 < 0, (11)

gt(x) = x, |x1| > t2/3, (12)

define a (generalized) minimizing geodesic, with a pressure field of limited
regularity

pt(x) = pt(x1) = − 1

9t2
(t4/3 − x21)+. (13)

Remarks

i) The family (gt, 0 ≤ t ≤ 1) is not valued in SDiff(D) but in its completion
V PM(D). So, our example does not prevent a better regularity of the pres-
sure field in the case of smooth data g0, g1, valued in SDiff(D). However,
it does rule out unlimited internal regularity, in the style of classical elliptic
PDE theory, independently on the boundary data. This example also shows,
in our opinion, that the regularity to be expected for the pressure field is
semi-concavity, or, at least, measure-valued second order space derivatives.
Let us recall that, so far, we only know that ∇p is a locally bounded measure
[Br5] (or more precisely p belongs to L2

loc(]0, 1[, BVloc(D
◦)) [AF2]). So there

should be one order of differentiability in space to be gained in the future.
ii) This solution can be interpreted as a ’hydrostatic vortex sheet’ as ex-
plained in section 5 and, under that form, coincides with a self-similar ’re-
laxed solution’ of the Euler equations already introduced by Duchon and
Robert in [DR].

Proof

The proof is based on two statements:
i) For each t, gt is a volume preserving map (which is not obvious at first
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glance).
ii) For almost every fixed x ∈ D, ξt = gt(x) minimizes

∫ 1

0
{1
2
|dξt
dt

|2 − (pt)(ξt)}dt, (14)

among all curve ξt valued in D such that ξ0 = g0(x), ξ1 = g1(x). These two
conditions guarantee that, indeed, gt is a minimizing geodesic, following a
standard argument (see [Br3, AF1], for instance).
Let us first check the second statement. If |x1| > 1, gt(x) = x and the
statement is trivial. If |x1| ≤ 1, and x1 6= 0, we see that ξt = gt(x) is
continuously differentiable in t ∈ [0, 1], with piecewise continuous second
order derivative (with a jump at t = |x1|3/2), and satisfies

d2ξt
dt2

= −(∇pt)(ξt) (15)

for almost every t, which guarantees that ξ is already a critical point of the
action defined by (14). Let us now prove that ξ is also a global minimizer
of the action (14). For this purpose, we compute the second variation SV
of action (14) for a perturbation ξt + ζt with ζ0 = ζ1 = 0, and want to show
that SV ≥ 0. We find

SV =
1

2
{
∫ 1

0
|dζt
dt

|2 − (∂2pt)((ξt)1)(ζt)
2
1}dt.

By definition (13) of pt,

∂2pt(s) =
2

9t2
[1{|s| < t2/3} − t2/3δ(s− t2/3)− t2/3δ(s+ t2/3)]

Thus

SV ≥ 1

2

∫ 1

0
|dζt
dt

|2dt− 1

9t2

∫

|(ξt)1|<t2/3
(ζt)

2
1dt,

Let us recall the classical Hardy inequality (in one space dimension):

∫ +∞

0
{(dηt
dt

)2 − η2t
4t2

dt} ≥ 0, (16)

for all smooth real function ηt such that η0 = 0. We deduce that SV ≥ 0
and conclude that ξ, indeed, is a minimizer of (14) as its end points are fixed
at t = 0 and t = 1.

9
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Finally, let us prove that gt is volume preserving. Due to the self-similarity
of gt, it is enough to check, in the case t = 1, that, for every real continuous
function f ,

∫ 0

−1
f(1− 2

√
−x)dx+

∫ 1

0
f(2

√
x− 1)dx =

∫ 1

−1
f(x)dx

which also follows from elementary calculations.
Finally, let us mention that the solution discussed in this section has a fluid
mechanic interpretation and can be derived from the hydrostatic limit of the
Euler equations. See all details in section 5.

5 Appendix on the hydrostatic limit of the Euler equa-

tions

As explained in [Br6], the minimizing geodesic problem is strongly linked
to the hydrostatic limit of the Euler equations, which reads, on the domain
D = [−L, L]× [0, 1]2,

Dtv1 + ∂1p = 0, Dtv2 + ∂2p = 0, Dt = ∂t + v · ∇, (17)

∂3p = 0, ∇ · v = 0, v//∂D. (18)

These equations are formally obtained by ignoring the vertical acceleration
term Dtv3 in the classical Euler equations (see [Li, Br4, Gr, Br5] for some
rigorous results). Notice that, given a sufficiently smooth solution (v, p)
of these hydrostatic equations, we may introduce the corresponding flow
X(t, x), defined by

∂tX(t, x) = v(t, X(t, x)), X(t = 0, x) = x, (19)

which provides a time dependent family of volume-preserving maps X(t, ·)
of D, since v is divergence-free and parallel to the boundary. We are going
to construct an explicit solution to these equations and, as an output, the
solution (10,11,12,13) used in Theorem 4.1.

Construction of an explicit solution

We first define a divergence-free velocity field (with trivial second component)
by setting: v2 = 0, v1 = ∂3ψ, v3 = −∂1ψ, where ψ is the ’stream-function’ de-
fined by three different formulae in the domain D, depending on the location.

10
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We first set:

ψ(t, x1, x3) =
t−1/3x3(ξ − 1)

3
, 0 < x3 <

1 + ξ

2
, |ξ| < 1, (20)

where we use the rescaled coordinate ξ = x1t
−2/3. Next:

ψ(t, x1, x3) =
t−1/3(x3 − 1)(ξ + 1)

3
,

1 + ξ

2
< x3 < 1, |ξ| < 1, (21)

and, finally:
ψ(t, x1, x3) = 0, |ξ| > 1. (22)

Notice that the stream-function is continuous at the interfaces ξ = 1, ξ =
−1 and x3 = (1 + ξ)/2 and we can easily recover the velocity field v by
differentiating ψ:

v1 = ∂3ψ =
t−1/3(ξ − 1)

3
, v2 = 0, v3 = −∂1ψ = −t

−1x3
3

(23)

whenever 0 < x3 <
1+ξ
2
, |ξ| < 1,

v1 =
t−1/3(ξ + 1)

3
, v2 = 0, v3 = −t

−1(x3 − 1)

3
(24)

whenever 1+ξ
2
< x3 < 1, |ξ| < 1 , and v = 0 whenever |ξ| > 1.

This velocity field is piecewise smooth, with a strong singularity at t = 0 and
also at the interfaces ξ = 1, ξ = −1, x3 = (1 + ξ)/2 for each t > 0. The
interface x3 = (1+ ξ)/2 can be interpreted as a vortex sheet initially located
verically above x1 = 0. This velocity field was advocated by Duchon and
Robert [DR] as an example of ’relaxed solution’ of the Euler equations.
Notice the apparent separation of space variables: v1 depends only on x1
(through ξ = x1t

−2/3), v3 depends only on x3 while v2 = 0. Strictly speaking,
this is not true, since formulae (23,24) depend on the sign of x3−1+ξ

2
. However

this is good enough to provide a very simple structure to the corresponding
flow X(t, x) (defined by (19):

X(t, x) = (X1(t, x1), x2, X3(t, x1, x3)),

where the first component depends only on the first space variable (which is
not the case of the last component). More precisely, by integration of (23),
we get the following explicit formula:

X1(t, x1) = t2/3(2
√

x1t−2/3 − 1), 0 < x1 < t2/3, (25)

11
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X1(t, x1) = t2/3(1− 2
√

−x1t−2/3), −t2/3 < x1 < 0, (26)

X1(t, x1) = x1, |x1| > t2/3. (27)

Since v is divergence free and parallel to ∂D, X(t, ·) is a volume preserving
map of D. As a consequence; x1 → X1(t, x1) must be a Lebesgue measure
map of the interval [−L, L]. Indeed, for each continuous function f(x),
∫

D
f(x)dx =

∫

D
f(X(t, x))dx =

∫

D
f(X1(t, x1), x2, X3(t, x1, x3))dx1dx2dx3

and, in particular, when f = f(x1):

∫ L

−L
f(x1)dx1 =

∫ L

−L
f(X1(t, x1))dx1.

From the definition of v1, we also deduce

∂t + ∂(
v21
2
) + ∂1p = 0, (28)

(in the sense of distribution, with no spurious singular measure), where

p(t, x1) = − 1

9t2
(t4/3 − x21)+. (29)

Thus (v1, v2, v3, p) solves the hydrostatic equations (in distribution form).
Also notice that (28) just means:

∂2ttX1(t, x1)) = −(∂1p)(t, X1(t, x1)).

Finally, by setting

gt(x) = (X1(t, x1), x2, x3), pt(x) = p(t, x1),

we recover the solution discussed in Theorem 4.1.
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