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1. Introduction

The studies of ultracold quantum matter in artificially desid external gauge fields is
one of the most rapidly developing areas of physics of ultih@toms [1, 2/ B[14,]5].
Originally, these studies arose from investigations eglaio the response of superfluids,
such as Bose-Einstein condensates (BEC), to rotation &f.4]). On one hand, rotation
induces quantized vortices and/or vortex Abrikosov le&i¢8]. On the other, its effects
are equivalent to those of an artificial constant (Abeliamgmetic field. The latter analogy
has led to the idea of realizing strongly correlated quaniigaids, such as the celebrated
Laughlin liquid of the fractional quantum Hall effect (FQWES. [Q]) by means of rapid
rotation [10/11]. Unfortunately, reaching the FQHE regiwith rotation is experimentally
very difficult; it has been achieved recently, but in a systefnonly 1 < N < 10 atoms
in rotating microtraps (lattice site potential well§) [123]. Several researchers proposed,
thus, alternative approaches involving for instance lasguced gauge fields that employ
dark states in 3-level systens [14], or laser induced gaetgsfacting on atoms confined in
an optical lattice[[15, 16, 17]. Other approaches conceratding optical lattices [18, 19],
or interactions of lattice atoms embedded in a rotating BE}. [Interestingly, the proposals
involving lasers can be relatively straightforwardly gealzed to particles possessing internal
"color" states subjected to artificial non-Abelian gaugklfig21,22].

In the last two years there has been a large number of workamgring these ideas
and proposing experimental realization within the reackhefcurrent state of the art. The
NIST group employed an approach similar fol[14] and used RafBaagg) transitions in
Sodium to realize experimentally the first non-zero cortstactor (corresponding to zero
"artificial" magnetic field)[[28]. Note that when the gaugersyetry is provided byNature
only gauge invariant observables are physical. In the casetificial gauge potentials the
situation is in principle different. Gauge potential ar@tolled by the experimenters and the
measurements of quantities that depend on the choice oegaagossible; in another words,
the very process of the creation of the gauge potential igaoge invariant, even though the
resulting Hamiltonians are (for discussion [24, 25][263). NIST group was also able
to generate vortices using the same scheme with a poteatiijaration corresponding to a
non zero artificial magnetic field[27]. Several practicabssions of the scheme 0f [14] were
discussed in[28, 29]. New schemes were proposed for alkdlearth-alkali atoms in optical
lattices employing superlattice techniquies! [30, 31], am@immic chips[[32]. Very recently,
the creation of spin-orbit couplings, a special instancsyaithetic non-abelian fields, was
reported[[33].

Artificial non Abelian gauge fields are particularly inteirg, since they provide a
natural framework to simulate relativistic physics of th&@d@ equation. Atrtificial Dirac
physics has been in recent years at the center of intereshitenised matter in the context of
studies of the amazing properties of graphen&[34, 35, 38R B9 40, 41, 42, 43, 44, 145]. In
the case of graphene the Dirac points in the dispersiorioalappear due to the geometry of
the underlying hexagonal lattice. This idea can be carnied  cold atoms[46]; a hexagonal
optical lattice (OL) with spinor bosons has been recentjized experimentally [47]. Also,
other systems not relying on a lattice have been proposethtoage Dirac particles [48].
Other systems where Dirac physics plays a role include fufeBHe-A [49,50] (where the
analogy to Particle physics can be extended to include gatggaction and Standard model
phenomena, for instance seel[51]), trapped ibns[52, 5B%%B6], or Fermi-Bose mixtures

[57].
In the case of artificial non-Abelian laser-induced fieldNGAF) the connection to
Dirac physics was pointed out in [58]. The Dirac equatioreisponsible for the anomalous
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integer quantum Hall effect in artificislU (2) fields on a 2D square lattice, and topological
guantum phase transitions on 2D hexagonal lattices, asaw@IQHE[[59]. These situations
correspond to relativistic physics in 2+1 dimensional gpiate [60[ 61, 62, 63]. Very recently,
several proposals were formulated for the creation of ANALB+1 dimensional (3D spatial)
allowing for simulations of Wilson fermion$ [64] and axidé5] quantum electrodynamics
with ultracold atoms66, 31].

So far, most of the proposals have dealt with constant norigbéelds strengths (i.e
constant Wilson loops), staggered Abelian gauge fi€lds§8J,, or, in the rare cases, fields
that are linear in the spacial coordinates![22, 69]. The ®e&gquation, resulting in some
of these situations, corresponds to a Dirac equation in a/filakowski space. The crucial
ingredient of such studies was based on the analysis of $peidion relation between energy
and quasi-momentum, as in graphen€ [45]. Energy bands toushblated singular points,
called Dirac points. In the vicinity of these points, thepdission relation linearizes, and a
cone is formed. Dirac physics can then be realized for fensiadjusting the Fermi surface
to include the Dirac point, and considerilogv lying energy excitations.

In this paper we take a different perspective on this issompl@ying standard concepts
from Hamiltonian lattice gauge theory (HLGT) [70]. We argtmat using artificial non-
Abelian fields in lattices it is possible to simulate with @@toms a Dirac spinor in the same
way as it is done in HLGT. In another words, the Hubbard Hamiklin describing the physics
of atoms in artificial non-Abelian fields in lattices is edsdhe HLGT version of the Dirac’s
Hamiltonian. That is to say, in the scheme we consider, @itatons of the fermion field in
the lattice are Dirac-like, not only the low lying ones. Thivantage of this point of view is
that it allows one to couple the simulated Dirac-fields teexal fields, or quantum fields in
a straightforward way, which is not so clear in artificial pin@ne-like systems.

In particular, we will show that it is possible to considerupting Dirac fermions
to an artificial gravitational field, that is to consider théd2 equation in curved space.
We will identify and focus on a special class of space-timdrite that admit a simple
formulation of the Dirac lattice Hamiltonian in terms of arfe-Hubbard model subjected
to an artificial SU (2) field [61], corresponding to tunneling matrices with pasitidependent
overall hopping rate.

We will not consider here the fermion doubling problem assitinessential for the
discussion of gravitational effedﬂs Feasible solutions of such a problem in OL simulations
of 3+1 fermions have been very recently proposedin [66] &ddl [

The motivation for simulating the Dirac equation in curvedse-time is at least two-
fold. The propagation of fermions in curved space is eqierimentallyaccessible in high-
energy physics/cosmology as the (piece of the) Univerdentbare nowadays able to probe is
practically flat [74]. The lattice realization proposedie tpaper is an appropriate description
of the continuum physics for processes occurring over saaflseveral lattice spaces. The
realization with cold atoms in OL provides us with “lap-toyperiments”, paving the way
to observe exotic effects like the Thermalization Theorafsp known as Fulling-Davies-
Unruh effect([75[76."77] (for a review on the subject see J.7&oughly speaking, it states
that an accelerated observer perceives the Minkowski vacsia thermal bath. This is a
manifestation as Hawking radiatidn [79] of the same phenmmenamely the existence of a
non-trivial Bogoliubov transformation between the Minkskivacuum and a space-time with
a horizon. The effect of the latter, in Quantum Informatianduage, is to “trace-out” part

1 The mixture of the two Dirac points due to the gravitationatkground potentially induces a gauge field coupling
to the composite fermions, (for graphene like lattice seetample[[71, 42, 72, 73]). However, the field contribution
is relevant in the presence of conical singularities, @iation or dislocation in the graphene language, while is
negligible when the metric is smooth.
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of the system, giving raise to a thermal reduced densityirainother exotic gravitational
effect to observe might be the curved space-time versiorittefrBewegund[80], to compare
with its recent observation achieved in flat space [54].

On other hand, simulating the Dirac equation in curved sjraeegives rize to the
possibility of modelling the analogues of graphene ripgiesaflat, squarelattice. Such a
possibility could help in disentangling the action of ripp(which admit a natural “geometric”
interpretationd[81] or a gauge field interpretations, E88]) on the carrier density from other
contributions.

Different approaches to quantum simulation include theesianulation of the dynamics
of a strongly correlated systems by unitary gafes [83], er tthe creation of interesting
strongly correlated states which are ground states ofdatielg Hamiltonians [84].

The paper is organized as follows. In secfidn 2 we demomstratv the lattice Dirac
Hamiltonian in flat space-timé[85] can be obtained as therédiization of the continuum
Dirac HamiltonianH. This Hamiltonian is identified then as the Hamiltonian of ®U(2)
Fermi-Hubbard model considered for instance in [61], whieeshopping terms are given by
the Pauli matrices;, i = x, y times a constant hopping rafe Although the discretization can
be done at this stage in many different ways, we obtain it lys®graining the "symmetric"
formulation of H in the fermion fieldy and its conjugate)’. This strategy turns out to
be very convenient in order to find the lattice version of tHea® Hamiltonian in curved
space-time. As the first exercise, after reviewing the fofthe continuum Hamiltonian on a
generic manifold (admitting a "time" isometry) in sectidnv& successfully apply the above
strategy to the interesting case of the 2+1 Rindler Univf88gin sectioi%. The resulting
lattice Hamiltonian differs from the Hubbard Hamiltoniaftbe flat case in the following:
the hopping rates exhibit a linear dependence with positeach a simple form is due to
the cancellation of the spin-connection, oncand« ! are treated in the same manner: as a
consequence the hopping matrices need not be locally dotéfe find that this simplification
happens in fact for any static spacetime. For the detailseofierivation we refer the reader to
the[Appendix B. We discuss under which conditions, and hefehmion propagation in such
space-times can be engineered and detected on opticedaiti sections]5 aid 6 that are the
heart of the work. There, several different experimentatsvaf implementing the Hubbard
model of interest are presented. We propose the densitatessas the relevant observable to
capture the Dirac physics. It is a measurable quantity botiraphene [87, 88, 89, 90] and
in OL [91,[92,/98[94. 95, 96. 97, 98] experiments. We completheoretical value of the
density of states analytically in the continuum limit uspeyturbation theory.

We collect our concluding remarks and discuss further dgraknts in section 7.

2. Dirac’s Hamiltonian on a Lattice

In this section we show, by discretization the spacial co@tés, that Dirac’s Hamiltonian in
2+1 dimensions is a hopping Hamiltonian with non-Abelian tuting matrices. To this end,
let us recall that Dirac’s equation in 2+1 dimensions regti%,» = 0, a = 0,1, 2, wherey,
are Dirac’s matrices satisfyingy., v} = 2745, 7as IS the metric, and) is a two component
spinor. The time evolution of the field is,

0o = —i(1°) T (Y'OL +7°0) ¢, @)
H
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from which we can easily read-off the Hamiltonian. As wast firsinted out in[[85], in 2+1
dimensions and on a lattice of spacifighe discretized version of equatidg (1) is

(") )
2A (’7 (djm-i—l,n - 1/1771—1,71) + Y (wm,n-i—l - wm,n—l)) y (2)

with ¢(x) = ¥(mA,nA) = ¢, ,. Rewriting the Hamiltoniang! = [ dxdy ¢ H1) we
obtain on the lattice,

i0% = —i

H = '(70)_1 T 1 1 9
= —’LT Z (’[/)erl,n'y wm,n + wm,nHV wm,n) + h.C. (3)

Itis easy to see thdfl(3) is nothing more than a Fermi-HubHardiltonian with non-Abelian
hopping matrices where the interactions and the effectefrp have been neglected. In the
notation of [61] we havé/, = ir® 'y! = iy andU, = i7° '42 = ioy (which implies
~vo9 = io3) and the Abelian fluxp = 0.

For further reference, we note that the lattice Hamiltord&rf3) can be alternatively
obtained by computing

1

H= / dady T HY = 5 / dady (H) Ty + % / dady T HY (4)

with the substitution of spacial derivatives with finite fdifences over one lattice spade
811/} s ¢m+1,nA*¢m,n anday¢ N Tﬁm,n+1A*¢m,n.

3. Dirac’s Equation in Curved Spacetime

In this section we review the formulation of Dirac’s equatimn a curved spacetime. L&f
be an arbitrary curved manifold and let us defineiebeine;, or set of vectors that form
a basis of the tangent spa€g; at each point of\/. Here the index. labels the spacetime
component and simply labels the basis vector.

Althoughej, is not constant in general, we require it to be covariantlystant (see for
example[[99]). We introduce a connectiorsuch that

a a a b
D[#ey] = 6[#61,} + W[Hbey] = 0 . (5)
This definesv and the covariant derivativ@,,. Dirac’s equation for a Fermi fielg will be
YDy =0, (6)

where~* are the curved spacetime gamma matrices. The flat-space @anatnicesy,
and they* are related byy,(z) = ef,(z)y,. Thus,we havey,(z), . (z)} = 2g..(z) if
{~a:w} = 2na and thevielbeinforms an orthonormal basig e = 7**, with g, andn,;,
the curved and flat-space metrics, respectively.

By separating the time componentwe hayeD,, = v'9;+ 17 wibvap+7' 0;+ 3w Yqp.
Now, we are ready to write out the time variationaf

. . -1 ) 1 1, .0 1 a
10y = —i (Vt) <7 0; + ZV w; bVab + Z'tht bVab) ¥, (7)

H
whereya, = YaV-

Hence, we have identified the Hamiltonian for a Dirac ferneara curved manifold. In
section’b we will proceed to its diagonalization analogguslithe flat case and discuss its
implementation on an optical lattice.
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4. An example: Dirac Hamiltonian in Rindler’s Universe

As an example, we will derive Dirac’s Hamiltonian in a pauterly simple spacetime. Let us
start by recalling that the Hamiltonian in curved spacetimben a timelike killing vector
is present, is the integral of the Hamiltonian density onnaetike hypersurface. In 2+1
dimensions we have,

H= / d¥? Yy Ha . (8)

The differential is the volume element on a timelike slice arcludes the determinant of the
metric,d%? = \/—gdxdy.
In Rindler’s space, the metric takes the form

ds* = —(ax)?dt® + dz? + dy*. )

We are interested in this metric for two reasons. First, this metric seen by an observer
in constant acceleration in flat spacetime. Therefore, ulcchave implications for earth-
dwelling detectors observing cosmic background radiatiBecond, it is the near-horizon
metric of a Schwarzschild black hole.

The Rindler metric suggests the choicedogiveine® = |ax|dt, ¢! = dz, €2 = dy.
Using [3) we may compute the spin connection, whose only vamishing component is
wd! = a% . Dirac equation[{l7), greatly simplifies in this spacetime,

[

. . 1
i0p) = —ia|x| (—72 <3I + m) + ’ylay) P (20)
H
where we have used th@ty;v2 = —1, which holds only in 2+1 dimensions. In what follows,

we adopt the gamma matrices representation choice

Ox = =72, Oy =71, 0z= —170.

In order to carry out the discretization analogously to hois done for the case of a gauge
theory, we note that the Hamiltonian can be written in terfri® Hamiltonian density (10)
as

H= /dxdy VIHY = % /dxdy (Hp) T + %/dxdy DTHY
= % /dxdyx ((%W)%w + (%W)ny?/) - dJTa'mamw - wTUyale) . (11)

In this symmetric form the spin-connection term disappeard it turns out again once
integrating by parts.

The discretized version of the Hamiltonidn(11) is simplyadbed by the substitution
Opt) — w anddy,y — % with x = Am andy = An. One readily
gets
ia

H =
2

Z m (wjn-‘-l,no'mz/}m,n + wm,n+laywm,n) +H.c.. (12)
Therefore, a lattice with hopping matrices given.hy/; = imo;, i = x,y, growing linearly
in the x direction gives an appropriate description of free massfesmion in a Rindler
spacetime. Such an Hamiltonian can be in principle implgetim a OL. This problem
will be tackled in the next section.
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5. Dirac equation in curved spaces and optical lattices

In view of the explicit realization in a OL we focus to the das of spacetime where the
massless fermion propagation can be described by the Hilibi@del of the form

H = % Z Imn (wlwrl.,no'zwm,n + wjn,nJrla'y’l/)m,n) + h.c.. (13)

As discussed in full details in tfie Appendik B, we find thatldiéice Hamiltonian reduces to
this simple form only if the metric is static. In 2+1 dimensgit is equivalent to say that it
can be written (in a certain coordinate system) in a diagfmmal as

ds® = —f(x,y)dt* + [ (z,y)e? @Y (d2? + dy?). (14)

With this choice of coordinates the hopping rate is simplegiby.J,,,, = e®@mn),

This is not the only requirement to be satisfied to reproducé propagation on a OL,
however. Indeed, it is important to note that, even if theaDiHamiltonian written in the
symmetric form[(IB) is the same for any choice of the functidn (I4), the corresponding
Hamiltonian system is distinct for each metric as the catelmmomentum is

= iv/=gihn' = if 2>y,

and depends explicitly ofi. Now, in optical lattice experiments the canonical momeantsi
fixed by the anticommutation relation to be simply’ that impliesf = ¢®. Thus the cold
fermii)ns in the optical lattice simulate the propagatiomessless fermions in a metric of the
formld

ds? = —e?®dt? + da? + dy? . (15)

The Rindler metric[{9) correspondsdo= log(az).

Before moving to the explicit implementation of the Hamiltan [I3) in OL, let us
briefly discuss to what extent it is a good description of thiipaimics of massless fermions
in a space time given by (IL5). There are two kind of limitaio®n one hand, due to finite
size of the OL we are able to cover only a finite portion of spiage On the other end, the
lattice approximation is valid when the metric, or the fuowt®, is sufficiently smooth and
slowly varying over one lattice spae®. It is worth to note that the second problem can be
circumvented by using techniques from lattice gauge thébeycontinuum limit is obtained
by extrapolation).

These two limitations should not obscure the physical aanteowever, as OL with up
to 300 x 300 sites can be achieved. This implies that the overall vamatif the metric over
lattice can be of order one. Further considerations in tise cd Rindler space are given in
sectiorY.

5.1. Experimental realization

In this section we discuss briefly how one can achieve theogpiate site-dependent hopping
rate.J,,,, in an OL. We propose two different techniques.

Recently it was proposed in_[I0L, 131], that the intensity lné thopping can be
tailored almost at will by considering bichromatic spirtépendent superlattices that trap
the hyperfine states of alkali bosonic or fermionic atomse $plit of the hyperfine levels is
controlled by a magnetic field. The hopping between neighlgaZeeman sublevels of the
I (lower) hyperfine manifold, i.e. our "electrons", is inddoga adiabatic elimination of an

§ Itis worth noting that for a generic functioh the metric is curved and not Weyl-invariant, ¢fr100].
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intermediateF’ = '+ 1 (upper) hyperfine manifold coupled fovia an off-resonant Raman
transition. For the details of the scheme for fermiotfi& atoms, we refer to the original
proposall[31].*°K haveFF =9/2, and allow in principle to simulate any pseudo-spin<9/2,
employing the splitting of the Zeeman sub-levels in a magrigtd, and optical pumping to
the relevant sub-levels. For the purposes of the presest faqufficient to havé™” = 1/2, or
alternatively to use from the very beginning atoms witk= 1/2 in the ground state manifold,
such ag'Li.

To be more concrete, consideflai Fermi gas loaded on a 2D square optical lattice of
sizeL x L, where the relevantinformation of our quantum simulatensoded in the Zeeman
sub-levels of the hyperfine manifold =1/2. Laser-assisted tunneling methods allow us to
design arbitrary operatots,,, dressing the hopping between lattice sites> » + v, where
r = m& + ny, m,n,€ {1..L}, andv € {&,y}. Usually, such schemes rely on Raman
couplings to auxiliary states trapped in the links of thegimidl lattice and belonging to a
different hyperfine manifold. Here, following [1I01,]131] weaubichromatic spin-independent
superlattices , and use the secondary minima ef3/2 as bus states to mediate the hopping.
Note that the individual addressing of each hopping rateastgd by the Zeeman splitting
within the hyperfine manifolds, and the different detunimjshe Raman lasers. These
detunings can be quite large, so that the lifetimes of atomthe lattice (limited by photon
absorption and spontaneous emission) can be quite largedefr; ~ 1s. By making the
Raman laser intensity/detunings and/or Zeeman splitiragially dependent one obtains the
desired spatially dependent hopping rates which is nege$sathe realization of curved
space-times, equation {13). On top of that, is is possibles&éFeschbach resonances to turn
off the atom-atom scattering, and make the system esdgmt@i-interacting.

An alternative, and perhaps even a simpler method to retez&ermi-Hubbard model
of the form of [IB) can be achieved by taking into account théefiwaist of the lasers
used for the generation of the hopping terms. In general,ishan undesirable feature, and
it can usually be neglected. Indeed, typically Gaussiaarl@gams of waistv are used,
characterized by a Rayleigh length —the the distance aloaditection of propagation from
the waist to the place where the area of the cross sectioruislelb—z = 7w? /X with A
denoting the wavelenght. That is to say, within a volumevdfx z,, the ideal planar wave
is a good approximation, at least around the center of thenb&ar a lattice withL, = 30,
its linear size is30 x A/2, so that focusing a laser on the whole lattice~ 15\ leads
to zr ~ 700\, so that the plane wave description can be even used for ap afra few
hundreds of 2330 x 30 lattices.

There are, however, no technical obstacles to focus theslasemuch smaller spots,
smaller thanL\/2, keepingz, still quite large. Actually, such spacial modulation of the
intensity due to the waist of "real" lasers can be used todachopping terms that depend
non-trivially on the position[[29]. In general, the hoppirate, i.e. the modulus of the
hopping term, is proportional to the intensity of the laserducing it. For instance, taking the
paradigmatic example of the hopping induced by the Ramasitian in Jaksch and Zoller’s
setup[[15], an optical lattice implementing the Hamiltanid (I3) can be achieved for Raman
lasers propagatingl in the same direction, once we consider only the radial veaidtneglect
the waist along the bealﬂu In this case, the shape of the laser intensity will corresito the
e® factor of the metric.

Comparing the two methods explained above, the former hasadvantage that, in

|| Atthe moment, it is not clear to us whether it is possible tgieeer the hopping matrices, ando,, with parallel
and anti-parallel Raman laser. Actually, we do not know of erplicit realization of such hopping in a setup a
la Jaksch and Zoller. Maybe, the dark state or slow-lighthmet{14] is more promising. The main point that the
hopping rate is controlled by the intensity, remains valid.
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principle, any shape of,,,, i.e. any metric of the form{15), can be engineered, but at
the price of dealing with a quite involved experimental ajapas, while the latter, although it
allows for a restricted choice af,,,, (for instance a Gaussian shape) is almost for free. The
desired hopping rate profile is obtained by reverse engimgef laser waist.

6. Density of states at the Fermi level as simple observable

Let us turn to the discussion of possible detection schenfid3irac physics in curved
spacetime. A simple observable that characterizes sucsigehyand that contain information
about the effects of the beam waist is the density of stat@g182,[103]. This quantity
is routinely measured in graphene using scanning tuhnéld@Pand electron transmission
spectroscopy [87, 88]. For ideal graphene at zero tempertie density of states is zero at
the Fermi level and is proportional {&| (once we have fixe®r = 0) as the charge carries
are described by massless fermions propagating in flat spattee presence of deformations
of the graphene sheet its deviation from the free behavinrbeaanalytically computed at
first order from the propagator of the Dirac equation. Foitay[81], by modeling such
deformations as perturbations of the Minkowski metric ip@ssible to compute the Green
function treating the correction to the free equation aséracting terni/. In fact, in this
section we will first reproduce the computation[ofl[81] for atnic of the form [[Ib), instead
of the spatial deformation (as ih(A.1)) considered there.

Our final goal is to determine the local density of statesneefby

/dw\/—gd%p(w, r) = # of states, (16)
in terms of the Feynman propagator (see appendix) usingstatan
plw,r) = Sigr'(w)l Im [Tr Sp(w,r, )y |, (17)
™

wherer = (x, y).
In order to findSF(w,r,r) we start by using the defining equation for the fermion
propagator
./ = H D
W'
where thex indicates a point of the spacetime, to a metric of the férm.(BY retaining terms
linear in®, the above equation can be written as

Sp(x,x') = 8 (x — x'), (18)

o, 0
— ({0 5 Ptan + V() Sp (X)) = 0%(x = x). (19)
where
V =im (tI)BI + %&C@) + iy (@% + %aﬂ)) , (20)

is the effective “external potential”. As we are interestedr(w, r,r’) and due to the time
translation invariance
dw

e71-11)(15726,)5’};’ (U), r, I'/),
2m

Sr(x,x) = Sr(t— txr) = [

it is convenient to perform the Fourier transformation metiof [19)
(wyo — iVy -y — V(r)) Sp(w,r,v') = 68*(r — 1'). (21)
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The above equation can be solved consistently within thiedider approximation by

SL(w,r,x') = /dzr"S’%(w,r,r")V(r")S’%(w,r",r’), (22)
where
- A2k w70 —k-~
0 A ik(r— r)
Sp(w,r,r’) / (2m)2 w? — k2 + ie’ (23)

is the free fermion propagator and space translation'siamee holds. By using the Fourier
transformation ofb(r”)

2
B(r) = / (;ﬁf; P B(p), (24)

equation[(2R) can be explicitly computed performing thegnation inr”.
The relevant contribution to the trace turns out to be liriear. Explicitly

~ 2 .
Tr[SE(w,r,1)70] = / (;17:))2 e®PTo(p)I'(w,p), (25)
with
42k dw|k — Lp|?
Iw,p) = / (27)2 (w2 — K2 + d€) (w? . k—p)2+ ie)] ‘ (26)

The above integral is logarithmically divergent, but itsaiginary part is not. It is easy to
show that this is the only part contributing to the densitydded, asb(p) is the Fourier
transformation of a real functior(p)* = ®(—p), andT'(w, p) is even inp, I'(w,p) =
I'(w,—p), one finds

(Tr[g};(w,r,r)yo])* :/ d2 e PTP(p)*T'(w,p)*

¢ (p)l'(w, p)*, (27)

which immediately implies

op(w) = sign(w) % e®PT®(p) ImT(w,p). (28)

The explicit expression for Ifi(w, p) is

t
Im (. p) = 2w — % Im [M} , (29)
™ x(w, p)
P _ . .
wherey (w, p) \/‘4w2 )i de ) andp = |p|. More details are given
in the[Appendix

Hence, the density of states always receives a correctapoptional tod(r) itself

5p(w):/d2 2Jwl o le/ / dp P (p) Im {arczit(nwxg) p)]. (30)
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6.1. Example: Density of states for a Gaussian beam

We are now able to compute the correction to the density ¢ sthen the hopping has
a Gaussian shape due to the finite laser beam waist. Undesshenption that the Raman
lasers propagate alogglirection, this implies tha®(x, y) = —(%)2, whereq is of order10?

lattice spacings12]. A®(p) = +(%1L2)26”(pm)6(py), the second term of (B0) turns out to be
zero and the correction to the density of state simply resltwe

2
op(w) = /d%’ﬂfb(r) (31)
™
providing a clear experimental signature. The local dgneit states gets a quadratic
correction inz.
Incidentally, the same cancellation happens in case of parential behavior of, i.e.
for a linear®(r). Consequently, the simple relatidn{31) applies also ®d¢hse.

6.2. Experimental detection

A recent review of the detection methods that can be apptiedvestigate Dirac physics
with ultracold fermions in non-Abelian gauge fields is caméa an article authored by one
of us [91]. Here we just summarize this discussion with patér focus on density of states.
Let us start by observing that for a non-interacting Fernsi gi&l” = 0, the total number of
fermionsNp = f” dEp(FE), wherep is the chemical potential, equal At= 0 to the Fermi
energyEr. We see thap(Er) = dNr/dEr so that measuring of the variance /f; with
Er allows to determiney(Er). If the systems is confined additionally in a slowly varying
harmonic potential’(r), a local chemical potential can be introduge@) = Er — V(r),
and the corresponding local density of states, relatedettoital density by

n(x) = [ dE(EYO(n(r) - E),
where©(.) is the Heaviside (step) function. In this case we get

dn(r)/du(r) = p(p(r)),

i.e. a similar formula to the Streda formula used[in| [91] fetesttion of Hall conductivity.
The determination of density of states can be achieved by:

e Measurements of the total number of fermions as a functigh@ithemical potential.
Here, the best currently available methods are: diresitu individual atom detection
[©2,193/94], or quantum spin polarization spectroscopy/[9%}

e Measurements of the (coarse-grained) local density of itersnas a function of the
local chemical potential. Again, the best currently av@ldamethods are: direah situ
individual atom detectiori [92, 9B, 94], or quantum spin piaktion spectroscopy with
spatial resolutior [97].

e Measurements of frequency-momentum resolved singleganrtixcitation spectrum,
such as those being done in Bragg (Raman) scattering specpy(for a state-of-the-art
report see[[98]). The spectrum in such processes is propaitio the density of initial
states of the scattering process.

Of course, many other methods, such as atomic ARPES, nodisgerometry, or even
absorbtion and/or phase contrast imaging can give at lrdsect information aboup(E).
All of these methods are well developed in experiment witihagbld atoms (seé [91] and
references therein).
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7. Conclusions and Outlook

In this paper, we discussed the simulation of the Dirac eguan artificial curved space-
time with cold atoms. We showed that using state-of-thgetniques it is possible to
simulate relativistic fermion dynamics in curved spacesmwith aflat 2D squardattice for
an interesting class of 2+1 metrics. Moreover, we pointedloeirelation between a certain
class of Hubbard models and Dirac’s Hamiltonian in curvedkigeounds, which can be
employed to make analytic computations in the continuunit liithe former. We proposed
to characterize thBlatureof Dirac fermions on the lattice by measuring the densitytafes
at the Fermi level. This observable can be, on one hand, t&caly computed in perturbation
theory in terms of Dirac propagator, and, on the other hanai¢tessible to measurements.

The present study opens the way to the direct observatiotusive effects such as
Rindler noise. Because we deal with odd dimensional (2+hdRr system, the Dirac
thermal noise, measured by an ideal point-like De-Witt cieteas a consequence of the
local acceleration, is expected to be “anomalous” (see GhH[Zg]), i.e. it should follow
Bose-Einstein distribution. This issue is currently unideestigation.
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Appendix A. Dirac Hamiltonian in spatially (graphene like) deformed metric

Now we consider a different situation where the 2+1 metrisgatially non-trivial. Such a
case is relevant in describing the properties of a grapheset svith ripples. The most generic
spacial deformation (at least in some patch) can be alwaijewas

ds® = —dt® + 2@V (da? + dy?). (A1)

Thedriebeinare
A =dt e =e®@Vdy 2 =PV dy i=ua,y,

and the spin-connection can be chosen to be non-triviaspiacial part only

w'? = 9,®dr — 0, Ddy. (A.2)
It follows that the curvature is
—2d 12 —2P /2 2
QO =2e "0, = -2 "%(0; +0,)P. (A.3)

For instance, the slices of the metfic (A.1) at constant tiwiebe spheres or hyperboloids
for ® a positive or a negative quadratic formzoandy, respectively.
Applying (@) to this case we find

. . 1 1
00 = Hip = —ivoe”® (71((% + 5(%@712) + 72(0y — §5z‘1)712)) P (A.4)
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We are tempted to interpret the above Hamiltonian as thateahibns coupled to a
“geometric” non-Abelian vector potentid = (9,®, —0,®)o.. Adopting the the gamma
matrices’ representation of the previous section, we céte Wwras

Hip = —ie™® (0,(0p +iAL) + 0,(0y +i4,)) P, (A.5)

where the presence df indicates that the rotation in thes-plane, i.e. thesO(2) subgroup
of the Lorentz group, is promoted to a local symmetry in thekigagound described by the
metric [A). Such identification is related to the treatmehthe conical defects in the
graphene sheets (dislocations and disclinations) ase®ofanagnetic fluxes. However, that
this interpretation here is misleading as the gauge groep dot commute with the spacetime
symmetry, agr, anticommutes witly,, ando,,.

Taking in account this fact, the Hamiltonian density can enappropriately be written
as

1 1
My = =i (2200 + 50,9) +.0,(0, + 30,0 ) v, (A6)

where the symmetric role af andy is evident.
Now we are ready to compute the total Hamiltonian. By remgt{d) we get

H— / dady €22 i3, 430 (A7)

Using the the same manipulations as in the previous secgaraw recast it into a form where
the spin-connection is not present,

(3
H= / dedy e S (0N os — vlodw) | (A.8)
1=x,y
It follows that the discretized version &f, as in Rindler spacetime, takes the form of a SU(2)
Fermi-Hubbard model with the modulus of hopping dependimthe position
i eCP(mA,nA)
Hrp = 5 Z T (wjn-‘-l,no'mz/}m,n + wm,n+laywm,n) +h.c. (Ag)

At first sight it seems very surprising that the discretizeriitonian of massless fermions
in Rindler geometry coincides with the one of fermions pggtang in metric of the form
of (AJ). Indeed, by takingp = In(az) the expressiol (Al9) reduces {0[12). Such an
apparent contradiction disappears upon closer inspecdibtine end, from the point of view
of the Dirac Hamiltonian for both metrics, what has changét wespect to the flat case is
the effective speed of light, or equivalently the hoppinggravhich becomes position (and
direction) dependent.

Although the origin of the position-dependent hopping raiéifferent in the two cases, it
comes from the Hamiltonian density in the Rindler case wikitue to the invariant measure
in the other, the effect is the same. Roughly speaking, taerawvo possible way of modifying
the effective speed of light in one spacetime direction$e$ayz: one is to change;; while
the other is to changg,.. by an inverse factor.

Nevertheless, the eigenfunctions and the spectra of th&thoidinger problems remain
different as the Hamiltonian densities in the two cases are.
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Appendix B. The generic case

In order to treat the generic case let us retrace a few stejmratyze the formal expression for
the Hamiltonian[(B). First of all, we show that it correspend the Legendre transformation
of the relativistic Lagrangian:

L= [e=i[v=girD,. (B.1)

once we have chosen the coordinates to have that the tinkélikey vector is K = 9;, which

impliesd,g,.,, = 0. Indeed, by defining{ = (;;g—fwatw — L, the expressioriL{8) is recovered

—( 1
= =i [ Vi (vors prutm) v, i ®.2)

Now, it is instructive to check explicitly that the Hamilt@m above is a Hermitian
operator due to the existence of a timelike isometry. By gisivat (v*)" = ~o7*v, and
noticing that

— T —
(U) ’Yuwyab’yab ¢) = _U) w,uab'yab 7“¢ ’
we get that

=i [ V=5 (0 - Jw, ) . ®3)

In order to compare the above expression witht is convenient to integrate by parts and
rewrite it as

. " 7 1 a 7 7
HY = —z/\/—gzﬂ(w O+ Jw, P Yaby* + 6i1n\/—g+8w)w
. (1 i i
=H—z/v—g¢ (Zw*‘ "Mab, 7] + 70 In /=g + 9y ) Y. (B.4)

H' and H are the same if and only if the metric, and consequently tiebdin, are
invariant under time translation. Indeed, due to the cotiweal constrain¥ e, + w#“ef, =
0, itis true that

a P _ P a _ a ,pb
e, Ve, = —egVye) = —eyqw, e’ (B.5)

which, using the commutatt,,, v*] = 4o )., implies

1 a a (&

Zwu b[’Yabﬁ”] - thwu beg = _(v#eg)'y = _vu,},# . (BG)
The cancellation follows from the identity

0y + 410 In/—g = Viy' = V", (B.7)

aso,In\/—g =T}, anddyt = 4'9yIn/—g = 0 ifand only if 9;g,,, = 0.
At this point, we can use expressién (B.3) féf to get a Hamiltonian symmetrical in
andy . By writing H = 1(H + H') we find

H = % /\/—_9 ((MW — Py o) — iww;b{%b,ww) . (B.8)

Let us characterize the ter@ = —%&wuab{%b,w}, which can be regarded as the

obstruction to write the lattice Hamiltonian simply as

_ ! i t
H=23"Jun (wmﬂjnazwmm + ¢m7n+1ay¢m,n) +he., (B.9)
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as found for the special cases discussed in the previoussectIsing the relation between
the spin-connection and the driebein and the anticommutatg, 7"} = 2e"“y4p. —in 2+1

dimensions it reduces toy.;, v*} = —%e“ceabc, it follows that
1 1 .
e = Ee““e”bauef, €abe = Eeme”baief, €abe - (B.10)

Hence, we conclude thé is identically zero when the metric is diagonal, as for thedRer
metric [9) and the spatially deformed metfic (A.1). In orttebe as general as possible, we
observe that any 2+1 spacetime admitting a timelike Killiegtor can be always reduced, at
least locally, to the form

ds® = — (@, y)(dt + Ma,))> + (2, y)e* @V (da? + dy?) , (B.11)

where\(x,y) = A\ (z, y)dz + A\, (x, y)dy is one-form independent of time.
It follows that:

eozf(dt—i-/\), ei:fflecbdzzri, T =x,Y, 7 = 172’
and that the inverse driebein are
co= [T, e1=—fe PN+ fe Dy, ea=—fe PN, + fem?,

The spin-connection can be chosen to be:

fe
fe

w = fe=%0, fdt +

w? = fe~*9, fdt — (0a(fAy) = 3y (fAe)) dv
w2 = LTI 5 (1) — 0,00 d
2 2 o
= (e -mn - L0 @) - oy ) ds
2,—P
- (@@ -mp+ B @uton) - o) ) an. (.12)

This implies the following relation for the coefficients:

01 _ 02 _ p—2,% 12
w, " =—w, = fTTe w7,

and thatw,,'* can be obtained fromn,,'* by exchanging: with y and 1 with 2 (which amounts
for the minus sign), accordingly to the symmetry of the nosfie.11).

We are ready to compute. After some algebra we get

f36—2<1>

12
The above expression means that the spin-connection witletan the symmetric form of
the Hamiltonian if and only the metric is static, i.e. the-dfdgonal terms due ta can be
reabsorbed by a change of coordinates. To prove this wemattéhie conditio® = 0 implies
that the form\ is exact, i.e. there exists a functiéh= F(z,y) such thatdFF = . Indeed,
this is the case as as can be seen by redefining the time catedisi’ = ¢ + I, as the final
metric is diagonal.

With the choice of the metri€ (B.11), the overall hoppingrat,,, is

©

Jn = €2 @moyn)
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Appendix C. The density of states

This section is devoted to deriving the relation betweerdiesity of states as a function of
the energy(F) and the propagator in a spacetime of dimensidnd). In order to do so we
will follow a constructive procedure. By definition we have

/dE p(E) = # of eigenstates of the Hamiltonidh. (C.1)

We will express the number of states as the number of polé®ipropagator when averaged
over the set of eigenstates Hf, {|n) }, which we demand be complete and normalizable (as
is the case for any sound Hamiltonian operator). Furtheemoe assume that the position
operator eigenstates) can be completed to give an orthonormal ba&sis) wherei encodes
allinternal degrees of freedom, such as the spin. Usindarém of residues and integrating
on a rectangular contour around the real axis of witth- 0 , we can write:

1 1 1
dFE —
—27Ti/ ;(E—i—ie—En E—ie—En>
1 1
——Im /dEzn:<n|7E_H+i€|n>

= -2 [aE [t S Gl el e O )

n,i,t’
1

=~ im /dE/ddr<r|<i|ﬁ|r>|i>. (C.2)

Form the above equation we conclude that
1

1
E)=—I d? | ————|r)|i
p(E) = im [ @il )}
that is the equation 34 given in [104]. To warm up we compugedibnsity of state in the free
case. As the Hamiltonian is diagonal in momentum space cibiwenient to writep(E) in
this basis:

1 1 1
E)=—=Im [ dyQ S e _
p(E) Wm/ 2 p<<p,+|E_H+i6|p,+>+<p, oyl >)

1 ) p|+E

=—Im /d r/dQQp <<p,+||r>|p|2 — _isigrw)6<rllp,+>
It E

|p|?2 — E2 —isign(E)e ’

1 ., [ d%p 2F
= [ | s 9

where d,2, = % is the Lorentz invariant measure and the normalization ef th

momentum statefp, ) is fixed accordingly. By taking to b = [ d?r the volume of
the system and by going to polar coordinates one finds

S T dp 2pF
E)=—I — - .
P(E) m/o 27 p?2 — E? — isign(E)e

™
The last integral can be solved in many ways, for example lapgimg variable ta = p? and
regularizing the integral with cut-off

#e.s. ofH =

(C.3)

+(p, —Ir)

(C.5)
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2

= o0 <1og(AE;2E) + 2mi(O(E) — 6(—E))) (C.6)

As the imaginary part is independent of the cut-off, the frealult, as expected, is

Az E E A2 — E? 1 — isign(E)e

— SR = — |log(—=—) +log | —————=—

o 2mz—FE?—isignNE)e 2w E? 1+ isign(E)e
E

o) = 5120 )

which is in agreement with the result quoted[in [104].

It is worth-while to note thap(E) can be written in terms of the Feynman propagator.
This fact can be derived in a more general setting. By daﬁim,itiE_;I—ﬂ.g is the Fourier
transformation in time of the retarded propagator definethbyequation

(10 — H)Gy (t —t') = 6(t — t') @ Igpin (C.8)

with boundary conditiong/ (¢t — ¢') = 0 for ¢ < t’. On the right-hand side of (3.8), the
identity in spin-space has been written explicitly to redtine reader thag, (¢—t") in general
acts as a matrix on the internal degrees of freedom. Aftetipying on the left byy! and on
the right by~; and taking the expectation value with eigenstates of théipo®perator the
above equation gives

—iv"0,G+ (t —t v, v )y = 5(t — t)dd(r — 1) ® Ispin: (C.9)

where we use'~; = 1. Hence, we conclude thgt, (t — ', r, ') is related to the Feynman
propagator as it solves the same equation. The preciseretan be derived by taking the
boundary conditions into account. This can be explicitlgated by Fourier-transforming to
momentum space. Indeed,

1 = E—'pi = Eve —'pi
E—H+ic'' E2—|pP+isignE)e '’ E%—|p|? +isignE)e
1
= - . C.10
VHpu — iSign(E)e (£20)
The above relation between the retarded propagator andviseypropagator can be extended
using perturbation theory to the interactive second gaedtformalism. To conclude, let us
remark that it is better to use the local definition of denfij) because it is easy to make it
generally covariant in order to apply it in a curved gravitaal background. In this way, the
generalize notion of inner product is properly taken intocamt due to[(1]9).

Appendix D. The computation of "

In order to compute I'(w, p) we note that the integral di(26) can be split in

d%k 1 w? —3p*+p-k

r =4 1 . (b1
(w.p) w/(%)? <k2—w2—ie+ (k2—w2—ie)((k—p)2—w2—z’e)) (-1
The first integral has been computed above for the free cabi#samaginary part gives

d?k 4w
I =2w. D.2
m/(?w)QkQ—wQ—ie v (D-2)




Dirac Equation For Cold Atoms In Artificial Curved Spacetine 18

The second integral is convergent and can be computed usymmtan parameter. After some
algebra one gets

4w|m/ il ) ) _
(2m)2 (k2 — w? —i€)((k — p)? — w? — i¢)
- %im v/ 4w? + ie — p? arctan S
™ 4w? + ie — p?|
w p
= ——/[4w? — p?| | ©(4w? — p?) Imarctan | ————ou—
N (o ) ——
p

—O(—4w? + p?) Rearctan (D.3)

VAw? +ie—p? | )’

where /4w? +ie — p? = /[4w? — p?| (O(4w? — p?) — iO(—4w? + p*)) and p is the

modulus ofp, p = |p|.
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