The strong no loop conjecture is true for mild algebras

Denis Skorodumov
Bergische Universität Wuppertal
Germany*

November 04, 2010

Для моих родителей Регины и Виталия

Abstract

Let Λ be a finite dimensional associative algebra over an algebraically closed field with a simple module S of finite projective dimension. The strong no loop conjecture says that this implies $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$, i.e. that the quiver of Λ has no loops in the point corresponding to S. In this paper we prove the conjecture in case Λ is mild, which means that Λ has only finitely many two-sided ideals and each proper factor algebra Λ / J is representation finite. In fact, it is sufficient that a "small neighborhood" of the support of the projective cover of S is mild.

1 Introduction

Let Λ be a finite dimensional associative algebra over a fixed algebraically closed field \mathbf{k} of arbitrary characteristic. We consider only Λ-right modules of finite dimension.

The strong no loop conjecture says that a simple Λ-module S of finite projective dimension satisfies $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$. To prove this conjecture for a given algebra we can switch to the Morita-equivalent basic algebra and therefore assume that $\Lambda=\mathbf{k} \mathcal{Q} / I$ for some quiver \mathcal{Q} and some ideal I generated by linear combinations of paths of length at least two. Then $S=S_{x}$ is the simple corresponding to a point x in \mathcal{Q} and the conjecture means that there is no loop at x provided the projective dimension $\operatorname{pdim}_{\Lambda} S_{x}$ is finite.

The conjecture is known for

- monomial algebras by Igusa Igu90,
- truncated extensions of semi-simple rings by Marmaridis, Papistas MP95,
- bound quiver algebras $k \mathcal{Q} / I$ such that for each loop $\alpha \in \mathcal{Q}$ there exists an $n \in \mathbb{N}$ with $\alpha^{n} \in$ $I \backslash(I J+J I)$, where J denotes the ideal generated by the arrows GSZ01,
- special biserial algebras by Liu, Morin [LM04,
- two point algebras with radical cube zero by Jensen Jen05.

[^0]In this paper, we prove the conjecture for another class of algebras including all representationfinite algebras. To state our result precisely we introduce for any point x in \mathcal{Q} its neighborhood $\Lambda(x)=e \Lambda e$. Here e is the sum of all primitive idempotents $e_{z} \in \Lambda$ such that z belongs to the support of the projective $P_{x}:=e_{x} \Lambda$ or such that there is an arrow $z \rightarrow x$ in \mathcal{Q} or a configuration $y^{\prime} \leftarrow x \rightleftarrows y \leftarrow z$ with 4 different points x, y, y^{\prime} and z.
Recall that an algebra Λ is called distributive if it has a distributive lattice of two-sided ideals and mild if it is distributive and any proper quotient Λ / J is representation-finite.

Our main result reads as follows:

Theorem 1.1

Let $\Lambda=\mathbf{k} \mathcal{Q} / I$ be a finite dimensional algebra over an algebraically closed field \mathbf{k}. Let x be a point in \mathcal{Q} such that the corresponding simple Λ-module S_{x} has finite projective dimension. If $\Lambda(x)$ is mild, then there is no loop at x.

Of course, it follows immediately that the strong no loop conjecture holds for all mild algebras, in particular for all representation-finite algebras.

Corollary 1.2

Let Λ be a mild algebra over an algebraically closed field. Let S be a simple Λ-module. If the projective dimension of S is finite, then $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$.

In order to prove the theorem we do not look at projective resolutions. Instead we refine a little bit the K-theoretic arguments of Lenzing Len69, Satz 5], also used by Igusa in his proof of the strong no loop conjecture for monomial algebras Igu90, Corollary 6.2], to obtain the following result:

Proposition 1.3

Let $\Lambda=\mathbf{k} \mathcal{Q} / I$ be a finite dimensional algebra, x a point in \mathcal{Q} and α an oriented cycle at x. If P_{x} has an α-filtration of finite projective dimension, then α is not a loop.

Here an α-filtration \mathcal{F} of P_{x} is a filtration

$$
P_{x}=M_{0} \supset M_{1} \supset \ldots \supset M_{n}=0
$$

by submodules with

$$
\alpha M_{i} \subset M_{i+1} \forall i=1 \ldots n-1
$$

The filtration \mathcal{F} has finite projective dimension if $\operatorname{pdim}_{\Lambda} M_{i}<\infty$ holds for all $i=1 \ldots n-1$.
This proposition is shown by Lenzing in [Len69, Satz 5] for the special filtration $M_{i}=\alpha^{i} \Lambda$, but his proof remains valid for all α-filtrations.

Our strategy to prove Theorem 1.1 is then as follows: We consider the point x with pdim $S_{x}<\infty$ and its mild neighborhood $A:=\Lambda(x)$. We assume in addition that there is a loop α in x. Then we deduce a contradiction either by showing that $\operatorname{pdim}_{\Lambda} S_{x}=\infty$ or by constructing a certain α-filtration \mathcal{F} of P_{x} having finite projective dimension in mod- Λ and implying that α is not a loop by Proposition 1.3. Since $\Lambda(x)$ contains the support of P_{x}, this filtrations coincide for P_{x} as a Λ-module and as a $\Lambda(x)$ module. Thus we are dealing with a mild algebra, and we use in an essential way the deep structure theorems about such algebras given in BGRS85] and Bon09] to obtain the wanted α-filtrations. In particular, we show that we always work in the ray-category attached to $\Lambda(x)$. This makes it much easier to use cleaving diagrams. But still the construction of the appropriate α-filtrations depends on the study of several cases and it remains a difficult technical problem. The α-filtrations are always built in such a way that they have finite projective dimension in mod- Λ provided $\operatorname{pdim}_{\Lambda} S_{x}<\infty$.

To illustrate the method by two examples we define $\left\langle w_{1}, \ldots, w_{k}\right\rangle$ as the submodule of P_{x} generated by elements $w_{1}, \ldots, w_{k} \in P_{x}$.

Example 1.4

Let Λ be an algebra such that $\Lambda(x)$ is given by the quiver

and a relation ideal I such that the projective module P_{x} is described by the following graph:

Notice that the picture means that there are relations $\alpha^{2}-\lambda_{1} \beta_{1} \beta_{2} \beta_{3}, \alpha \beta_{1}-\lambda_{2} \gamma_{1} \gamma_{2} \in I$ for some $\lambda_{i} \in \mathbf{k} \backslash\{0\}$. From the obvious exact sequences

$$
\begin{gathered}
0 \rightarrow \operatorname{rad} P_{x} \rightarrow P_{x} \rightarrow S_{x} \rightarrow 0 \\
0 \rightarrow\left\langle\beta_{1}, \gamma_{1}\right\rangle \rightarrow \operatorname{rad} P_{x} \rightarrow S_{x} \rightarrow 0 \\
0 \rightarrow\left\langle\alpha^{2}, \gamma_{1}\right\rangle \rightarrow\left\langle\alpha, \gamma_{1}\right\rangle \rightarrow S_{x} \rightarrow 0
\end{gathered}
$$

we see that $\operatorname{pdim}_{\Lambda} S_{x}<\infty$ leads to $\operatorname{pdim}_{\Lambda} \operatorname{rad} P_{x}<\infty$ and $\operatorname{pdim}_{\Lambda}\left\langle\beta_{1}, \gamma_{1}\right\rangle<\infty$. Since $\left\langle\beta_{1}, \gamma_{1}\right\rangle=$ $\left\langle\beta_{1}\right\rangle \oplus\left\langle\gamma_{1}\right\rangle$ and $\left\langle\alpha^{2}, \gamma_{1}\right\rangle=\left\langle\alpha^{2}\right\rangle \oplus\left\langle\gamma_{1}\right\rangle$ in this example, both $\operatorname{pdim}_{\Lambda}\left\langle\gamma_{1}\right\rangle$ and $\operatorname{pdim}_{\Lambda}\left\langle\alpha, \gamma_{1}\right\rangle$ are finite. Then the following α-filtration $\mathcal{F}: P_{x} \supset\left\langle\alpha, \gamma_{1}\right\rangle \supset\left\langle\alpha^{2}\right\rangle \supset 0$ has finite projective dimension in mod- Λ.

In the next example we see that this method may not work if the neighborhood $\Lambda(x)$ is not mild, even if the support of P_{x} is mild.

Example 1.5

Let $\Lambda(x)=\mathbf{k} \mathcal{Q} / I$ be given by the quiver

and by a relation ideal I such that P_{x} is represented by

Here we get stuck because the uniserial module with basis $\{\gamma, \alpha \gamma\}$ allows only the composition series as an α-filtration. Since we do not know $\operatorname{pdim}_{\Lambda} S_{z}$, which depends on Λ and not only on $\Lambda(x)$, our method does not apply.

The article is organized as follows: In the second section we recall some facts about ray-categories and we show how to reduce the proof to standard algebras without penny-farthings. This case is then analyzed in the last section.

The results of this article are contained in my PhD-thesis written at the University of Wuppertal.
Acknowledgment: I would like to thank Klaus Bongartz for his support and for very helpful discussions.

2 The reduction to standard algebras

2.1 Ray-categories and standard algebras

We recall some well-known facts from BGRS85, GR92.
Let $A:=\Lambda(x)=\mathbf{k} \mathcal{Q}_{A} / I_{A}$ be a basic distributive k-algebra. Then every space $e_{x} A e_{y}$ is a cyclic module over $e_{x} A e_{x}$ or $e_{y} A e_{y}$ and we can associate to A its ray-category \vec{A}. Its objects are the points of \mathcal{Q}_{A}. The morphisms in \vec{A} are called rays and $\vec{A}(x, y)$ consists of the orbits $\vec{\mu}$ in $e_{x} A e_{y}$ under the obvious action of the groups of units in $e_{x} A e_{x}$ and $e_{y} A e_{y}$. The composition of two morphisms $\vec{\mu}$ and $\vec{\nu}$ is either the orbit of the composition $\mu \nu$, in case this is independent of the choice of representatives in $\vec{\mu}$ and $\vec{\nu}$, or else 0 . We call a non-zero morphism $\eta \in \vec{A}$ long if it is non-irreducible and satisfies $\nu \eta=0=\eta \nu^{\prime}$ for all non-isomorphisms $\nu, \nu^{\prime} \in \vec{A}$. One crucial fact about ray-categories frequently used in this paper is that A is mild iff \vec{A} is so [GR92, see Theorem 13.17].

The ray-category is a finite category characterized by some nice properties. For instance, given $\lambda \mu \kappa=\lambda \nu \kappa \neq 0$ in $\vec{A}, \mu=\nu$ holds. We shall refer to this property as the cancellation law.

Given \vec{A}, we construct in a natural way its linearization $\mathbf{k}(\vec{A})$ and obtain a finite dimensional algebra

$$
\bar{A}=\bigoplus_{x, y \in \mathcal{Q}_{A}} \mathbf{k}(\vec{A})(x, y)
$$

the standard form of A. In general, A and \bar{A} are not isomorphic, but they are if either A is minimal representation-infinite Bon09, Theorem 2] or representation-finite with char $\mathbf{k} \neq 2$ GR92, Theorem 13.17].

Similar to A, the ray-category \vec{A} admits a description by quiver and relations. Namely, there is a canonical full functor $\rightarrow: \mathcal{P} \mathcal{Q}_{A} \rightarrow \vec{A}$ from the path category of \mathcal{Q}_{A} to \vec{A}. Two paths in \mathcal{Q}_{A} are interlaced if they belong to the transitive closure of the relation given by $v \sim w$ iff $v=p v^{\prime} q, w=p w^{\prime} q$ and $\overrightarrow{v^{\prime}}=\overrightarrow{w^{\prime}} \neq 0$, where p and q are not both identities.
A contour of \vec{A} is a pair (v, w) of non-interlaced paths with $\vec{v}=\vec{w} \neq 0$. Note that these contours are called essential contours in BGRS85, 2.7]. Throughout this paper we will need a special kind of contours called penny farthings. A penny-farthing P in \vec{A} is a contour $\left(\sigma^{2}, \rho_{1} \ldots \rho_{s}\right)$ such that the full subquiver \mathcal{Q}_{P} of \mathcal{Q}_{A} that supports the arrows of P has the following shape:

Moreover, we ask the full subcategory $A_{P} \subset A$ living on \mathcal{Q}_{P} to be defined by \mathcal{Q}_{P} and one of the following two systems of relations

$$
\begin{align*}
& 0=\sigma^{2}-\rho_{1} \ldots \rho_{s}=\rho_{s} \rho_{1}=\rho_{i+1} \ldots \rho_{s} \sigma \rho_{1} \ldots \rho_{f(i)} \tag{1}\\
& 0=\sigma^{2}-\rho_{1} \ldots \rho_{s}=\rho_{s} \rho_{1}-\rho_{s} \sigma \rho_{1}=\rho_{i+1} \ldots \rho_{s} \sigma \rho_{1} \ldots \rho_{f(i)} \tag{2}
\end{align*}
$$

where $f:\{1,2, \ldots, s-1\} \rightarrow\{1,2, \ldots, s\}$ is some non-decreasing function (see [BGRS85, 2.7]. For penny-farthings of type (1) A_{P} is standard, for that of type (2) A_{P} is not standard in case the characteristic is two.

A functor $F: D \rightarrow \vec{A}$ between ray categories is cleaving ([GR92, 13.8]) iff it satisfies the following two conditions and their duals:
a) $F(\mu)=0$ iff $\mu=0$.
b) If $\eta \in D(y, z)$ is irreducible and $F(\mu): F(y) \rightarrow F\left(z^{\prime}\right)$ factors through $F(\eta)$ then μ factors already through η.
The key fact about cleaving functors is that \vec{A} is not representation finite if D is not. In this article D will always be given by its quiver \mathcal{Q}_{D}, that has no oriented cycles and some relations. Two paths between the same points give always the same morphism, and zero relations are indicated by a dotted line. As in [GR92, section 13], the cleaving functor is then defined by drawing the quiver of D with relations and by writing the morphism $F(\mu)$ in \vec{A} close to each arrow μ.

By abuse of notation, we denote the irreducible rays of \vec{A} and the corresponding arrows of \mathcal{Q}_{A} by the same letter.

2.2 Getting rid of penny-farthings

Using the above notations let $P=\left(\sigma^{2}, \rho_{1} \ldots \rho_{s}\right)$ be a penny-farthing in \vec{A}. We shall show now that $x=z_{1}$. Therefore $\sigma=\alpha$ and P is the only penny-farthing in \vec{A} by GR92, Theorem 13.12].

Lemma 2.1
If there is a penny-farthing $P=\left(\sigma^{2}, \rho_{1} \ldots \rho_{s}\right)$ in \vec{A}, then $z_{1}=x$.
Proof. We consider two cases:

- $x \in \mathcal{Q}_{P}$: Hence \mathcal{Q}_{P} has the following shape:

But this can be the quiver of a penny-farthing only for $z_{1}=x$.

- $x \notin \mathcal{Q}_{P}$: Since A is the neighborhood of x, only the following cases are possible:
a) $e_{x} A e_{z} \neq 0$: Since $x \notin \mathcal{Q}_{P}$ we can apply the dual of Bon85, Theorem 1] or GR92, Lemma 13.15] to \vec{A} and we see that the following quivers occur as subquivers of \mathcal{Q}_{A} :

Moreover, there can be only one arrow starting in x. This is a contradiction to the actual setting.
b) $\exists z_{1} \rightarrow x$: By applying Bon85, Theorem 1] or the dual of [GR92, Lemma 13.15] we deduce that the following quiver occurs as a subquiver of \mathcal{Q}_{A} :

and there can be only one arrow ending in x contradicting the present case.
c) $\exists y^{\prime} \leftarrow x \rightleftarrows y \leftarrow z_{1}$: If $y \notin \mathcal{Q}_{P}$, then

is a subquiver of \mathcal{Q}_{A} leading to the same contradiction as in b).
If $y \in \mathcal{Q}_{P}$, then $y=z_{2}$ and the quiver

is a subquiver of \mathcal{Q}_{A}. Since $x \notin \mathcal{Q}_{P}$, all morphisms occurring in the following diagram

are irreducible and pairwise distinct. Therefore D is a cleaving diagram in \vec{A}. Moreover, some long morphism $\eta=\nu \sigma^{3} \nu^{\prime}$ does not occur in D; hence D is still cleaving in \vec{A} / η by Bon09, Lemma 3]. Since D is of representation-infinite Euclidean type $\widetilde{E}_{7}, \vec{A} / \eta$ is representation-infinite contradicting the mildness of A.

Now, we show that, provided the existence of a penny-farthing in \vec{A}, there exists an α-filtration of P_{x} having finite projective dimension.

Lemma 2.2

Let $A=\Lambda(x)$ be mild and standard. If there is a penny-farthing in \vec{A}, then there exists an α-filtration \mathcal{F} of P_{x} having finite projective dimension.

Proof. If there is a penny-farthing P in \vec{A}, then $P=\left(\alpha^{2}, \rho_{1} \ldots \rho_{s}\right)$ is the only penny-farthing in \vec{A} by the last lemma. Since A is standard and mild, there are three cases for the graph of P_{x} which can occur by [Bon85, Theorem 1] or the dual of [GR92, Lemma 13.15].
I) There exists an arrow $\gamma: x \rightarrow z, \gamma \neq \rho_{1}$. Then $s=2$, the quiver

is a subquiver of \mathcal{Q}_{A}, and P_{x} is represented by the following graph:

Let M be a quotient of P_{x} defined by the following exact sequence:

$$
0 \rightarrow\langle\gamma\rangle \oplus\left\langle\rho_{1}, \alpha \rho_{1}\right\rangle \rightarrow P_{x} \rightarrow M \rightarrow 0 .
$$

Then M has S_{x} as the only composition factor. Hence $\operatorname{pdim}_{\Lambda} M<\infty$ and $\operatorname{pdim}_{\Lambda}\left\langle\rho_{1}, \alpha \rho_{1}\right\rangle<\infty$. Now, we consider the exact sequence

$$
0 \rightarrow\left\langle\alpha^{3}\right\rangle \rightarrow\left\langle\rho_{1}, \alpha \rho_{1}\right\rangle \rightarrow\left\langle\rho_{1}\right\rangle /\left\langle\alpha^{3}\right\rangle \oplus\left\langle\alpha \rho_{1}\right\rangle /\left\langle\alpha^{3}\right\rangle \rightarrow 0 .
$$

But $\left\langle\alpha^{3}\right\rangle \cong S_{x}$ and $\operatorname{pdim}_{\Lambda} S_{x}<\infty$, hence $\left\langle\alpha \rho_{1}\right\rangle /\left\langle\alpha^{3}\right\rangle \cong S_{y}$ has finite projective dimension in mod- Λ. Finally, the α-filtration $P_{x} \supset\langle\alpha\rangle \supset\left\langle\alpha^{2}\right\rangle \supset\left\langle\alpha^{3}\right\rangle \supset 0$ has finite projective dimension since all filtration modules $\neq P_{x}$ have S_{x} and S_{y} as the only composition factors.
II) In the second case there exists a point $z \notin \mathcal{Q}_{P}$ such that $A(x, z) \neq 0$. Then $s=2$, the quiver

is a subquiver of \mathcal{Q}_{A}, and P_{x} is represented by:

With similar considerations as in I) we obtain that the same filtration fits.
III) In the last possible case we have $A(x, z)=0$ for all points $z \notin \mathcal{Q}_{P}$. Hence P_{x} is represented by:

As a Λ-Module, $M:=P_{x} /\left\langle\alpha^{2}\right\rangle$ has finite projective dimension since $\left\langle\alpha^{2}\right\rangle$ has S_{x} as the only composition factor. Let K be the kernel of the epimorphism $M \rightarrow\left\langle\alpha^{2}\right\rangle, e_{x} \mapsto \alpha^{2}$, then $K=$ $\left\langle\rho_{1}\right\rangle /\left\langle\alpha^{2}\right\rangle \oplus\left\langle\alpha \rho_{1}\right\rangle /\left\langle\alpha^{3}\right\rangle$ has finite projective dimension. Moreover, $\operatorname{pdim}_{\Lambda}\left\langle\rho_{1}\right\rangle, \operatorname{pdim}_{\Lambda}\left\langle\alpha \rho_{1}\right\rangle<\infty$. Since

$$
0 \rightarrow\left\langle\alpha \rho_{1}\right\rangle \rightarrow\langle\alpha\rangle \xrightarrow{\lambda_{\alpha}}\left\langle\alpha^{2}\right\rangle \rightarrow 0
$$

is exact, $\operatorname{pdim}_{\Lambda}\langle\alpha\rangle<\infty$. Thus the same filtration as in the first two cases fits again.

Lemma 2.3

With above notations let $A=\Lambda(x)$ be mild and non-standard. There exists an α-filtration \mathcal{F} of P_{x} having finite projective dimension.

Proof. If A is non-standard, then A is representation finite by Bon09, char $\mathbf{k}=2$ and there is a penny-farthing in \vec{A} by GR92, Theorem 13.17]. Since Lemma 2.1 remains valid, the penny-farthing $\left(\alpha^{2}, \rho_{1} \ldots \rho_{s}\right), \rho_{i}: z_{i} \rightarrow z_{i+1}, z_{1}=z_{s+1}=x$, is unique. By GR92, 13.14, 13.17] the difference between A and \bar{A} in the composition of the arrows shows up in the graphs of the projectives to z_{2}, \ldots, z_{s} only. Thus the graph of P_{x} remains the same in all three cases of the proof of Lemma 2.2 and the filtrations constructed there still do the job.

3 The proof for standard algebras without penny-farthings

3.1 Some preliminaries

If there is no penny-farthing in \vec{A}, then $A=\bar{A}$ is standard by Gabriel, Roiter GR92, Theorem 13.17] and Bongartz [Bon09, Theorem 2]. By a result of Liu, Morin [LM04, Corollary 1.3], deduced from a
proposition of Green, Solberg, Zacharia GSZ01], a power of α is a summand of a polynomial relation in $I=I_{\Lambda}$. Otherwise $\operatorname{pdim}_{\Lambda} S_{x}$ would be infinite contradicting the choice of x. Furthermore, α is a summand of a polynomial relation in I_{A} by definition of A. But I_{A} is generated by paths and differences of paths in \mathcal{Q}_{A}. Hence we can assume without loss of generality that there is a relation $\alpha^{t}-\beta_{1} \beta_{2} \ldots \beta_{r}$ in I_{A} for some $t \in \mathbb{N}$ and arrows $\beta_{1}, \beta_{2}, \ldots, \beta_{r}$. Among all relations of this type we choose one with minimal t. Hence $\left(\alpha^{t}, \beta_{1} \beta_{2} \ldots \beta_{r}\right)$ is a contour in \vec{A} with $t, r \geq 2$. Let $y=e\left(\beta_{1}\right)$ be the ending point of β_{1} and $\tilde{\beta}=\beta_{2} \ldots \beta_{r}$.

By the structure theorem for non-deep contours in BGRS85, 6.4] the contour ($\alpha^{t}, \beta_{1} \beta_{2} \ldots \beta_{r}$) is deep, i.e. we have $\alpha^{t+1}=0$ in A. Since A is mild, the cardinality of the set x^{+}of all arrows starting in x is bounded by three. Before we consider the cases $\left|x^{+}\right|=2$ and $\left|x^{+}\right|=3$ separately we shall prove some useful general facts.

The following trivial fact about standard algebras will be essential hereafter.

Lemma 3.1

Let $A=\bar{A}$ be a standard \mathbf{k}-algebra. Consider rays $v_{i}, w_{j} \in \vec{A} \backslash\{0\}$ for $i=1 \ldots n$ and $j=1 \ldots m$ such that $v_{l} \neq v_{k}$ and $w_{l} \neq w_{k}$ for $l \neq k$. If there are $\lambda_{i}, \mu_{j} \in \mathbf{k} \backslash\{0\}$ such that $\sum_{i=1}^{n} \lambda_{i} v_{i}=\sum_{j=1}^{m} \mu_{j} w_{j}$, then $n=m$ and there exists a permutation $\pi \in S(n)$ such that $v_{i}=w_{\pi(i)}$ and $\lambda_{i}=\mu_{\pi(i)}$ for $i=1 \ldots n$.

Proof. Since the set of non-zero rays in \vec{A} forms a basis of A, it is linearly independent and the claim follows.

In what follows we denote by \mathcal{L} the set of all long morphisms in \vec{A}. By μ we denote some long morphism $\nu \alpha^{t} \nu^{\prime}$ which exists since $\alpha^{t} \neq 0$.

Lemma 3.2

Using the above notations we have:

$$
\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0
$$

Proof. We assume to the contrary that $\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle \neq 0$. Then, by Lemma 3.1, there are rays $v, w \in \vec{A}$ such that $\beta_{1} v=\alpha \beta_{1} w \neq 0$. We claim that

is a cleaving diagram in \vec{A}. It is of representation-infinite, Euclidean type \widetilde{A}_{3}. Since all morphisms occurring in D are not long, the long morphism $\mu=\nu \alpha^{t} \nu^{\prime}$ does not occur in D and D is still cleaving in \vec{A} / μ by Bon09, Lemma 3]. Thus \vec{A} / μ is representation-infinite contradicting the mildness of A.

Now we show in detail, using [Bon09, Lemma 3 d)], that D is cleaving. First of all we assume that there is a ray ρ with $\rho \tilde{\beta}=\alpha^{t-1}$. Then we get $0 \neq \alpha^{t}=\alpha \rho \tilde{\beta}=\beta_{1} \tilde{\beta}$, whence $\alpha \rho=\beta_{1}$ by the cancellation law. This contradicts the fact that β_{1} is an arrow. In a similar way it can be shown that $\rho \alpha^{t-1}=\tilde{\beta}, \rho v=\beta_{1} w$ and $\rho \beta_{1} w=v$ are impossible.
The following four cases are left to exclude.
i) $\alpha^{t-1} \rho=\beta_{1} w$: Left multiplication with α gives us $\alpha^{t} \rho=\alpha \beta_{1} w \neq 0$. Hence there is a non-deep contour $\left(\alpha^{t-1} \rho_{1} \ldots \rho_{k}, \beta_{1} w_{1} \ldots w_{l}\right)$ in \vec{A}. Here $\rho=\rho_{1} \ldots \rho_{k}$ resp. $w=w_{1} \ldots w_{l}$ is a product of irreducible rays (arrows). Since the arrow β_{1} is in the contour, the cycle $\beta_{1} \tilde{\beta}$ and the loop α belong to the contour. Hence it can only be a penny-farthing by the structure theorem for non-deep contours [BGRS85, 6.4]. But this case is excluded in the current section.
ii) $\tilde{\beta} \rho=v$: We argue as before and deduce $\beta_{1} \tilde{\beta} \rho=\beta_{1} v=\alpha^{t} \rho=\alpha \beta_{1} w \neq 0$. Hence there is a non-deep contour $\left(\alpha^{t-1} \rho_{1} \ldots \rho_{k}, \beta_{1} w_{1} \ldots w_{l}\right)$ leading again to a contradiction.
iii) $\beta_{1} w \rho=\alpha^{t-1}$: Since $t-1<t$ we have a contradiction to the minimality of t.
iv) $v \rho=\tilde{\beta}$: Then $\beta_{1} v \rho=\beta_{1} \tilde{\beta}=\alpha^{t}=\alpha \beta_{1} v \rho \neq 0$. Using the cancellation law we get $\alpha^{t-1}=\beta_{1} v \rho$ a contradiction as before.

Lemma 3.3

If $t \geq 3$ and $\mathcal{L} \nsubseteq\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$, then $\alpha^{2} \beta_{1}=0$.

Proof. If $\alpha^{2} \beta_{1} \neq 0$, then

is a cleaving diagram of Euclidian type \widetilde{D}_{5} in \vec{A}. It is cleaving since:
i) $\alpha^{2}=\beta_{1} \rho \neq 0$ contradicts the choice of $t \geq 3$.
ii) $\alpha \beta_{1}=\beta_{1} \rho \neq 0$ contradicts Lemma 3.2

It is also cleaving in \vec{A} / η for $\eta \in \mathcal{L} \backslash\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\} \neq \emptyset$ contradicting the mildness of A.

Lemma 3.4

If $\left\langle\alpha^{2}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0=\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle$, then $\left\langle\alpha^{2}, \beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
Proof. Let $\alpha^{2} u+\beta_{1} v=\alpha \beta_{1} w \neq 0$ be an element in $\left\langle\alpha^{2}, \beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle$. By Lemma 3.1 we can assume that u, v, w are rays and the following two cases might occur:
i) $\beta_{1} v=\alpha \beta_{1} w \neq 0$: This is a contradiction since $\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
ii) $\alpha^{2} u=\alpha \beta_{1} w \neq 0$: This is impossible because $\left\langle\alpha^{2}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.

3.2 The case $\left|x^{+}\right|=2$

Lemma 3.5

If $x^{+}=\left\{\alpha, \beta_{1}\right\}$ and $\mathcal{L} \subseteq\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$, then there exists an α-filtration \mathcal{F} of P_{x} having finite projective dimension.

Proof. We treat two cases:
i) $\alpha \beta_{1}=0$: Then for $\left\langle\alpha^{k}\right\rangle$ with $k \geq 1$ only S_{x} is possible as a composition factor; hence $\operatorname{pdim}_{\Lambda}\left\langle\alpha^{k}\right\rangle<$ ∞. Thus $P_{x} \supset\langle\alpha\rangle \supset\left\langle\alpha^{2}\right\rangle \supset\left\langle\alpha^{3}\right\rangle \supset 0$ is the wanted α-filtration.
ii) $\alpha \beta_{1} \neq 0$: Since α^{3} and $\alpha^{2} \beta_{1}$ are the only morphisms in \vec{A} which can be long, we have $t=3$, $0 \neq \alpha^{3} \in \mathcal{L},\left\langle\alpha \beta_{1}\right\rangle=\mathbf{k} \alpha \beta_{1} \cong S_{y}$ and $\left\langle\alpha^{2} \beta_{1}\right\rangle \in\left\{\mathbf{k} \alpha^{2} \beta_{1}, 0\right\}$.
Now we show that $\left\langle\alpha^{2}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$. If there are rays $v=v_{1} \ldots v_{s}, w \in \vec{A}$ with irreducible $v_{i}, i=1 \ldots, s$ such that $\alpha^{2} v=\alpha \beta_{1} w \neq 0$, then $s>0$ because $s=0$ would contradict the irreducibility of α. Therefore $v_{1}=\alpha$ or $v_{1}=\beta_{1}$.

- If $v_{1}=\alpha$, then $v^{\prime}=v_{2} \ldots v_{s}=i d$ since α^{3} is long and $0 \neq \alpha^{2} v=\alpha^{3} v^{\prime}$. Hence $0 \neq \alpha^{3}=$ $\alpha^{2} v=\alpha \beta_{1} w$ and $\alpha^{2}=\beta_{1} w$ contradicts the minimality of t.
- If $v_{1}=\beta_{1}$, then $0 \neq \alpha^{2} v=\alpha^{2} \beta_{1} v^{\prime}=\alpha \beta_{1} w$; hence $0 \neq \alpha \beta_{1} v^{\prime}=\beta_{1} w \in\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.

Since $\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0=\left\langle\alpha^{2}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle$, we deduce $\left\langle\beta_{1}, \alpha^{2}, \alpha \beta_{1}\right\rangle=\left\langle\beta_{1}, \alpha^{2}\right\rangle \oplus\left\langle\alpha \beta_{1}\right\rangle$ by Lemma 3.4, Therefore the graph of P_{x} has the following shape:

Here $\left\langle\beta_{1}\right\rangle$ stands for the graph of the submodule $\left\langle\beta_{1}\right\rangle$ which is not known explicitly. Consider the module M defined by the following exact sequence:

$$
0 \rightarrow\left\langle\beta_{1}, \alpha^{2}, \alpha \beta_{1}\right\rangle \rightarrow P_{x} \rightarrow M \rightarrow 0
$$

Then $\operatorname{pdim}_{\Lambda} M<\infty$ since M is filtered by S_{x} and $\operatorname{pdim}_{\Lambda}\left(\left\langle\beta_{1}, \alpha^{2}\right\rangle \oplus\left\langle\alpha \beta_{1}\right\rangle\right)=\operatorname{pdim}_{\Lambda}\left\langle\beta_{1}, \alpha^{2}, \alpha \beta_{1}\right\rangle<$ ∞. Thus $\operatorname{pdim}_{\Lambda}\left(\left\langle\alpha \beta_{1}\right\rangle \cong S_{y}\right)$ is finite too and the wanted α-filtration is $P_{x} \supset\langle\alpha\rangle \supset\left\langle\alpha^{2}\right\rangle \supset\left\langle\alpha^{3}\right\rangle \supset$ 0 .

Lemma 3.6

If $x^{+}=\left\{\alpha, \beta_{1}\right\}, t \geq 3$ and $\mathcal{L} \nsubseteq\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$, then $\alpha^{2} \rho=0$ for all rays $\rho \notin\left\{e_{x}, \alpha, \ldots, \alpha^{t-2}\right\}$. Moreover, $\left\langle\alpha^{2}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
Proof. Let $\rho \in \vec{A}$ with $\alpha^{2} \rho \neq 0$ be written as a composition of irreducible rays $\rho=\rho_{1} \ldots \rho_{s}$. Then the following two cases are possible:
i) $\rho=\alpha^{s}$: Since $0 \neq \alpha^{2} \rho=\alpha^{2+s}$ and $\alpha^{t+1}=0$ we have $s \leq t-2$ and $\rho=\alpha^{s} \in\left\{e_{x}, \alpha, \ldots, \alpha^{t-2}\right\}$.
ii) There exists a minimal $1 \leq i \leq s$ such that $\rho_{i} \neq \alpha$. Since $x^{+}=\left\{\alpha, \beta_{1}\right\}$, we have $\rho_{i}=\beta_{1}$ and $0 \neq \alpha^{2} \rho=\alpha^{2+i-1} \beta_{1} \rho_{i+1} \ldots \rho_{s}=0$ by Lemma 3.3
If $0 \neq \alpha^{2} v=\alpha \beta_{1} w$, then $v=\alpha^{s}$ with $0 \leq s \leq t-2$. Hence $0=\alpha^{2} v=\alpha^{s+2}=\alpha \beta_{1} w$ and $\alpha^{s+1}=\beta_{1} w$ by cancellation law. This contradicts the minimality of t.

Corollary 3.7

If $x^{+}=\left\{\alpha, \beta_{1}\right\}, t \geq 3$ and $\mathcal{L} \nsubseteq\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$, then $\left\langle\alpha^{2}, \beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
Proof. The claim is trivial using Lemmas 3.2, 3.4 and 3.6.

Proposition 3.8

If $x^{+}=\left\{\alpha, \beta_{1}\right\}$, then there exists an α-filtration \mathcal{F} of P_{x} having finite projective dimension.
Proof. If $\mathcal{L} \subseteq\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$, then the claim is the statement of Lemma 3.5. If $\mathcal{L} \nsubseteq\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$, then we consider the value of t :
i) $t=2$: Then the graph of P_{x} has the following shape:

Let a subquotient M of P_{x} be defined by the following exact sequence:

$$
0 \rightarrow\left\langle\beta_{1}, \alpha \beta_{1}\right\rangle \rightarrow P_{x} \rightarrow M \rightarrow 0
$$

Then M and $\left\langle\beta_{1}, \alpha \beta_{1}\right\rangle$ have finite projective dimension in mod- Λ. By Lemma 3.2 we have $\left\langle\beta_{1}, \alpha \beta_{1}\right\rangle=\left\langle\beta_{1}\right\rangle \oplus\left\langle\alpha \beta_{1}\right\rangle$; hence $\operatorname{pdim}_{\Lambda}\left\langle\beta_{1}\right\rangle$ and $\operatorname{pdim}_{\Lambda}\left\langle\alpha \beta_{1}\right\rangle$ are both finite.
Let K be the kernel of the epimorphism $\lambda_{\alpha}:\left\langle\beta_{1}\right\rangle \rightarrow\left\langle\alpha \beta_{1}\right\rangle, \lambda_{\alpha}(\rho)=\alpha \rho$. Then $\operatorname{pdim}_{\Lambda} K<\infty$ and for the α-filtration \mathcal{F} we take the following: $P_{x} \supset\left\langle\alpha, \beta_{1}\right\rangle \supset\left\langle\beta_{1}\right\rangle \oplus\left\langle\alpha \beta_{1}\right\rangle \supset\left\langle\alpha \beta_{1}\right\rangle \oplus K \supset K \supset 0$.
ii) $t \geq 3$: Consider the following exact sequences:

$$
\begin{gathered}
0 \rightarrow\left\langle\alpha, \beta_{1}\right\rangle \rightarrow P_{x} \rightarrow S_{x} \rightarrow 0 \\
0 \rightarrow\left\langle\alpha^{2}, \beta_{1}, \alpha \beta_{1}\right\rangle \rightarrow\left\langle\alpha, \beta_{1}\right\rangle \rightarrow S_{x} \rightarrow 0
\end{gathered}
$$

Hence $\operatorname{pdim}_{\Lambda}\left\langle\alpha, \beta_{1}\right\rangle$ and $\operatorname{pdim}_{\Lambda}\left\langle\alpha^{2}, \beta_{1}, \alpha \beta_{1}\right\rangle$ are finite. By Corollary $3.7\left\langle\alpha^{2}, \beta_{1}, \alpha \beta_{1}\right\rangle=\left\langle\alpha^{2}, \beta_{1}\right\rangle \oplus$ $\left\langle\alpha \beta_{1}\right\rangle$, that means $\operatorname{pdim}_{\Lambda}\left\langle\alpha \beta_{1}\right\rangle$ is finite too. With Lemma 3.6 it is easily seen that for $2 \leq k \leq t$ the module $\left\langle\alpha^{k}\right\rangle$ is a uniserial module with S_{x} as the only composition factor. Hence $\operatorname{pdim}_{\Lambda}\left\langle\alpha^{k}\right\rangle$ is finite for $2 \leq k \leq t$. Thereby we have the wanted α-filtration

$$
P_{x} \supset\left\langle\alpha, \beta_{1}\right\rangle \supset\left\langle\alpha^{2}\right\rangle \oplus\left\langle\alpha \beta_{1}\right\rangle \supset\left\langle\alpha^{3}\right\rangle \supset\left\langle\alpha^{4}\right\rangle \supset \ldots \supset\left\langle\alpha^{t}\right\rangle \supset 0
$$

3.3 The case $\left|x^{+}\right|=3$

With previous notations $x^{+}=\left\{\alpha, \beta_{1}, \gamma\right\},\left(\alpha^{t}, \beta_{1} \beta_{2} \ldots \beta_{r}\right)$ is a contour in $\vec{A}, t \geq 2, \alpha^{t+1}=0, \tilde{\beta}:=$ $\beta_{2} \ldots \beta_{r}$ and $\mu=\nu \alpha^{t} \nu^{\prime}$ is a long morphism in \vec{A}.

The α-filtrations will be constructed depending on the set \mathcal{L} of long morphisms in \vec{A}. The case $\mathcal{L} \subseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$ is treated in Lemma 3.16, the case $\mathcal{L} \subseteq\left\{\alpha^{t}, \alpha^{2} \beta_{1}\right\}$ in 3.17 and the remaining case in 3.18 .

But first, we derive some technical results.

Lemma 3.9

If $r=2$ and $\delta: z^{\prime} \rightarrow z$ is an arrow in \mathcal{Q}_{A} ending in $z=e(\gamma)$, then $\delta=\gamma$.
Proof. Assume to the contrary that $\gamma \neq \delta: z^{\prime} \rightarrow z$, then there is no arrow $\beta_{1} \neq \varepsilon: y^{\prime} \rightarrow y$ in \mathcal{Q}_{Λ}. If there is such an arrow, then by the definition of a neighborhood ε belongs to \mathcal{Q}_{A}. This arrow induces
an irreducible ray $\beta_{1} \neq \varepsilon: y^{\prime} \rightarrow y$ in \vec{A} and

is a cleaving diagram in \vec{A} / μ of Euclidian type \widetilde{E}_{6}.
In a similar way an arrow $\alpha, \beta_{2} \neq \varepsilon: x^{\prime} \rightarrow x$ in \mathcal{Q}_{Λ} leads to a cleaving diagram of type \widetilde{D}_{5} in \vec{A} / μ. Hence the full subcategory B of Λ supported by the points x, y is a convex subcategory of Λ. Therefore the projective dimensions of S_{x}, viewed as Λ or as B module, coincide. But in B we have $x^{+}=\left\{\alpha, \beta_{1}\right\}$, whence we can apply Proposition 3.8 together with 1.3 to get the contradiction that α is not a loop.

Lemma 3.10

If $\alpha \gamma \neq 0$, then $\beta_{1} v \neq \alpha \gamma \neq \gamma w$ for all rays $v, w \in \vec{A}$.
Proof. i) Assume that there exists a ray $v \in \vec{A}$ such that $\beta_{1} v=\alpha \gamma \neq 0$. Then

is a cleaving diagram of Euclidian type \widetilde{A}_{3} in \vec{A} / μ.

- For $\gamma \rho=\alpha^{t-1}$ or $v \rho=\tilde{\beta}$ we have $\alpha \gamma \rho=\beta_{1} v \rho=\beta_{1} \tilde{\beta}=\alpha^{t} \neq 0$. Thus $\alpha^{t-1}=\gamma \rho$ contradicts the choice of t.
- If $\alpha^{t-1} \rho=\gamma$ or $\tilde{\beta} \rho=v$, then $\alpha^{t} \rho=\beta_{1} \tilde{\beta} \rho=\beta_{1} v=\alpha \gamma \neq 0$. Then $\alpha^{t-1} \rho=\gamma$ contradicts the irreducibility of γ.
ii) Assume that there exists a ray $w=w_{1} \ldots w_{s}: z \rightsquigarrow z \in \vec{A}$ with irreducible w_{i} such that $\gamma w=\alpha \gamma \neq 0$.
$r=2$: Since w_{s} is an irreducible ray ending in $z, w_{s}=\gamma$ by Lemma 3.9. Thus we get a contradiction $\gamma w_{1} \ldots w_{s-1}=\alpha$.
$r \geq 3$: We look at the value of s. If $s=1$, then $w=w_{1}$ is a loop and

is a cleaving diagram in \vec{A} / μ.
If $s \geq 2$, then

is cleaving in \vec{A} / μ.
We still have to show that not any morphisms indicated by the dotted lines make the diagrams commute.
(1): $\gamma \rho=\beta_{1} \beta_{2}$, with $\rho=\rho_{1} \ldots \rho_{l}$. If $\rho=w_{1}^{l}=w^{l}$, then $\beta_{1} \beta_{2}=\gamma \rho=\gamma w^{l}=\alpha \gamma w^{l-1}$ and $\beta_{1} \beta_{2} \ldots \beta_{r}=\alpha^{t}=\alpha \gamma w^{l-1} \beta_{3} \ldots \beta_{r} \neq 0$. Therefore $\alpha^{t-1}=\gamma w^{l-1} \beta_{3} \ldots \beta_{r}$ is a contradiction. If $\rho \neq w_{1}^{l}$, then one of the irreducible rays $\rho_{i} \neq w_{1}$ starts in z and

is cleaving in \vec{A} / μ.
(2): If $\alpha \rho=\beta_{1} \beta_{2}$, then $\alpha \rho \beta_{3} \ldots \beta_{r}=\beta_{1} \beta_{2} \ldots \beta_{r}=\alpha^{t} \neq 0$ and $\alpha^{t-1}=\rho \beta_{3} \ldots \beta_{r}$ contradicts the minimality of t.
(3): If $\rho \gamma=w_{s-1} w_{s}$, then $\gamma w_{1} \ldots w_{s-2} \rho \gamma=\gamma w=\alpha \gamma \neq 0$ and $\alpha=\gamma w_{1} \ldots w_{s-2} \rho$ contradicts the irreducibility of α.
(4): If $\rho \alpha=\beta_{r-1} \beta_{r}$, then $\beta_{1} \beta_{2} \ldots \beta_{r-2} \rho \alpha=\beta_{1} \beta_{2} \ldots \beta_{r}=\alpha^{t} \neq 0$ and $\alpha^{t-1}=\beta_{1} \beta_{2} \ldots \beta_{r-2} \rho$ contradicts the minimality of t.

Lemma 3.11

If $t \geq 3$, then $\alpha \gamma=0$.
Proof. Assume that $\alpha \gamma \neq 0$, then

is a cleaving diagram of Euclidian type in \vec{A} / μ. It is cleaving since:
i) $\gamma \rho=\alpha \gamma$ or $\beta_{1} \rho=\alpha \gamma$ contradicts Lemma 3.10,
ii) $\gamma \rho=\alpha^{2}$ or $\beta_{1} \rho=\alpha^{2}$ contradicts the minimality of $t \geq 3$.

Lemma 3.12

a) If $\mathcal{L} \nsubseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$, then $\alpha \beta_{1}=0$ or $\alpha \gamma=0$.
b) If $\alpha^{2} \beta_{1} \neq 0$, then $\gamma w \neq \alpha \beta_{1}$ for all $w \in \vec{A}$.

Proof. a) If $\alpha \beta_{1} \neq 0$ and $\alpha \gamma \neq 0$, then

is a cleaving diagram of Euclidian type \widetilde{D}_{4} in \vec{A}. It is still cleaving in \vec{A} / η for $\eta \in \mathcal{L} \backslash\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\} \neq$ \emptyset.
b) Since $\alpha^{2} \beta_{1} \neq 0$, we have $\alpha \gamma=0$ by a). But $\gamma w=\alpha \beta_{1}$ leads to the contradiction $0 \neq \alpha^{2} \beta_{1}=$ $\alpha \gamma w=0$.

Lemma 3.13

If $t=2$ or $\mathcal{L} \nsubseteq\left\{\alpha^{t}, \alpha^{2} \beta_{1}\right\}$, then:
a) $\alpha^{2} \beta_{1}=0=\alpha^{2} \gamma, \alpha^{2} \rho=0$ for all rays $\rho \notin\left\{e_{x}, \alpha, \ldots, \alpha^{t-2}\right\}$.
b) $\left\langle\beta_{1}\right\rangle \cap\langle\alpha \gamma\rangle=0$.
c) If $\langle\gamma\rangle \cap\left\langle\beta_{1}\right\rangle=0$, then $\langle\gamma\rangle \cap\left\langle\alpha^{2}\right\rangle=0$.
d) $\langle\gamma\rangle \cap\left\langle\alpha^{t}\right\rangle=0$ or $\langle\gamma\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
e) $\langle\gamma\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$ or $\langle\gamma\rangle \cap\left\langle\beta_{1}\right\rangle=0$.
f) $\left\langle\alpha \beta_{1}\right\rangle \cap\left\langle\alpha^{2}\right\rangle=0$ and $\langle\alpha \gamma\rangle \cap\left\langle\alpha^{2}\right\rangle=0$.

Proof. a) Consider the case $t=2$.
i) If $\alpha^{2} \beta_{1} \neq 0$, then $\beta_{r} \beta_{1} \neq 0$ and

is a cleaving diagram of Euclidian type \widetilde{D}_{5} in \vec{A} / μ. The diagram is cleaving because:

- $\beta_{1} \rho=\alpha \beta_{1} \neq 0$ is a contradiction of Lemma 3.2,
- $\gamma \rho=\alpha \beta_{1} \neq 0$ contradicts Lemma 3.12 b).
ii) If $\alpha^{2} \gamma \neq 0$, then $\beta_{r} \gamma \neq 0$ and

is a cleaving diagram in \vec{A} / μ. It is cleaving since $\beta_{1} \rho=\alpha \gamma$ resp. $\gamma \rho=\alpha \gamma$ contradicts Lemma 3.10 .

In the case $t \geq 3, \alpha^{2} \gamma=0$ by Lemma 3.11. If $t=3$, then $\mathcal{L} \nsubseteq\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$ by assumption. If $t>3$, then $\mu=\nu \alpha^{t} \nu^{\prime} \in \mathcal{L} \backslash\left\{\alpha^{3}, \alpha^{2} \beta_{1}\right\}$. Hence $\alpha^{2} \beta_{1}=0$ by Lemma 3.3 in both cases.
b) If v, w are rays in \vec{A} such that $\beta_{1} v=\alpha \gamma w \neq 0$, then the diagram

is a cleaving diagram in \vec{A} / μ.
i) If $\gamma w \rho=\alpha^{t-1}$ or $v \rho=\tilde{\beta}$, then $\beta_{1} v \rho=\beta_{1} \tilde{\beta}=\alpha^{t}=\alpha \gamma w \rho \neq 0$. Hence $\gamma w \rho=\alpha^{t-1}$ contradicts the minimality of t.
ii) If $\alpha^{t-1} \rho=\gamma w$ or $\tilde{\beta} \rho=v$, then $0 \neq \beta_{1} v=\beta_{1} \tilde{\beta} \rho=\alpha \gamma w=\alpha^{t} \rho=0$ by a).
c) Let v, w be rays such that $\gamma v=\alpha^{2} w \neq 0$. By a) we have $w=\alpha^{k}$ with $0 \leq k \leq t-2$, that means $\gamma v=\alpha^{2+k}$. Since t is minimal, we have $t=2+k$ and $0 \neq \gamma v=\alpha^{t}=\beta_{1} \tilde{\beta} \in\langle\gamma\rangle \cap\left\langle\beta_{1}\right\rangle=0$.
d) Let $v, w, v^{\prime}, w^{\prime}$ be rays in \vec{A} such that $\gamma w=\alpha^{t} v \neq 0$ and $\gamma w^{\prime}=\alpha \beta_{1} v^{\prime} \neq 0$. Then

is a cleaving diagram in \vec{A} / μ.
i) If $w \rho=w^{\prime}$ or $\alpha^{t-1} v \rho=\beta_{1} v^{\prime}$, then $\gamma w \rho=\gamma w^{\prime}=\alpha^{t} v \rho=\alpha \beta_{1} v^{\prime} \neq 0$. Hence there is a nondeep contour ($\alpha^{t-1} v_{1} \ldots v_{k} \rho_{1} \ldots \rho_{l}, \beta_{1} v_{1}^{\prime} \ldots v_{s}^{\prime}$) in \vec{A} which can only be a penny-farthing by the structure theorem for non-deep contours. But this case is excluded in the current section.
ii) If $w^{\prime} \rho=w$ or $\beta_{1} v^{\prime} \rho=\alpha^{t-1} v$, then $\gamma w^{\prime} \rho=\gamma w=\alpha \beta_{1} v^{\prime} \rho=\alpha^{t} v \neq 0$. Again, we have a non-deep contour ($\alpha^{t-1} v_{1} \ldots v_{k}, \beta_{1} v_{1}^{\prime} \ldots v_{l}^{\prime} \rho_{1} \ldots \rho_{s}$) which leads to a contradiction as before.
e) Let $v, w, v^{\prime}, w^{\prime}$ be rays such that $\beta_{1} v=\gamma w \neq 0$ and $\alpha \beta_{1} v^{\prime}=\gamma w^{\prime} \neq 0$. Then

is a cleaving diagram in \vec{A} / μ.
i) If $w \rho=w^{\prime}$, we get the contradiction $0 \neq \gamma w \rho=\gamma w^{\prime}=\beta_{1} v \rho=\alpha \beta_{1} v^{\prime} \in\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
ii) If $w^{\prime} \rho=w$, then $0 \neq \gamma w^{\prime} \rho=\gamma w=\alpha \beta_{1} v^{\prime} \rho=\beta_{1} v \in\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
iii) If $v \rho=\tilde{\beta}$, then $0 \neq \beta_{1} v \rho=\beta_{1} \tilde{\beta}=\gamma w \rho=\alpha^{t} \in\langle\gamma\rangle \cap\left\langle\alpha^{t}\right\rangle=0$ by d).
iv) If $\tilde{\beta} \rho=v$, then $0 \neq \beta_{1} \tilde{\beta} \rho=\beta_{1} v=\alpha^{t} \rho=\gamma w \in\langle\gamma\rangle \cap\left\langle\alpha^{t}\right\rangle=0$ by d).
v) If $\alpha^{t-1} \rho=\beta_{1} v^{\prime}$, then $0 \neq \alpha^{t} \rho=\alpha \beta_{1} v^{\prime}=\gamma w^{\prime} \in\langle\gamma\rangle \cap\left\langle\alpha^{t}\right\rangle=0$ by d).
vi) The case $\beta_{1} v^{\prime} \rho=\alpha^{t-1}$ contradicts the minimality of t.
f) If v, w are rays in \vec{A} such that $\alpha \beta_{1} v=\alpha^{2} w \neq 0$ resp. $\alpha \gamma v=\alpha^{2} w \neq 0$, then $w=\alpha^{k}$ with $0 \leq k \leq t-2$ and $\beta_{1} v=\alpha^{1+k}$ resp. $\gamma v=\alpha^{1+k}$. Since t is minimal, we get the contradiction $t=1+k<t$.

Lemma 3.14

If $\mathcal{L} \nsubseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$, then $\langle\gamma\rangle \cap\langle\alpha \gamma\rangle=0$.
Proof. In the case $t \geq 3$, the claim is trivial since $\alpha \gamma=0$ by 3.11
Consider the case $t=2$. Assume that there exist rays v, w in \vec{A} such that $\gamma v=\alpha \gamma w \neq 0$. First of all, we deduce that $w \neq i d$ by Lemma 3.10 and $v \neq i d$ since γ is an arrow. Therefore we can write $v=v_{1} \ldots v_{s}, w=w_{1} \ldots, w_{q}$ with irreducible rays $v_{i}, w_{j} \in \vec{A}$. Consider the value of q :
a) If $q=1$, then the diagram

is a cleaving diagram of Euclidian type \widetilde{E}_{7} in \vec{A} / μ (see [GR92, 10.7]).
b) If $q \geq 2$, then the diagram

is cleaving in \vec{A} / μ.
The diagrams are cleaving because:
i) $\alpha \rho=\gamma w \neq 0$: Then $0 \neq \alpha \gamma w=\alpha^{2} \rho=0$ by Lemma 3.13 a).
ii) $\gamma \rho=\alpha \gamma \neq 0$ contradicts Lemma 3.10,
iii) $\beta_{1} \rho=\gamma w \neq 0$: Then $0 \neq \alpha \gamma w=\alpha \beta_{1} \rho=0$ since $\alpha \beta_{1}=0$ by Lemma 3.12,
iv) $\rho v_{s}=\gamma w \neq 0$: Then $\alpha \rho v_{s}=\alpha \gamma w \neq 0$. If $\rho=\beta_{1} \rho^{\prime}$, then $0=\alpha \beta_{1} \rho^{\prime} v_{s}=\alpha \gamma w \neq 0$. If $\rho=\gamma \rho^{\prime}$, then $\alpha \gamma \rho^{\prime} v_{s}=\alpha \gamma w$ and $w_{1}=w=\rho^{\prime} v_{s}$. Hence $\rho^{\prime}=i d$ and $v_{s}=w_{1}$. Therefore $0 \neq \gamma v=\gamma v_{1} \ldots v_{s-1} w_{1}=\alpha \gamma w_{1}$ and $\gamma v_{1} \ldots v_{s-1}=\alpha \gamma$ contradicting Lemma 3.10. If $\rho=\alpha \rho^{\prime}$, then $0 \neq \alpha \gamma w=\alpha^{2} \rho^{\prime} v_{s}=0$ by Lemma 3.13 a).
v) $\beta_{1} \rho=\alpha \gamma \neq 0$ contradicts Lemma 3.10

Lemma 3.15

Let $\mathcal{L} \nsubseteq\left\{\alpha^{t}, \alpha^{2} \beta_{1}\right\}$ and $\mathcal{L} \nsubseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$.
a) If $\langle\alpha \gamma\rangle=0=\langle\gamma\rangle \cap\left\langle\alpha \beta_{1}\right\rangle$, then $\left\langle\beta_{1}, \gamma, \alpha^{2}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$.
b) If $\langle\alpha \gamma\rangle=0=\langle\gamma\rangle \cap\left\langle\beta_{1}\right\rangle$, then $\left\langle\beta_{1}, \alpha^{2}\right\rangle \cap\left\langle\gamma, \alpha \beta_{1}\right\rangle=0$.
c) If $\left\langle\alpha \beta_{1}\right\rangle=0$, then $\left\langle\beta_{1}, \gamma, \alpha^{2}\right\rangle \cap\langle\alpha \gamma\rangle=0$.

Proof. We only prove b); the other cases are proven analogously. Let $v, v^{\prime}, w, w^{\prime} \in A$ be such that $\beta_{1} v+\alpha^{2} v^{\prime}=\gamma w+\alpha \beta_{1} w^{\prime} \neq 0$. That means we have rays $v_{i}, w_{j} \in \vec{A}$, numbers $\lambda_{i}, \mu_{j} \in \mathbf{k}$ and integers $s_{1}, s_{2} \geq 0, n_{1}, n_{2} \geq 1$ such that

$$
\sum_{i=1}^{s_{1}} \lambda_{i} \beta_{1} v_{i}+\sum_{i=s_{1}+1}^{n_{1}} \lambda_{i} \alpha^{2} v_{i}=\sum_{j=1}^{s_{2}} \mu_{j} \gamma w_{j}+\sum_{j=s_{2}+1}^{n_{2}} \mu_{j} \alpha \beta_{1} w_{j}
$$

and $\beta_{1} v_{i} \neq \beta_{1} v_{j}, \alpha^{2} v_{i} \neq \alpha^{2} v_{j}, \gamma w_{i} \neq \gamma w_{j}, \alpha \beta_{1} w_{i} \neq \alpha \beta_{1} w_{j}$ for $i \neq j$. Without loss of generality we can assume that all λ_{i}, μ_{j} are non-zero, that $\beta_{1} v_{i} \neq \alpha^{2} v_{j}$ for $i=1 \ldots s_{1}, j=s_{1}+1 \ldots n_{1}$ and $\gamma w_{i} \neq \alpha \beta_{1} w_{j}$ for $i=1 \ldots s_{2}, j=s_{2}+1 \ldots n_{2}$. Then by Lemma 3.1 we have $n_{1}=n_{2}$ and there exists a permutation π such that $\beta_{1} v_{i}=\gamma w_{\pi(i)} \in\left\langle\beta_{1}\right\rangle \cap\langle\gamma\rangle=0$ or $\beta_{1} v_{i}=\alpha \beta_{1} w_{\pi(i)} \in\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$ by Lemma 3.2 Hence $s_{1}=0$. Moreover, by Lemma 3.13 we have $\alpha^{2} v_{i}=\gamma w_{\pi(i)} \in\left\langle\alpha^{2}\right\rangle \cap\langle\gamma\rangle=0$ or $\alpha^{2} v_{i}=\alpha \beta_{1} w_{\pi(i)} \in\left\langle\alpha^{2}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$; this is possible for $n_{1}-s_{1}=0$ only. Hence $n_{1}=0$, contradicting the choice of n_{1}.

Lemma 3.16

If $\mathcal{L} \subseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$, then there exists an α-filtration \mathcal{F} of P_{x} having finite projective dimension.
Proof. Since $\mathcal{L} \subseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}, \mu=\alpha^{2}$ is long and $t=2$. Now it is easily seen that $\left\langle\alpha^{2}\right\rangle=\mathbf{k} \alpha^{2} \cong S_{x}$, $\langle\alpha \gamma\rangle=\mathbf{k} \alpha \gamma,\left\langle\alpha \beta_{1}\right\rangle=\mathbf{k} \alpha \beta_{1}$ and $\langle\alpha\rangle$ has a \mathbf{k} basis $\left\{\alpha, \alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$. Using Lemma 3.2 and 3.10 we conclude $\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$ and $\langle\gamma\rangle \cap\langle\alpha \gamma\rangle=0=\left\langle\beta_{1}\right\rangle \cap\langle\alpha \gamma\rangle$.
By Lemma 3.13 d$)\langle\gamma\rangle \cap\left\langle\alpha^{2}\right\rangle=0$ or $\langle\gamma\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$. Thus the graph of P_{x} has one of the following shapes:

In the first case we consider the following exact sequence:

$$
0 \rightarrow\left\langle\alpha^{2}\right\rangle \rightarrow\left\langle\alpha, \beta_{1}, \gamma\right\rangle \rightarrow\left\langle\alpha, \beta_{1}, \gamma\right\rangle /\left\langle\alpha^{2}\right\rangle \rightarrow 0
$$

Since $\langle\alpha\rangle$ has \mathbf{k} basis $\left\{\alpha, \alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\rangle$ and $\mathcal{L} \subseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$ we have $\left\langle\alpha, \beta_{1}, \gamma\right\rangle /\left\langle\alpha^{2}\right\rangle=\langle\alpha\rangle /\left\langle\alpha^{2}\right\rangle \oplus$ $\left\langle\beta_{1}, \gamma\right\rangle /\left\langle\alpha^{2}\right\rangle$. Hence $\operatorname{pdim}_{\Lambda}\langle\alpha\rangle<\infty$ and $P_{x} \supset\langle\alpha\rangle \supset\left\langle\alpha^{2}\right\rangle \supset 0$ is the wanted filtration.

In the second case we have $\left\langle\alpha, \beta_{1}, \gamma\right\rangle /\left\langle\alpha^{2}\right\rangle=\langle\alpha, \gamma\rangle /\left\langle\alpha^{2}\right\rangle \oplus\left\langle\beta_{1}\right\rangle /\left\langle\alpha^{2}\right\rangle$. Thus $\operatorname{pdim}_{\Lambda}\langle\alpha, \gamma\rangle<\infty$. Now we consider

$$
0 \rightarrow\left\langle\beta_{1}, \gamma, \alpha \gamma\right\rangle \rightarrow\left\langle\alpha, \beta_{1}, \gamma\right\rangle \rightarrow S_{x} \rightarrow 0
$$

Since $\left\langle\beta_{1}, \gamma, \alpha \gamma\right\rangle=\left\langle\beta_{1}, \gamma\right\rangle \oplus\langle\alpha \gamma\rangle$, we have $\operatorname{pdim}_{\Lambda}\langle\alpha \gamma\rangle<\infty$ and $P_{x} \supset\langle\alpha, \gamma\rangle \supset\left\langle\alpha^{2}, \alpha \gamma\right\rangle \supset 0$ is a suitable filtration.

Lemma 3.17

If $\mathcal{L} \subseteq\left\{\alpha^{t}, \alpha^{2} \beta_{1}\right\}$, then there exists an α-filtration \mathcal{F} of P_{x} having finite projective dimension.
Proof. If $t=2$, then $\alpha^{2} \beta_{1}=0$ by Lemma 3.13a). Hence $\mathcal{L} \subseteq\left\{\alpha^{2}\right\}$ and the filtration exists by Lemma 3.16.

If $t \geq 3$, then $\alpha \gamma=0$ by Lemma 3.11. From the assumption $\mathcal{L} \subseteq\left\{\alpha^{t}, \alpha^{2} \beta_{1}\right\}$ it is easily seen that $\left\langle\alpha \beta_{1}\right\rangle=\mathbf{k} \alpha \beta_{1}$ and $\left\langle\alpha^{2} \beta_{1}\right\rangle=\mathbf{k} \alpha^{2} \beta_{1}$.
i) If $\alpha^{2} \beta_{1}=0$, then α^{t} is the only long morphism in \vec{A}; hence $\alpha \beta_{1}=0$ and $\left\langle\alpha^{k}\right\rangle, k \geq 1$, is uniserial of finite projective dimension. Thus $P_{x} \supset\langle\alpha\rangle \supset\left\langle\alpha^{2}\right\rangle \supset \ldots \supset\left\langle\alpha^{t}\right\rangle \supset 0$ is a suitable α-filtration.
ii) If $\alpha^{2} \beta_{1} \neq 0$, then $\left\langle\alpha \beta_{1}\right\rangle=\mathbf{k} \alpha \beta_{1} \cong S_{y} \cong\left\langle\alpha^{2} \beta_{1}\right\rangle$. By 3.2 and 3.12 b) $\left\langle\beta_{1}\right\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0=\langle\gamma\rangle \cap\left\langle\alpha \beta_{1}\right\rangle$. Therefore the graph of P_{x} has the following shape:

Moreover, $\left\langle\alpha \beta_{1}\right\rangle \cong S_{y}$ is a direct summand of the module $\left\langle\alpha^{2}, \beta_{1}, \gamma, \alpha \beta_{1}\right\rangle$, which has finite projective dimension. Since the modules $\langle\alpha\rangle,\left\langle\alpha^{2}\right\rangle, \ldots,\left\langle\alpha^{t}\right\rangle$ have S_{x} and S_{y} as the only composition factors, they are of finite projective dimension. Thus $P_{x} \supset\langle\alpha\rangle \supset\left\langle\alpha^{2}\right\rangle \supset \ldots\left\langle\alpha^{t}\right\rangle \supset 0$ is a suitable α-filtration.

Proposition 3.18

If $x^{+}=\left\{\alpha, \beta_{1}, \gamma\right\}$, then there exists an α-filtration \mathcal{F} of P_{x} having finite projective dimension.
Proof. By lemmata 3.16 and 3.17 we can assume that $\mathcal{L} \nsubseteq\left\{\alpha^{t}, \alpha^{2} \beta_{1}\right\}$ and $\mathcal{L} \nsubseteq\left\{\alpha^{2}, \alpha \beta_{1}, \alpha \gamma\right\}$. Then $\operatorname{pdim}_{\Lambda}\left\langle\alpha^{k}\right\rangle<\infty$ for $2 \leq k \leq t$ since $\left\langle\alpha^{k}\right\rangle$ has only S_{x} as a composition factor by 3.13 a). Moreover, $\operatorname{pdim}_{\Lambda}\left\langle\alpha, \beta_{1}, \gamma\right\rangle<\infty$ since it is the left hand term of the following exact sequence:

$$
0 \rightarrow\left\langle\alpha, \beta_{1}, \gamma\right\rangle \rightarrow P_{x} \rightarrow S_{x} \rightarrow 0
$$

By Lemma 3.12 a) only the following two cases are possible:
i) $\alpha \beta_{1}=0$: Consider the following exact sequence:

$$
0 \rightarrow\left\langle\beta_{1}, \gamma, \alpha^{2}, \alpha \gamma\right\rangle \rightarrow\left\langle\alpha, \beta_{1}, \gamma\right\rangle \rightarrow S_{x} \rightarrow 0
$$

Then $\operatorname{pdim}_{\Lambda}\left\langle\beta_{1}, \gamma, \alpha^{2}, \alpha \gamma\right\rangle<\infty$. By 3.15 c) we have $\left\langle\beta_{1}, \gamma, \alpha^{2}, \alpha \gamma\right\rangle=\left\langle\beta_{1}, \gamma, \alpha^{2}\right\rangle \oplus\langle\alpha \gamma\rangle$; hence $\operatorname{pdim}_{\Lambda}\langle\alpha \gamma\rangle<\infty$. Therefore $P_{x} \supset\left\langle\alpha, \beta_{1}, \gamma\right\rangle \supset\left\langle\alpha^{2}\right\rangle \oplus\langle\alpha \gamma\rangle \supset\left\langle\alpha^{3}\right\rangle \supset \ldots\left\langle\alpha^{t}\right\rangle \supset 0$ is a suitable α-filtration.
ii) $\alpha \gamma=0$: Then $\operatorname{pdim}_{\Lambda}\left\langle\beta_{1}, \gamma, \alpha^{2}, \alpha \beta_{1}\right\rangle<\infty$ since we have the exact sequence

$$
0 \rightarrow\left\langle\beta_{1}, \gamma, \alpha^{2}, \alpha \beta_{1}\right\rangle \rightarrow\left\langle\alpha, \beta_{1}, \gamma\right\rangle \rightarrow S_{x} \rightarrow 0
$$

If $\langle\gamma\rangle \cap\left\langle\alpha \beta_{1}\right\rangle=0$, then by 3.15 a) we have $\left\langle\beta_{1}, \gamma, \alpha^{2}, \alpha \beta_{1}\right\rangle=\left\langle\beta_{1}, \gamma, \alpha^{2}\right\rangle \oplus\left\langle\alpha \beta_{1}\right\rangle$; hence $\operatorname{pdim}_{\Lambda}\left\langle\alpha \beta_{1}\right\rangle<\infty$. Therefore $P_{x} \supset\left\langle\alpha, \beta_{1}, \gamma\right\rangle \supset\left\langle\alpha^{2}\right\rangle \oplus\left\langle\alpha \beta_{1}\right\rangle \supset\left\langle\alpha^{3}\right\rangle \supset \ldots\left\langle\alpha^{t}\right\rangle \supset 0$ is a suitable α-filtration.
By Lemma 3.13 e) it remains to consider the case $\langle\gamma\rangle \cap\left\langle\beta_{1}\right\rangle=0$: Then $\left\langle\beta_{1}, \gamma, \alpha^{2}, \alpha \beta_{1}\right\rangle=$ $\left\langle\beta_{1}, \alpha^{2}\right\rangle \oplus\left\langle\gamma, \alpha \beta_{1}\right\rangle$ by 3.15b). Thus $\operatorname{pdim}_{\Lambda}\left\langle\gamma, \alpha \beta_{1}\right\rangle<\infty$. Now $P_{x} \supset\left\langle\alpha, \beta_{1}, \gamma\right\rangle \supset\left\langle\alpha^{2}\right\rangle \oplus\left\langle\gamma, \alpha \beta_{1}\right\rangle \supset$ $\left\langle\alpha^{3}\right\rangle \supset \ldots\left\langle\alpha^{t}\right\rangle \supset 0$ is a suitable α-filtration.

References

[BGRS85] R. Bautista, P. Gabriel, A.V. Rojter, and L. Salmerón. Representation-finite algebras and multiplicative bases. Invent. Math., 81:217-285, 1985.
[Bon85] K. Bongartz. Indecomposables are standard. Comment. Math. Helv., 60:400-410, 1985.
[Bon09] K. Bongartz. Indecomposables live in all smaller lengths. arXiv:0904.4609, 2009.
[GR92] P. Gabriel and A.V. Roiter. Algebra VIII: Representations of finite-dimensional algebras. Encyclopaedia of Mathematical Sciences. 73. Berlin: Springer-Verlag., 1992.
[GSZ01] E.L. Green, Ø. Solberg, and D. Zacharia. Minimal projective resolutions. Trans. Am. Math. Soc., 353(7):2915-2939, 2001.
[Igu90] K. Igusa. Notes on the no loops conjecture. J. Pure Appl. Algebra, 69(2):161-176, 1990.
[Jen05] B. T. Jensen. Strong no-loop conjecture for algebras with two simples and radical cube zero. Colloq. Math., 102(1):1-7, 2005.
[Len69] H. Lenzing. Nilpotente Elemente in Ringen von endlicher globaler Dimension. Math. Z., 108:313-324, 1969.
[LM04] S. Liu and J.-P. Morin. The strong no loop conjecture for special biserial algebras. Proc. Am. Math. Soc., 132(12):3513-3523, 2004.
[MP95] N. Marmaridis and A. Papistas. Extensions of abelian categories and the strong no-loops conjecture. J. Algebra, 178(1):1-20, 1995.

[^0]: *E-mail: skorodumov@math.uni-wuppertal.de

