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Abstract

Let Λ be a finite dimensional associative algebra over an algebraically closed field with a
simple module S of finite projective dimension. The strong no loop conjecture says that this
implies Ext1Λ(S, S) = 0, i.e. that the quiver of Λ has no loops in the point corresponding to S. In
this paper we prove the conjecture in case Λ is mild, which means that Λ has only finitely many
two-sided ideals and each proper factor algebra Λ/J is representation finite. In fact, it is sufficient
that a ”small neighborhood” of the support of the projective cover of S is mild.

1 Introduction

Let Λ be a finite dimensional associative algebra over a fixed algebraically closed field k of arbitrary
characteristic. We consider only Λ-right modules of finite dimension.

The strong no loop conjecture says that a simple Λ-module S of finite projective dimension satisfies
Ext1Λ(S, S) = 0. To prove this conjecture for a given algebra we can switch to the Morita-equivalent
basic algebra and therefore assume that Λ = kQ /I for some quiver Q and some ideal I generated by
linear combinations of paths of length at least two. Then S = Sx is the simple corresponding to a
point x in Q and the conjecture means that there is no loop at x provided the projective dimension
pdimΛ Sx is finite.

The conjecture is known for

• monomial algebras by Igusa [Igu90],

• truncated extensions of semi-simple rings by Marmaridis, Papistas [MP95],

• bound quiver algebras kQ /I such that for each loop α ∈ Q there exists an n ∈ N with αn ∈
I \ (IJ + JI), where J denotes the ideal generated by the arrows [GSZ01],

• special biserial algebras by Liu, Morin [LM04],

• two point algebras with radical cube zero by Jensen [Jen05].

∗E-mail: skorodumov@math.uni-wuppertal.de
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In this paper, we prove the conjecture for another class of algebras including all representation-
finite algebras. To state our result precisely we introduce for any point x in Q its neighborhood

Λ(x) = eΛ e. Here e is the sum of all primitive idempotents ez ∈ Λ such that z belongs to the
support of the projective Px := ex Λ or such that there is an arrow z → x in Q or a configuration
y′ ← x⇄ y ← z with 4 different points x, y, y′ and z.
Recall that an algebra Λ is called distributive if it has a distributive lattice of two-sided ideals and
mild if it is distributive and any proper quotient Λ /J is representation-finite.

Our main result reads as follows:

Theorem 1.1

Let Λ = kQ /I be a finite dimensional algebra over an algebraically closed field k. Let x be a point
in Q such that the corresponding simple Λ-module Sx has finite projective dimension. If Λ(x) is mild,
then there is no loop at x.

Of course, it follows immediately that the strong no loop conjecture holds for all mild algebras, in
particular for all representation-finite algebras.

Corollary 1.2

Let Λ be a mild algebra over an algebraically closed field. Let S be a simple Λ-module. If the projective
dimension of S is finite, then Ext1Λ(S, S) = 0.

In order to prove the theorem we do not look at projective resolutions. Instead we refine a little
bit the K-theoretic arguments of Lenzing [Len69, Satz 5], also used by Igusa in his proof of the strong
no loop conjecture for monomial algebras [Igu90, Corollary 6.2], to obtain the following result:

Proposition 1.3

Let Λ = kQ /I be a finite dimensional algebra, x a point in Q and α an oriented cycle at x. If Px has
an α-filtration of finite projective dimension, then α is not a loop.

Here an α-filtration F of Px is a filtration

Px = M0 ⊃M1 ⊃ . . . ⊃Mn = 0

by submodules with
αMi ⊂Mi+1 ∀ i = 1 . . . n− 1.

The filtration F has finite projective dimension if pdimΛMi <∞ holds for all i = 1 . . . n− 1.
This proposition is shown by Lenzing in [Len69, Satz 5] for the special filtration Mi = αi Λ, but

his proof remains valid for all α-filtrations.
Our strategy to prove Theorem 1.1 is then as follows: We consider the point x with pdimΛ Sx <∞

and its mild neighborhood A := Λ(x). We assume in addition that there is a loop α in x. Then we
deduce a contradiction either by showing that pdimΛ Sx =∞ or by constructing a certain α-filtration
F of Px having finite projective dimension in mod- Λ and implying that α is not a loop by Proposition
1.3. Since Λ(x) contains the support of Px, this filtrations coincide for Px as a Λ-module and as a Λ(x)-
module. Thus we are dealing with a mild algebra, and we use in an essential way the deep structure
theorems about such algebras given in [BGRS85] and [Bon09] to obtain the wanted α-filtrations. In
particular, we show that we always work in the ray-category attached to Λ(x). This makes it much
easier to use cleaving diagrams. But still the construction of the appropriate α-filtrations depends on
the study of several cases and it remains a difficult technical problem. The α-filtrations are always
built in such a way that they have finite projective dimension in mod-Λ provided pdimΛ Sx <∞.

To illustrate the method by two examples we define 〈w1, . . . , wk〉 as the submodule of Px generated
by elements w1, . . . , wk ∈ Px.
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Example 1.4

Let Λ be an algebra such that Λ(x) is given by the quiver

Q = x

α ��

β1

��

γ1

����
��

��
��

�

z
γ2 // y1

β2 // y2

β3

__?????????

and a relation ideal I such that the projective module Px is described by the following graph:

ex

��?
??

??
??

����
��

��
�

��
γ1

γ2

��

α

������
��

��
�

β1

��
αβ1 α2 β1β2

oo

.

Notice that the picture means that there are relations α2 − λ1 β1β2β3, αβ1 − λ2 γ1γ2 ∈ I for some
λi ∈ k \{0}. From the obvious exact sequences

0→ radPx → Px → Sx → 0

0→ 〈β1, γ1〉 → radPx → Sx → 0

0→ 〈α2, γ1〉 → 〈α, γ1〉 → Sx → 0

we see that pdimΛ Sx < ∞ leads to pdimΛ radPx < ∞ and pdimΛ〈β1, γ1〉 < ∞. Since 〈β1, γ1〉 =
〈β1〉 ⊕ 〈γ1〉 and 〈α2, γ1〉 = 〈α2〉 ⊕ 〈γ1〉 in this example, both pdimΛ〈γ1〉 and pdimΛ〈α, γ1〉 are finite.
Then the following α-filtration F : Px ⊃ 〈α, γ1〉 ⊃ 〈α2〉 ⊃ 0 has finite projective dimension in mod-Λ.

In the next example we see that this method may not work if the neighborhood Λ(x) is not mild,
even if the support of Px is mild.

Example 1.5

Let Λ(x) = kQ /I be given by the quiver

Q = x

α

99

β1

((

γ

��

y

β2

hh

��
z

δ

::
((
z′hh

HH

and by a relation ideal I such that Px is represented by

ex

��?
??

??
??

����
��

��
�

��
γ

δ

��

α

������
��

��
�

β1

β2����
��

��
�

αγ α2

.

Here we get stuck because the uniserial module with basis {γ, αγ} allows only the composition series
as an α-filtration. Since we do not know pdimΛ Sz, which depends on Λ and not only on Λ(x), our
method does not apply.
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The article is organized as follows: In the second section we recall some facts about ray-categories
and we show how to reduce the proof to standard algebras without penny-farthings. This case is then
analyzed in the last section.

The results of this article are contained in my PhD-thesis written at the University of Wuppertal.
Acknowledgment: I would like to thank Klaus Bongartz for his support and for very helpful

discussions.

2 The reduction to standard algebras

2.1 Ray-categories and standard algebras

We recall some well-known facts from [BGRS85], [GR92].
Let A := Λ(x) = kQA /IA be a basic distributive k-algebra. Then every space exAey is a cyclic

module over exAex or eyAey and we can associate to A its ray-category
−→
A . Its objects are the points

of QA. The morphisms in
−→
A are called rays and

−→
A (x, y) consists of the orbits −→µ in exAey under the

obvious action of the groups of units in exAex and eyAey. The composition of two morphisms −→µ and
−→ν is either the orbit of the composition µν, in case this is independent of the choice of representatives

in −→µ and −→ν , or else 0. We call a non-zero morphism η ∈
−→
A long if it is non-irreducible and satisfies

νη = 0 = ην′ for all non-isomorphisms ν, ν′ ∈
−→
A . One crucial fact about ray-categories frequently

used in this paper is that A is mild iff
−→
A is so [GR92, see Theorem 13.17].

The ray-category is a finite category characterized by some nice properties. For instance, given

λµκ = λ νκ 6= 0 in
−→
A , µ = ν holds. We shall refer to this property as the cancellation law.

Given
−→
A , we construct in a natural way its linearization k(

−→
A ) and obtain a finite dimensional

algebra

A =
⊕

x,y∈QA

k(
−→
A )(x, y),

the standard form of A. In general, A and A are not isomorphic, but they are if either A is minimal
representation-infinite [Bon09, Theorem 2] or representation-finite with chark 6= 2 [GR92, Theorem
13.17].

Similar to A, the ray-category
−→
A admits a description by quiver and relations. Namely, there is

a canonical full functor → : P QA →
−→
A from the path category of QA to

−→
A . Two paths in QA are

interlaced if they belong to the transitive closure of the relation given by v ∼ w iff v = pv′q, w = pw′q

and
−→
v′ =

−→
w′ 6= 0, where p and q are not both identities.

A contour of
−→
A is a pair (v, w) of non-interlaced paths with −→v = −→w 6= 0. Note that these contours

are called essential contours in [BGRS85, 2.7]. Throughout this paper we will need a special kind of

contours called penny farthings. A penny-farthing P in
−→
A is a contour (σ2, ρ1 . . . ρs) such that the

full subquiver QP of QA that supports the arrows of P has the following shape:

σ

ρ2
•z3

•z1

ρ1

•z2

•zs

ρs

•zs−1

ρs−1
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Moreover, we ask the full subcategory AP ⊂ A living on QP to be defined by QP and one of the
following two systems of relations

0 = σ2 − ρ1 . . . ρs = ρsρ1 = ρi+1 . . . ρsσρ1 . . . ρf(i), (1)

0 = σ2 − ρ1 . . . ρs = ρsρ1 − ρsσρ1 = ρi+1 . . . ρsσρ1 . . . ρf(i), (2)

where f : {1, 2, . . . , s − 1} → {1, 2, . . . , s} is some non-decreasing function (see [BGRS85, 2.7]. For
penny-farthings of type (1) AP is standard, for that of type (2) AP is not standard in case the
characteristic is two.

A functor F : D →
−→
A between ray categories is cleaving ([GR92, 13.8]) iff it satisfies the following

two conditions and their duals:

a) F (µ) = 0 iff µ = 0.

b) If η ∈ D(y, z) is irreducible and F (µ) : F (y)→ F (z′) factors through F (η) then µ factors already
through η.

The key fact about cleaving functors is that
−→
A is not representation finite if D is not. In this article

D will always be given by its quiver QD, that has no oriented cycles and some relations. Two paths
between the same points give always the same morphism, and zero relations are indicated by a dotted
line. As in [GR92, section 13], the cleaving functor is then defined by drawing the quiver of D with

relations and by writing the morphism F (µ) in
−→
A close to each arrow µ.

By abuse of notation, we denote the irreducible rays of
−→
A and the corresponding arrows of QA by

the same letter.

2.2 Getting rid of penny-farthings

Using the above notations let P = (σ2, ρ1 . . . ρs) be a penny-farthing in
−→
A . We shall show now that

x = z1. Therefore σ = α and P is the only penny-farthing in
−→
A by [GR92, Theorem 13.12].

Lemma 2.1

If there is a penny-farthing P = (σ2, ρ1 . . . ρs) in
−→
A , then z1 = x.

Proof. We consider two cases:

• x ∈ QP : Hence QP has the following shape:

z1σ 77

ρ1...ρl

(( x

ρl+1...ρs

hh αee

But this can be the quiver of a penny-farthing only for z1 = x.

• x /∈ QP : Since A is the neighborhood of x, only the following cases are possible:

a) exAez 6= 0: Since x /∈ QP we can apply the dual of [Bon85, Theorem 1] or [GR92, Lemma

13.15] to
−→
A and we see that the following quivers occur as subquivers of QA:

z1σ 77

ρ1

$$
z2

ρ2

dd

xα 99

OO resp. z1σ 77

ρ1

$$
z2

ρ2

dd

xα 99

OO .
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Moreover, there can be only one arrow starting in x. This is a contradiction to the actual
setting.

b) ∃ z1 → x: By applying [Bon85, Theorem 1] or the dual of [GR92, Lemma 13.15] we deduce
that the following quiver occurs as a subquiver of QA:

z1σ 77

ρ1

$$

��

z2

ρ2

dd

xα 99

and there can be only one arrow ending in x contradicting the present case.

c) ∃ y′ ← x⇄ y ← z1: If y /∈ QP , then

z1σ 77

ρ1

$$

��

z2

ρ2

dd

y
##
xcc

is a subquiver of QA leading to the same contradiction as in b).
If y ∈ QP , then y = z2 and the quiver

xα 99

β1

$$

γ

��

z2

β2

cc z1 σgg
ρ1oo

y′

is a subquiver of QA. Since x /∈ QP , all morphisms occurring in the following diagram

D := • •
ρ2oo β2 // • •

αoo

γ

��

β1 // • •
ρ1oo σ // •

•

are irreducible and pairwise distinct. Therefore D is a cleaving diagram in
−→
A . Moreover,

some long morphism η = νσ3ν′ does not occur in D; hence D is still cleaving in
−→
A/η

by [Bon09, Lemma 3]. Since D is of representation-infinite Euclidean type Ẽ7,
−→
A/η is

representation-infinite contradicting the mildness of A.

Now, we show that, provided the existence of a penny-farthing in
−→
A , there exists an α-filtration of

Px having finite projective dimension.

Lemma 2.2

Let A = Λ(x) be mild and standard. If there is a penny-farthing in
−→
A , then there exists an α-filtration

F of Px having finite projective dimension.

6



Proof. If there is a penny-farthing P in
−→
A , then P = (α2, ρ1 . . . ρs) is the only penny-farthing in

−→
A

by the last lemma. Since A is standard and mild, there are three cases for the graph of Px which can
occur by [Bon85, Theorem 1] or the dual of [GR92, Lemma 13.15].

I) There exists an arrow γ : x→ z, γ 6= ρ1. Then s = 2, the quiver

xα 99

ρ1

##

γ

��

y

ρ2

cc

z

is a subquiver of QA, and Px is represented by the following graph:

ex

��?
??

??
??

������
��

��
�

γ α

�� ��?
??

??
??

ρ1

����
��

��
�

α2

��

αρ1

����
��

��
�

α3

.

Let M be a quotient of Px defined by the following exact sequence:

0→ 〈γ〉 ⊕ 〈ρ1, αρ1〉 → Px →M → 0.

Then M has Sx as the only composition factor. Hence pdimΛM <∞ and pdimΛ〈ρ1, αρ1〉 <∞.
Now, we consider the exact sequence

0→ 〈α3〉 → 〈ρ1, αρ1〉 → 〈ρ1〉/〈α
3〉 ⊕ 〈αρ1〉/〈α

3〉 → 0.

But 〈α3〉 ∼= Sx and pdimΛ Sx < ∞, hence 〈αρ1〉/〈α3〉 ∼= Sy has finite projective dimension in
mod- Λ. Finally, the α-filtration Px ⊃ 〈α〉 ⊃ 〈α2〉 ⊃ 〈α3〉 ⊃ 0 has finite projective dimension
since all filtration modules 6= Px have Sx and Sy as the only composition factors.

II) In the second case there exists a point z /∈ QP such that A(x, z) 6= 0. Then s = 2, the quiver

xα 99

ρ1

##
y

ρ2

cc

δ

��
z
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is a subquiver of QA, and Px is represented by:

ex

��?
??

??
??

��
α

�� ��?
??

??
??

ρ1

����
��

��
�

��?
??

??
??

α2

��

αρ1

����
��

��
�

ρ1δ

α3

.

With similar considerations as in I) we obtain that the same filtration fits.

III) In the last possible case we have A(x, z) = 0 for all points z /∈ QP . Hence Px is represented by:

ex

��

// ρ1

��
αρ1

��

α

��

oo ρ1ρ2

�� �O
�O
�O

αρ1ρ2

���O
�O
�O

α2

��

ρ1ρ2 . . . ρs−1oo

αρ1ρ2 . . . ρs−1 // α3

.

As a Λ-Module, M := Px/〈α2〉 has finite projective dimension since 〈α2〉 has Sx as the only
composition factor. Let K be the kernel of the epimorphism M → 〈α2〉, ex 7→ α2, then K =
〈ρ1〉/〈α2〉 ⊕ 〈αρ1〉/〈α3〉 has finite projective dimension. Moreover, pdimΛ〈ρ1〉, pdimΛ〈αρ1〉 <∞.
Since

0→ 〈αρ1〉 → 〈α〉
λα→ 〈α2〉 → 0

is exact, pdimΛ〈α〉 <∞. Thus the same filtration as in the first two cases fits again.

Lemma 2.3

With above notations let A = Λ(x) be mild and non-standard. There exists an α-filtration F of Px

having finite projective dimension.

Proof. If A is non-standard, then A is representation finite by [Bon09], chark = 2 and there is a

penny-farthing in
−→
A by [GR92, Theorem 13.17]. Since Lemma 2.1 remains valid, the penny-farthing

(α2, ρ1 . . . ρs), ρi : zi → zi+1, z1 = zs+1 = x, is unique. By [GR92, 13.14, 13.17] the difference between
A and A in the composition of the arrows shows up in the graphs of the projectives to z2, . . . , zs only.
Thus the graph of Px remains the same in all three cases of the proof of Lemma 2.2 and the filtrations
constructed there still do the job.

3 The proof for standard algebras without penny-farthings

3.1 Some preliminaries

If there is no penny-farthing in
−→
A , then A = A is standard by Gabriel, Roiter [GR92, Theorem 13.17]

and Bongartz [Bon09, Theorem 2]. By a result of Liu, Morin [LM04, Corollary 1.3], deduced from a
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proposition of Green, Solberg, Zacharia [GSZ01], a power of α is a summand of a polynomial relation
in I = IΛ. Otherwise pdimΛ Sx would be infinite contradicting the choice of x. Furthermore, α is
a summand of a polynomial relation in IA by definition of A. But IA is generated by paths and
differences of paths in QA. Hence we can assume without loss of generality that there is a relation
αt − β1β2 . . . βr in IA for some t ∈ N and arrows β1, β2, . . . , βr. Among all relations of this type we

choose one with minimal t. Hence (αt, β1β2 . . . βr) is a contour in
−→
A with t, r ≥ 2. Let y = e(β1) be

the ending point of β1 and β̃ = β2 . . . βr.
By the structure theorem for non-deep contours in [BGRS85, 6.4] the contour (αt, β1β2 . . . βr) is

deep, i.e. we have αt+1 = 0 in A. Since A is mild, the cardinality of the set x+ of all arrows starting
in x is bounded by three. Before we consider the cases |x+| = 2 and |x+| = 3 separately we shall prove
some useful general facts.

The following trivial fact about standard algebras will be essential hereafter.

Lemma 3.1

Let A = A be a standard k-algebra. Consider rays vi, wj ∈
−→
A \ {0} for i = 1 . . . n and j = 1 . . .m such

that vl 6= vk and wl 6= wk for l 6= k. If there are λi, µj ∈ k \{0} such that
∑n

i=1 λivi =
∑m

j=1 µjwj ,
then n = m and there exists a permutation π ∈ S(n) such that vi = wπ(i) and λi = µπ(i) for i = 1 . . . n.

Proof. Since the set of non-zero rays in
−→
A forms a basis of A, it is linearly independent and the claim

follows.

In what follows we denote by L the set of all long morphisms in
−→
A . By µ we denote some long

morphism ναtν′ which exists since αt 6= 0.

Lemma 3.2

Using the above notations we have:
〈β1〉 ∩ 〈αβ1〉 = 0

Proof. We assume to the contrary that 〈β1〉∩〈αβ1〉 6= 0. Then, by Lemma 3.1, there are rays v, w ∈
−→
A

such that β1v = αβ1w 6= 0. We claim that

D := •

αt−1

��

β1w

''OOOOOOOOOOOOOO •

v

��

β̃

wwoooooooooooooo

• •

is a cleaving diagram in
−→
A . It is of representation-infinite, Euclidean type Ã3. Since all morphisms

occurring in D are not long, the long morphism µ = ναtν′ does not occur in D and D is still cleaving

in
−→
A/µ by [Bon09, Lemma 3]. Thus

−→
A/µ is representation-infinite contradicting the mildness of A.

Now we show in detail, using [Bon09, Lemma 3 d)], that D is cleaving. First of all we assume
that there is a ray ρ with ρβ̃ = αt−1. Then we get 0 6= αt = αρβ̃ = β1β̃, whence αρ = β1 by the
cancellation law. This contradicts the fact that β1 is an arrow. In a similar way it can be shown that
ραt−1 = β̃, ρv = β1w and ρβ1w = v are impossible.
The following four cases are left to exclude.

i) αt−1ρ = β1w: Left multiplication with α gives us αtρ = αβ1w 6= 0. Hence there is a non-deep

contour (αt−1ρ1 . . . ρk, β1w1 . . . wl) in
−→
A . Here ρ = ρ1 . . . ρk resp. w = w1 . . . wl is a product

of irreducible rays (arrows). Since the arrow β1 is in the contour, the cycle β1β̃ and the loop
α belong to the contour. Hence it can only be a penny-farthing by the structure theorem for
non-deep contours [BGRS85, 6.4]. But this case is excluded in the current section.

ii) β̃ρ = v: We argue as before and deduce β1β̃ρ = β1v = αtρ = αβ1w 6= 0. Hence there is a non-deep
contour (αt−1ρ1 . . . ρk, β1w1 . . . wl) leading again to a contradiction.

9



iii) β1wρ = αt−1: Since t− 1 < t we have a contradiction to the minimality of t.

iv) vρ = β̃: Then β1vρ = β1β̃ = αt = αβ1vρ 6= 0. Using the cancellation law we get αt−1 = β1vρ a
contradiction as before.

Lemma 3.3

If t ≥ 3 and L * {α3, α2β1}, then α2β1 = 0.

Proof. If α2β1 6= 0, then

D := •
α // •

α

��

β1 // •

• •
αoo β1 // •

is a cleaving diagram of Euclidian type D̃5 in
−→
A . It is cleaving since:

i) α2 = β1ρ 6= 0 contradicts the choice of t ≥ 3.

ii) αβ1 = β1ρ 6= 0 contradicts Lemma 3.2.

It is also cleaving in
−→
A/η for η ∈ L \ {α3, α2β1} 6= ∅ contradicting the mildness of A.

Lemma 3.4

If 〈α2〉 ∩ 〈αβ1〉 = 0 = 〈β1〉 ∩ 〈αβ1〉, then 〈α
2, β1〉 ∩ 〈αβ1〉 = 0.

Proof. Let α2u + β1v = αβ1w 6= 0 be an element in 〈α2, β1〉 ∩ 〈αβ1〉. By Lemma 3.1 we can assume
that u, v, w are rays and the following two cases might occur:

i) β1v = αβ1w 6= 0: This is a contradiction since 〈β1〉 ∩ 〈αβ1〉 = 0.

ii) α2u = αβ1w 6= 0: This is impossible because 〈α2〉 ∩ 〈αβ1〉 = 0.

3.2 The case |x+| = 2

Lemma 3.5

If x+ = {α, β1} and L ⊆ {α3, α2β1}, then there exists an α-filtration F of Px having finite projective
dimension.

Proof. We treat two cases:

i) αβ1 = 0: Then for 〈αk〉 with k ≥ 1 only Sx is possible as a composition factor; hence pdimΛ〈α
k〉 <

∞. Thus Px ⊃ 〈α〉 ⊃ 〈α
2〉 ⊃ 〈α3〉 ⊃ 0 is the wanted α-filtration.

ii) αβ1 6= 0: Since α3 and α2β1 are the only morphisms in
−→
A which can be long, we have t = 3,

0 6= α3 ∈ L, 〈αβ1〉 = kαβ1
∼= Sy and 〈α2β1〉 ∈ {kα2β1, 0}.

Now we show that 〈α2〉 ∩ 〈αβ1〉 = 0. If there are rays v = v1 . . . vs, w ∈
−→
A with irreducible

vi, i = 1 . . . , s such that α2v = αβ1w 6= 0, then s > 0 because s = 0 would contradict the
irreducibility of α. Therefore v1 = α or v1 = β1.

• If v1 = α, then v′ = v2 . . . vs = id since α3 is long and 0 6= α2v = α3v′. Hence 0 6= α3 =
α2v = αβ1w and α2 = β1w contradicts the minimality of t.
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• If v1 = β1, then 0 6= α2v = α2β1v
′ = αβ1w; hence 0 6= αβ1v

′ = β1w ∈ 〈β1〉 ∩ 〈αβ1〉 = 0.

Since 〈β1〉 ∩ 〈αβ1〉 = 0 = 〈α2〉 ∩ 〈αβ1〉, we deduce 〈β1, α
2, αβ1〉 = 〈β1, α

2〉 ⊕ 〈αβ1〉 by Lemma 3.4.
Therefore the graph of Px has the following shape:

ex

��?
??

??
??

��
α

�� ��?
??

??
??
〈β1〉

�� �G
�G
�G
�G
�G
�G
�G
�G
�G

α2

�� ��?
??

??
?

αβ1

α3 α2β1

.

Here 〈β1〉 stands for the graph of the submodule 〈β1〉 which is not known explicitly. Consider the
module M defined by the following exact sequence:

0→ 〈β1, α
2, αβ1〉 → Px →M → 0

Then pdimΛM <∞ sinceM is filtered by Sx and pdimΛ(〈β1, α
2〉⊕〈αβ1〉) = pdimΛ〈β1, α

2, αβ1〉 <
∞. Thus pdimΛ(〈αβ1〉 ∼= Sy) is finite too and the wanted α-filtration is Px ⊃ 〈α〉 ⊃ 〈α2〉 ⊃ 〈α3〉 ⊃
0.

Lemma 3.6

If x+ = {α, β1}, t ≥ 3 and L * {α3, α2β1}, then α2ρ = 0 for all rays ρ /∈ {ex, α, . . . , αt−2}. Moreover,
〈α2〉 ∩ 〈αβ1〉 = 0.

Proof. Let ρ ∈
−→
A with α2ρ 6= 0 be written as a composition of irreducible rays ρ = ρ1 . . . ρs. Then the

following two cases are possible:

i) ρ = αs: Since 0 6= α2ρ = α2+s and αt+1 = 0 we have s ≤ t− 2 and ρ = αs ∈ {ex, α, . . . , αt−2}.

ii) There exists a minimal 1 ≤ i ≤ s such that ρi 6= α. Since x+ = {α, β1}, we have ρi = β1 and
0 6= α2ρ = α2+i−1β1ρi+1 . . . ρs = 0 by Lemma 3.3.

If 0 6= α2v = αβ1w, then v = αs with 0 ≤ s ≤ t− 2. Hence 0 = α2v = αs+2 = αβ1w and αs+1 = β1w
by cancellation law. This contradicts the minimality of t.

Corollary 3.7

If x+ = {α, β1}, t ≥ 3 and L * {α3, α2β1}, then 〈α2, β1〉 ∩ 〈αβ1〉 = 0.

Proof. The claim is trivial using Lemmas 3.2, 3.4 and 3.6.

Proposition 3.8

If x+ = {α, β1}, then there exists an α-filtration F of Px having finite projective dimension.

Proof. If L ⊆ {α3, α2β1}, then the claim is the statement of Lemma 3.5. If L * {α3, α2β1}, then we
consider the value of t:

11



i) t = 2: Then the graph of Px has the following shape:

ex

��?
??

??
??

��
α

�� ��?
??

??
??
〈β1〉

����
��

��

α2

��?
??

??
?
〈αβ1〉

〈α2β1〉

.

Let a subquotient M of Px be defined by the following exact sequence:

0→ 〈β1, αβ1〉 → Px →M → 0

Then M and 〈β1, αβ1〉 have finite projective dimension in mod- Λ. By Lemma 3.2 we have
〈β1, αβ1〉 = 〈β1〉 ⊕ 〈αβ1〉; hence pdimΛ〈β1〉 and pdimΛ〈αβ1〉 are both finite.
Let K be the kernel of the epimorphism λα : 〈β1〉 → 〈αβ1〉, λα(ρ) = αρ. Then pdimΛ K <∞ and
for the α-filtration F we take the following: Px ⊃ 〈α, β1〉 ⊃ 〈β1〉 ⊕ 〈αβ1〉 ⊃ 〈αβ1〉 ⊕K ⊃ K ⊃ 0.

ii) t ≥ 3: Consider the following exact sequences:

0→ 〈α, β1〉 → Px → Sx → 0

0→ 〈α2, β1, αβ1〉 → 〈α, β1〉 → Sx → 0

Hence pdimΛ〈α, β1〉 and pdimΛ〈α
2, β1, αβ1〉 are finite. By Corollary 3.7 〈α2, β1, αβ1〉 = 〈α2, β1〉⊕

〈αβ1〉, that means pdimΛ〈αβ1〉 is finite too. With Lemma 3.6 it is easily seen that for 2 ≤ k ≤ t
the module 〈αk〉 is a uniserial module with Sx as the only composition factor. Hence pdimΛ〈α

k〉
is finite for 2 ≤ k ≤ t. Thereby we have the wanted α-filtration

Px ⊃ 〈α, β1〉 ⊃ 〈α
2〉 ⊕ 〈αβ1〉 ⊃ 〈α

3〉 ⊃ 〈α4〉 ⊃ . . . ⊃ 〈αt〉 ⊃ 0.

3.3 The case |x+| = 3

With previous notations x+ = {α, β1, γ}, (αt, β1β2 . . . βr) is a contour in
−→
A , t ≥ 2, αt+1 = 0, β̃ :=

β2 . . . βr and µ = ναtν′ is a long morphism in
−→
A .

The α-filtrations will be constructed depending on the set L of long morphisms in
−→
A . The case

L ⊆ {α2, αβ1, αγ} is treated in Lemma 3.16, the case L ⊆ {αt, α2β1} in 3.17 and the remaining case
in 3.18.

But first, we derive some technical results.

Lemma 3.9

If r = 2 and δ : z′ → z is an arrow in QA ending in z = e(γ), then δ = γ.

Proof. Assume to the contrary that γ 6= δ : z′ → z, then there is no arrow β1 6= ε : y′ → y in QΛ. If
there is such an arrow, then by the definition of a neighborhood ε belongs to QA. This arrow induces

12



an irreducible ray β1 6= ε : y′ → y in
−→
A and

D := •
δ // • •

α

��

γoo β1 // • •
εoo

•

•

β2

OO

is a cleaving diagram in
−→
A/µ of Euclidian type Ẽ6.

In a similar way an arrow α, β2 6= ε : x′ → x in QΛ leads to a cleaving diagram of type D̃5 in
−→
A/µ. Hence the full subcategory B of Λ supported by the points x, y is a convex subcategory of Λ.
Therefore the projective dimensions of Sx, viewed as Λ or as B module, coincide. But in B we have
x+ = {α, β1}, whence we can apply Proposition 3.8 together with 1.3 to get the contradiction that α
is not a loop.

Lemma 3.10

If αγ 6= 0, then β1v 6= αγ 6= γw for all rays v, w ∈
−→
A .

Proof. i) Assume that there exists a ray v ∈
−→
A such that β1v = αγ 6= 0. Then

D := •

γ

��

αt−1

''OOOOOOOOOOOOOO •

β̃

��

v

wwoooooooooooooo

• •

is a cleaving diagram of Euclidian type Ã3 in
−→
A/µ.

• For γρ = αt−1 or vρ = β̃ we have αγρ = β1vρ = β1β̃ = αt 6= 0. Thus αt−1 = γρ contradicts
the choice of t.

• If αt−1ρ = γ or β̃ρ = v, then αtρ = β1β̃ρ = β1v = αγ 6= 0. Then αt−1ρ = γ contradicts the
irreducibility of γ.

ii) Assume that there exists a ray w = w1 . . . ws : z  z ∈
−→
A with irreducible wi such that

γw = αγ 6= 0.

r = 2: Since ws is an irreducible ray ending in z, ws = γ by Lemma 3.9. Thus we get a
contradiction γw1 . . . ws−1 = α.

r ≥ 3: We look at the value of s. If s = 1, then w = w1 is a loop and

D := •
w1=w // •

(1)

##

•
γoo

β1

��

α // •

(2)

{{

•
βroo

•

β2

��
•

13



is a cleaving diagram in
−→
A/µ.

If s ≥ 2, then

D := •
ws−1 //

(3)

<<•
ws // • •

γoo

β1

��

α // • •
βroo •

βr−1oo

(4)

bb

•

is cleaving in
−→
A/µ.

We still have to show that not any morphisms indicated by the dotted lines make the
diagrams commute.

(1): γρ = β1β2, with ρ = ρ1 . . . ρl. If ρ = wl
1 = wl, then β1β2 = γρ = γwl = αγwl−1

and β1β2 . . . βr = αt = αγwl−1β3 . . . βr 6= 0. Therefore αt−1 = γwl−1β3 . . . βr is a
contradiction. If ρ 6= wl

1, then one of the irreducible rays ρi 6= w1 starts in z and

D := • •
ρioo w1 // • •

γoo

β1

��

α // • •
βroo •

βr−1oo

(4)

bb

•

is cleaving in
−→
A/µ.

(2): If αρ = β1β2, then αρβ3 . . . βr = β1β2 . . . βr = αt 6= 0 and αt−1 = ρβ3 . . . βr contradicts
the minimality of t.

(3): If ργ = ws−1ws, then γw1 . . . ws−2ργ = γw = αγ 6= 0 and α = γw1 . . . ws−2ρ contra-
dicts the irreducibility of α.

(4): If ρα = βr−1βr, then β1β2 . . . βr−2ρα = β1β2 . . . βr = αt 6= 0 and αt−1 = β1β2 . . . βr−2ρ
contradicts the minimality of t.

Lemma 3.11

If t ≥ 3, then αγ = 0.

Proof. Assume that αγ 6= 0, then

D := • •
γoo β1 //

α

��

•

• •
γoo α // •

is a cleaving diagram of Euclidian type in
−→
A/µ. It is cleaving since:

i) γρ = αγ or β1ρ = αγ contradicts Lemma 3.10,

ii) γρ = α2 or β1ρ = α2 contradicts the minimality of t ≥ 3.

Lemma 3.12

a) If L * {α2, αβ1, αγ}, then αβ1 = 0 or αγ = 0.

b) If α2β1 6= 0, then γw 6= αβ1 for all w ∈
−→
A .

14



Proof. a) If αβ1 6= 0 and αγ 6= 0, then

D := •

α

��
• •

γ
oo β1 //

α

��

•

•

is a cleaving diagram of Euclidian type D̃4 in
−→
A . It is still cleaving in

−→
A/η for η ∈ L\{α2, αβ1, αγ} 6=

∅.

b) Since α2β1 6= 0, we have αγ = 0 by a). But γw = αβ1 leads to the contradiction 0 6= α2β1 =
αγw = 0.

Lemma 3.13

If t = 2 or L * {αt, α2β1}, then:

a) α2β1 = 0 = α2γ, α2ρ = 0 for all rays ρ /∈ {ex, α, . . . , αt−2}.

b) 〈β1〉 ∩ 〈αγ〉 = 0.

c) If 〈γ〉 ∩ 〈β1〉 = 0, then 〈γ〉 ∩ 〈α2〉 = 0.

d) 〈γ〉 ∩ 〈αt〉 = 0 or 〈γ〉 ∩ 〈αβ1〉 = 0.

e) 〈γ〉 ∩ 〈αβ1〉 = 0 or 〈γ〉 ∩ 〈β1〉 = 0.

f) 〈αβ1〉 ∩ 〈α2〉 = 0 and 〈αγ〉 ∩ 〈α2〉 = 0.

Proof. a) Consider the case t = 2.

i) If α2β1 6= 0, then βrβ1 6= 0 and

• •

α

��

γoo β1 // •

• •
β1oo •

βroo

is a cleaving diagram of Euclidian type D̃5 in
−→
A/µ. The diagram is cleaving because:

• β1ρ = αβ1 6= 0 is a contradiction of Lemma 3.2,

• γρ = αβ1 6= 0 contradicts Lemma 3.12 b).

ii) If α2γ 6= 0, then βrγ 6= 0 and

• •

α

��

γoo β1 // •

• •
γoo •

βroo

is a cleaving diagram in
−→
A/µ. It is cleaving since β1ρ = αγ resp. γρ = αγ contradicts

Lemma 3.10.

In the case t ≥ 3, α2γ = 0 by Lemma 3.11. If t = 3, then L * {α3, α2β1} by assumption. If
t > 3, then µ = ναtν′ ∈ L \ {α3, α2β1}. Hence α2β1 = 0 by Lemma 3.3 in both cases.
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b) If v, w are rays in
−→
A such that β1v = αγw 6= 0, then the diagram

D := •

γw

��

αt−1

''OOOOOOOOOOOOOO •

β̃

��

v

wwoooooooooooooo

• •

is a cleaving diagram in
−→
A/µ.

i) If γwρ = αt−1 or vρ = β̃, then β1vρ = β1β̃ = αt = αγwρ 6= 0. Hence γwρ = αt−1

contradicts the minimality of t.

ii) If αt−1ρ = γw or β̃ρ = v, then 0 6= β1v = β1β̃ρ = αγw = αtρ = 0 by a).

c) Let v, w be rays such that γv = α2w 6= 0. By a) we have w = αk with 0 ≤ k ≤ t− 2, that means
γv = α2+k. Since t is minimal, we have t = 2 + k and 0 6= γv = αt = β1β̃ ∈ 〈γ〉 ∩ 〈β1〉 = 0.

d) Let v, w, v′, w′ be rays in
−→
A such that γw = αtv 6= 0 and γw′ = αβ1v

′ 6= 0. Then

D := •

w

��

w′

''OOOOOOOOOOOOOO •

β1v
′

��

αt−1v

wwoooooooooooooo

• •

is a cleaving diagram in
−→
A/µ.

i) If wρ = w′ or αt−1vρ = β1v
′, then γwρ = γw′ = αtvρ = αβ1v

′ 6= 0. Hence there is a non-

deep contour (αt−1v1 . . . vkρ1 . . . ρl, β1v
′
1 . . . v

′
s) in

−→
A which can only be a penny-farthing by

the structure theorem for non-deep contours. But this case is excluded in the current section.

ii) If w′ρ = w or β1v
′ρ = αt−1v, then γw′ρ = γw = αβ1v

′ρ = αtv 6= 0. Again, we have a
non-deep contour (αt−1v1 . . . vk, β1v

′
1 . . . v

′
lρ1 . . . ρs) which leads to a contradiction as before.

e) Let v, w, v′, w′ be rays such that β1v = γw 6= 0 and αβ1v
′ = γw′ 6= 0. Then

•

w

��

w′

''OOOOOOOOOOOOOO • β̃

''OOOOOOOOOOOOOOv

wwoooooooooooooo •

αt−1

��

β1v
′

wwoooooooooooooo

• • •

is a cleaving diagram in
−→
A/µ.

i) If wρ = w′, we get the contradiction 0 6= γwρ = γw′ = β1vρ = αβ1v
′ ∈ 〈β1〉 ∩ 〈αβ1〉 = 0.

ii) If w′ρ = w, then 0 6= γw′ρ = γw = αβ1v
′ρ = β1v ∈ 〈β1〉 ∩ 〈αβ1〉 = 0.

iii) If vρ = β̃, then 0 6= β1vρ = β1β̃ = γwρ = αt ∈ 〈γ〉 ∩ 〈αt〉 = 0 by d).

iv) If β̃ρ = v, then 0 6= β1β̃ρ = β1v = αtρ = γw ∈ 〈γ〉 ∩ 〈αt〉 = 0 by d).

v) If αt−1ρ = β1v
′, then 0 6= αtρ = αβ1v

′ = γw′ ∈ 〈γ〉 ∩ 〈αt〉 = 0 by d).

vi) The case β1v
′ρ = αt−1 contradicts the minimality of t.

f) If v, w are rays in
−→
A such that αβ1v = α2w 6= 0 resp. αγv = α2w 6= 0, then w = αk with

0 ≤ k ≤ t − 2 and β1v = α1+k resp. γv = α1+k. Since t is minimal, we get the contradiction
t = 1 + k < t.

16



Lemma 3.14

If L * {α2, αβ1, αγ}, then 〈γ〉 ∩ 〈αγ〉 = 0.

Proof. In the case t ≥ 3, the claim is trivial since αγ = 0 by 3.11.

Consider the case t = 2. Assume that there exist rays v, w in
−→
A such that γv = αγw 6= 0. First

of all, we deduce that w 6= id by Lemma 3.10 and v 6= id since γ is an arrow. Therefore we can write

v = v1 . . . vs, w = w1 . . . , wq with irreducible rays vi, wj ∈
−→
A . Consider the value of q:

a) If q = 1, then the diagram

•
vs // • •

w1=woo •
γoo β1 //

α

��

•

•

γ

��

•
βroo k

�

�

•

is a cleaving diagram of Euclidian type Ẽ7 in
−→
A/µ (see [GR92, 10.7]).

b) If q ≥ 2, then the diagram

• •
w2...wqoo •

w1oo •
γoo β1 //

α

��

•

•

γ

��

•
βroo k

�

�

•

is cleaving in
−→
A/µ.

The diagrams are cleaving because:

i) αρ = γw 6= 0: Then 0 6= αγw = α2ρ = 0 by Lemma 3.13 a).

ii) γρ = αγ 6= 0 contradicts Lemma 3.10.

iii) β1ρ = γw 6= 0: Then 0 6= αγw = αβ1ρ = 0 since αβ1 = 0 by Lemma 3.12.

iv) ρvs = γw 6= 0: Then αρvs = αγw 6= 0. If ρ = β1ρ
′, then 0 = αβ1ρ

′vs = αγw 6= 0. If
ρ = γρ′, then αγρ′vs = αγw and w1 = w = ρ′vs. Hence ρ′ = id and vs = w1. Therefore
0 6= γv = γv1 . . . vs−1w1 = αγw1 and γv1 . . . vs−1 = αγ contradicting Lemma 3.10. If ρ = αρ′,
then 0 6= αγw = α2ρ′vs = 0 by Lemma 3.13 a).

v) β1ρ = αγ 6= 0 contradicts Lemma 3.10.

Lemma 3.15

Let L * {αt, α2β1} and L * {α2, αβ1, αγ}.

a) If 〈αγ〉 = 0 = 〈γ〉 ∩ 〈αβ1〉, then 〈β1, γ, α
2〉 ∩ 〈αβ1〉 = 0.

b) If 〈αγ〉 = 0 = 〈γ〉 ∩ 〈β1〉, then 〈β1, α
2〉 ∩ 〈γ, αβ1〉 = 0.

c) If 〈αβ1〉 = 0, then 〈β1, γ, α
2〉 ∩ 〈αγ〉 = 0.
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Proof. We only prove b); the other cases are proven analogously. Let v, v′, w, w′ ∈ A be such that

β1v + α2v′ = γw + αβ1w
′ 6= 0. That means we have rays vi, wj ∈

−→
A , numbers λi, µj ∈ k and integers

s1, s2 ≥ 0, n1, n2 ≥ 1 such that

s1∑

i=1

λi β1vi +

n1∑

i=s1+1

λi α
2vi =

s2∑

j=1

µjγwj +

n2∑

j=s2+1

µjαβ1wj

and β1vi 6= β1vj , α2vi 6= α2vj , γwi 6= γwj , αβ1wi 6= αβ1wj for i 6= j. Without loss of generality
we can assume that all λi, µj are non-zero, that β1vi 6= α2vj for i = 1 . . . s1, j = s1 + 1 . . . n1 and
γwi 6= αβ1wj for i = 1 . . . s2, j = s2 + 1 . . . n2. Then by Lemma 3.1 we have n1 = n2 and there exists
a permutation π such that β1vi = γwπ(i) ∈ 〈β1〉 ∩ 〈γ〉 = 0 or β1vi = αβ1wπ(i) ∈ 〈β1〉 ∩ 〈αβ1〉 = 0 by
Lemma 3.2. Hence s1 = 0. Moreover, by Lemma 3.13 we have α2vi = γwπ(i) ∈ 〈α

2〉 ∩ 〈γ〉 = 0 or
α2vi = αβ1wπ(i) ∈ 〈α

2〉 ∩ 〈αβ1〉 = 0; this is possible for n1 − s1 = 0 only. Hence n1 = 0, contradicting
the choice of n1.

Lemma 3.16

If L ⊆ {α2, αβ1, αγ}, then there exists an α-filtration F of Px having finite projective dimension.

Proof. Since L ⊆ {α2, αβ1, αγ}, µ = α2 is long and t = 2. Now it is easily seen that 〈α2〉 = kα2 ∼= Sx,
〈αγ〉 = kαγ, 〈αβ1〉 = kαβ1 and 〈α〉 has a k basis {α, α2, αβ1, αγ}. Using Lemma 3.2 and 3.10 we
conclude 〈β1〉 ∩ 〈αβ1〉 = 0 and 〈γ〉 ∩ 〈αγ〉 = 0 = 〈β1〉 ∩ 〈αγ〉.
By Lemma 3.13 d) 〈γ〉 ∩ 〈α2〉 = 0 or 〈γ〉 ∩ 〈αβ1〉 = 0. Thus the graph of Px has one of the following
shapes:

ex

��?
??

??
??

����
��

��
�

��
〈γ〉

,,

α

������
��

��
�

��?
??

??
??
〈β1〉

rrαγ α2 αβ1

or ex

��?
??

??
??

����
��

��
�

��
〈γ〉

��

α

������
��

��
�

��?
??

??
??
〈β1〉

rrαγ α2 αβ1

.

In the first case we consider the following exact sequence:

0→ 〈α2〉 → 〈α, β1, γ〉 → 〈α, β1, γ〉/〈α
2〉 → 0

Since 〈α〉 has k basis {α, α2, αβ1, αγ〉 and L ⊆ {α
2, αβ1, αγ} we have 〈α, β1, γ〉/〈α

2〉 = 〈α〉/〈α2〉 ⊕
〈β1, γ〉/〈α2〉. Hence pdimΛ〈α〉 <∞ and Px ⊃ 〈α〉 ⊃ 〈α2〉 ⊃ 0 is the wanted filtration.

In the second case we have 〈α, β1, γ〉/〈α2〉 = 〈α, γ〉/〈α2〉⊕〈β1〉/〈α2〉. Thus pdimΛ〈α, γ〉 <∞. Now
we consider

0→ 〈β1, γ, αγ〉 → 〈α, β1, γ〉 → Sx → 0.

Since 〈β1, γ, αγ〉 = 〈β1, γ〉 ⊕ 〈αγ〉, we have pdimΛ〈αγ〉 < ∞ and Px ⊃ 〈α, γ〉 ⊃ 〈α
2, αγ〉 ⊃ 0 is a

suitable filtration.

Lemma 3.17

If L ⊆ {αt, α2β1}, then there exists an α-filtration F of Px having finite projective dimension.

Proof. If t = 2, then α2β1 = 0 by Lemma 3.13 a). Hence L ⊆ {α2} and the filtration exists by Lemma
3.16.
If t ≥ 3, then αγ = 0 by Lemma 3.11. From the assumption L ⊆ {αt, α2β1} it is easily seen that
〈αβ1〉 = kαβ1 and 〈α2β1〉 = kα2β1.

i) If α2β1 = 0, then αt is the only long morphism in
−→
A ; hence αβ1 = 0 and 〈αk〉, k ≥ 1, is uniserial

of finite projective dimension. Thus Px ⊃ 〈α〉 ⊃ 〈α2〉 ⊃ . . . ⊃ 〈αt〉 ⊃ 0 is a suitable α-filtration.
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ii) If α2β1 6= 0, then 〈αβ1〉 = kαβ1
∼= Sy

∼= 〈α2β1〉. By 3.2 and 3.12 b)
〈β1〉 ∩ 〈αβ1〉 = 0 = 〈γ〉 ∩ 〈αβ1〉. Therefore the graph of Px has the following shape:

ex

��?
??

??
??

����
��

��
�

��
〈γ〉

((

''

α

�� ��?
??

??
??
〈β1〉

vv

α2

�� ��?
??

??
?

αβ1

α3

��

α2β1

αt

.

Moreover, 〈αβ1〉 ∼= Sy is a direct summand of the module 〈α2, β1, γ, αβ1〉, which has finite pro-
jective dimension. Since the modules 〈α〉, 〈α2〉, . . . , 〈αt〉 have Sx and Sy as the only composition
factors, they are of finite projective dimension. Thus Px ⊃ 〈α〉 ⊃ 〈α2〉 ⊃ . . . 〈αt〉 ⊃ 0 is a suitable
α-filtration.

Proposition 3.18

If x+ = {α, β1, γ}, then there exists an α-filtration F of Px having finite projective dimension.

Proof. By lemmata 3.16 and 3.17 we can assume that L * {αt, α2β1} and L * {α2, αβ1, αγ}. Then
pdimΛ〈α

k〉 < ∞ for 2 ≤ k ≤ t since 〈αk〉 has only Sx as a composition factor by 3.13 a). Moreover,
pdimΛ〈α, β1, γ〉 <∞ since it is the left hand term of the following exact sequence:

0→ 〈α, β1, γ〉 → Px → Sx → 0.

By Lemma 3.12 a) only the following two cases are possible:

i) αβ1 = 0: Consider the following exact sequence:

0→ 〈β1, γ, α
2, αγ〉 → 〈α, β1, γ〉 → Sx → 0.

Then pdimΛ〈β1, γ, α
2, αγ〉 < ∞. By 3.15 c) we have 〈β1, γ, α

2, αγ〉 = 〈β1, γ, α
2〉 ⊕ 〈αγ〉; hence

pdimΛ〈αγ〉 < ∞. Therefore Px ⊃ 〈α, β1, γ〉 ⊃ 〈α2〉 ⊕ 〈αγ〉 ⊃ 〈α3〉 ⊃ . . . 〈αt〉 ⊃ 0 is a suitable
α-filtration.

ii) αγ = 0: Then pdimΛ〈β1, γ, α
2, αβ1〉 <∞ since we have the exact sequence

0→ 〈β1, γ, α
2, αβ1〉 → 〈α, β1, γ〉 → Sx → 0.

If 〈γ〉 ∩ 〈αβ1〉 = 0, then by 3.15 a) we have 〈β1, γ, α
2, αβ1〉 = 〈β1, γ, α

2〉 ⊕ 〈αβ1〉; hence
pdimΛ〈αβ1〉 < ∞. Therefore Px ⊃ 〈α, β1, γ〉 ⊃ 〈α2〉 ⊕ 〈αβ1〉 ⊃ 〈α3〉 ⊃ . . . 〈αt〉 ⊃ 0 is a suitable
α-filtration.
By Lemma 3.13 e) it remains to consider the case 〈γ〉 ∩ 〈β1〉 = 0: Then 〈β1, γ, α

2, αβ1〉 =
〈β1, α

2〉⊕〈γ, αβ1〉 by 3.15 b). Thus pdimΛ〈γ, αβ1〉 <∞. Now Px ⊃ 〈α, β1, γ〉 ⊃ 〈α2〉⊕〈γ, αβ1〉 ⊃
〈α3〉 ⊃ . . . 〈αt〉 ⊃ 0 is a suitable α-filtration.
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