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1. Introduction

The studies of ultracold quantum matter in artificially designed external gauge fields is
one of the most rapidly developing areas of physics of ultracold atoms [1, 2, 3, 4, 5].
Originally, these studies arose from investigations related to the response of superfluids,
such as Bose-Einstein condensates (BEC), to rotation (cf. [6, 7]). On one hand, rotation
induces quantized vortices and/or vortex Abrikosov lattices [8]. On the other, its effects
are equivalent to those of an artificial constant (Abelian) magnetic field. The latter analogy
has led to the idea of realizing strongly correlated quantumliquids, such as the celebrated
Laughlin liquid of the fractional quantum Hall effect (FQHE) (cf. [9]) by means of rapid
rotation [10, 11]. Unfortunately, reaching the FQHE regimewith rotation is experimentally
very difficult; it has been achieved recently, but in a systemof only 1 < N ≤ 10 atoms
in rotating microtraps (lattice site potential wells) [12,13]. Several researchers proposed,
thus, alternative approaches involving for instance laser-induced gauge fields that employ
dark states in 3-level systems [14], or laser induced gauge fields acting on atoms confined in
an optical lattice [15, 16, 17]. Other approaches concernedrotating optical lattices [18, 19],
or interactions of lattice atoms embedded in a rotating BEC [20]. Interestingly, the proposals
involving lasers can be relatively straightforwardly generalized to particles possessing internal
"color" states subjected to artificial non-Abelian gauge fields [21, 22].

In the last two years there has been a large number of works reexamining these ideas
and proposing experimental realization within the reach ofthe current state of the art. The
NIST group employed an approach similar to [14] and used Raman (Bragg) transitions in
Sodium to realize experimentally the first non-zero constant vector (corresponding to zero
"artificial" magnetic field) [23]. Note that when the gauge symmetry is provided byNature
only gauge invariant observables are physical. In the case of artificial gauge potentials the
situation is in principle different. Gauge potential are controlled by the experimenters and the
measurements of quantities that depend on the choice of gauge are possible; in another words,
the very process of the creation of the gauge potential is notgauge invariant, even though the
resulting Hamiltonians are (for discussion see [24, 25] and[26]). NIST group was also able
to generate vortices using the same scheme with a potential configuration corresponding to a
non zero artificial magnetic field [27]. Several practical extensions of the scheme of [14] were
discussed in [28, 29]. New schemes were proposed for alkali and earth-alkali atoms in optical
lattices employing superlattice techniques [30, 31], and on atomic chips [32]. Very recently,
the creation of spin-orbit couplings, a special instance ofsynthetic non-abelian fields, was
reported [33].

Artificial non Abelian gauge fields are particularly interesting, since they provide a
natural framework to simulate relativistic physics of the Dirac equation. Artificial Dirac
physics has been in recent years at the center of interest in condensed matter in the context of
studies of the amazing properties of graphene [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. In
the case of graphene the Dirac points in the dispersion relation appear due to the geometry of
the underlying hexagonal lattice. This idea can be carried over to cold atoms [46]; a hexagonal
optical lattice (OL) with spinor bosons has been recently realized experimentally [47]. Also,
other systems not relying on a lattice have been proposed to emulate Dirac particles [48].
Other systems where Dirac physics plays a role include superfluid 3He-A [49, 50] (where the
analogy to Particle physics can be extended to include gaugeinteraction and Standard model
phenomena, for instance see [51]), trapped ions [52, 53, 54,55, 56], or Fermi-Bose mixtures
[57].

In the case of artificial non-Abelian laser-induced fields (ANALF) the connection to
Dirac physics was pointed out in [58]. The Dirac equation is responsible for the anomalous
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integer quantum Hall effect in artificialSU(2) fields on a 2D square lattice, and topological
quantum phase transitions on 2D hexagonal lattices, as wellas FQHE [59]. These situations
correspond to relativistic physics in 2+1 dimensional spacetime [60, 61, 62, 63]. Very recently,
several proposals were formulated for the creation of ANALFin 3+1 dimensional (3D spatial)
allowing for simulations of Wilson fermions [64] and axion [65] quantum electrodynamics
with ultracold atoms [66, 31].

So far, most of the proposals have dealt with constant non Abelian fields strengths (i.e
constant Wilson loops), staggered Abelian gauge fields [67,68], or, in the rare cases, fields
that are linear in the spacial coordinates [22, 69]. The Dirac equation, resulting in some
of these situations, corresponds to a Dirac equation in a flatMinkowski space. The crucial
ingredient of such studies was based on the analysis of the dispersion relation between energy
and quasi-momentum, as in graphene [45]. Energy bands touchin isolated singular points,
called Dirac points. In the vicinity of these points, the dispersion relation linearizes, and a
cone is formed. Dirac physics can then be realized for fermions adjusting the Fermi surface
to include the Dirac point, and consideringlow lyingenergy excitations.

In this paper we take a different perspective on this issue, employing standard concepts
from Hamiltonian lattice gauge theory (HLGT) [70]. We arguethat using artificial non-
Abelian fields in lattices it is possible to simulate with cold atoms a Dirac spinor in the same
way as it is done in HLGT. In another words, the Hubbard Hamiltonian describing the physics
of atoms in artificial non-Abelian fields in lattices is exactly the HLGT version of the Dirac’s
Hamiltonian. That is to say, in the scheme we consider, all excitations of the fermion field in
the lattice are Dirac-like, not only the low lying ones. The advantage of this point of view is
that it allows one to couple the simulated Dirac-fields to external fields, or quantum fields in
a straightforward way, which is not so clear in artificial graphene-like systems.

In particular, we will show that it is possible to consider coupling Dirac fermions
to an artificial gravitational field, that is to consider the Dirac equation in curved space.
We will identify and focus on a special class of space-time metrics that admit a simple
formulation of the Dirac lattice Hamiltonian in terms of a Fermi-Hubbard model subjected
to an artificialSU(2) field [61], corresponding to tunneling matrices with position-dependent
overall hopping rate.

We will not consider here the fermion doubling problem as it is inessential for the
discussion of gravitational effects‡. Feasible solutions of such a problem in OL simulations
of 3+1 fermions have been very recently proposed in [66] and [31].

The motivation for simulating the Dirac equation in curved space-time is at least two-
fold. The propagation of fermions in curved space is notexperimentallyaccessible in high-
energy physics/cosmology as the (piece of the) Universe that we are nowadays able to probe is
practically flat [74]. The lattice realization proposed in the paper is an appropriate description
of the continuum physics for processes occurring over scales of several lattice spaces. The
realization with cold atoms in OL provides us with “lap-top experiments”, paving the way
to observe exotic effects like the Thermalization Theorem,also known as Fulling-Davies-
Unruh effect [75, 76, 77] (for a review on the subject see [78]). Roughly speaking, it states
that an accelerated observer perceives the Minkowski vacuum as a thermal bath. This is a
manifestation as Hawking radiation [79] of the same phenomenon: namely the existence of a
non-trivial Bogoliubov transformation between the Minkowski vacuum and a space-time with
a horizon. The effect of the latter, in Quantum Information language, is to “trace-out” part

‡ The mixture of the two Dirac points due to the gravitational background potentially induces a gauge field coupling
to the composite fermions, (for graphene like lattice see for example [71, 42, 72, 73]). However, the field contribution
is relevant in the presence of conical singularities, disclination or dislocation in the graphene language, while is
negligible when the metric is smooth.
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of the system, giving raise to a thermal reduced density matrix. Another exotic gravitational
effect to observe might be the curved space-time version of Zitterbewegung [80], to compare
with its recent observation achieved in flat space [54].

On other hand, simulating the Dirac equation in curved spacetime gives rize to the
possibility of modelling the analogues of graphene rippleson aflat, squarelattice. Such a
possibility could help in disentangling the action of ripples (which admit a natural “geometric”
interpretations [81] or a gauge field interpretations, e.g.[82]) on the carrier density from other
contributions.

Different approaches to quantum simulation include the exact simulation of the dynamics
of a strongly correlated systems by unitary gates [83], or the the creation of interesting
strongly correlated states which are ground states of interesting Hamiltonians [84].

The paper is organized as follows. In section 2 we demonstrate how the lattice Dirac
Hamiltonian in flat space-time [85] can be obtained as the discretization of the continuum
Dirac HamiltonianH . This Hamiltonian is identified then as the Hamiltonian of the SU(2)
Fermi-Hubbard model considered for instance in [61], wherethe hopping terms are given by
the Pauli matricesσi, i = x, y times a constant hopping rateJ . Although the discretization can
be done at this stage in many different ways, we obtain it by coarse graining the "symmetric"
formulation ofH in the fermion fieldψ and its conjugateψ†. This strategy turns out to
be very convenient in order to find the lattice version of the Dirac Hamiltonian in curved
space-time. As the first exercise, after reviewing the form of the continuum Hamiltonian on a
generic manifold (admitting a "time" isometry) in section 3, we successfully apply the above
strategy to the interesting case of the 2+1 Rindler Universe[86] in section 4. The resulting
lattice Hamiltonian differs from the Hubbard Hamiltonian of the flat case in the following:
the hopping rates exhibit a linear dependence with position. Such a simple form is due to
the cancellation of the spin-connection, onceψ andψ† are treated in the same manner: as a
consequence the hopping matrices need not be locally rotated. We find that this simplification
happens in fact for any static spacetime. For the details of the derivation we refer the reader to
the Appendix B. We discuss under which conditions, and how the fermion propagation in such
space-times can be engineered and detected on optical lattices in sections 5 and 6 that are the
heart of the work. There, several different experimental ways of implementing the Hubbard
model of interest are presented. We propose the density of states as the relevant observable to
capture the Dirac physics. It is a measurable quantity both in graphene [87, 88, 89, 90] and
in OL [91, 92, 93, 94, 95, 96, 97, 98] experiments. We compute the theoretical value of the
density of states analytically in the continuum limit usingperturbation theory.

We collect our concluding remarks and discuss further developments in section 7.

2. Dirac’s Hamiltonian on a Lattice

In this section we show, by discretization the spacial coordinates, that Dirac’s Hamiltonian in
2+1 dimensions is a hopping Hamiltonian with non-Abelian tunnelling matrices. To this end,
let us recall that Dirac’s equation in 2+1 dimensions readsγa∂aψ = 0, a = 0, 1, 2, whereγa
are Dirac’s matrices satisfying{γa, γb} = 2ηab, ηab is the metric, andψ is a two component
spinor. The time evolution of the fieldψ is,

i∂0ψ = −i
(
γ0
)−1 (

γ1∂1 + γ2∂2
)

︸ ︷︷ ︸

H

ψ , (1)
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from which we can easily read-off the Hamiltonian. As was first pointed out in [85], in 2+1
dimensions and on a lattice of spacing∆ the discretized version of equation (1) is

i∂0ψ = −i
(
γ0
)−1

2∆

(
γ1 (ψm+1,n − ψm−1,n) + γ2 (ψm,n+1 − ψm,n−1)

)
, (2)

with ψ(x) = ψ(m∆, n∆) = ψm,n. Rewriting the HamiltoniansH =
∫
dxdy ψ†Hψ we

obtain on the lattice,

H = −i
(
γ0
)−1

2∆

∑

m,n

(

ψ†
m+1,nγ

1ψm,n + ψ†
m,n+1γ

2ψm,n

)

+ h.c. (3)

It is easy to see that (3) is nothing more than a Fermi-HubbardHamiltonian with non-Abelian
hopping matrices where the interactions and the effect of the trap have been neglected. In the
notation of [61] we haveUx = iγ0

−1
γ1 = iσ1 andUy = iγ0

−1
γ2 = iσ2 (which implies

γ0 = iσ3) and the Abelian fluxΦ = 0.
For further reference, we note that the lattice Hamiltonianof (3) can be alternatively

obtained by computing

H =

∫

dxdy ψ†Hψ =
1

2

∫

dxdy (Hψ)†ψ +
1

2

∫

dxdy ψ†Hψ , (4)

with the substitution of spacial derivatives with finite differences over one lattice space∆,
∂xψ → ψm+1,n−ψm,n

∆ and∂yψ → ψm,n+1−ψm,n

∆ .

3. Dirac’s Equation in Curved Spacetime

In this section we review the formulation of Dirac’s equation on a curved spacetime. LetM
be an arbitrary curved manifold and let us define avielbeineaµ, or set of vectors that form
a basis of the tangent spaceTM at each point ofM . Here the indexµ labels the spacetime
component anda simply labels the basis vector.

Althougheaµ is not constant in general, we require it to be covariantly constant (see for
example [99]). We introduce a connectionω such that

D[µe
a
ν] = ∂[µe

a
ν] + ω[µ

a

b
ebν] = 0 . (5)

This definesω and the covariant derivativeDµ. Dirac’s equation for a Fermi fieldψ will be

γµDµψ = 0 , (6)

whereγµ are the curved spacetime gamma matrices. The flat-space gamma matricesγa
and theγµ are related byγµ(x) = eaµ(x)γa. Thus,we have{γµ(x), γν(x)} = 2gµν(x) if
{γa, γb} = 2ηab and thevielbeinforms an orthonormal basiseaµe

bµ = ηab, with gµν andηab
the curved and flat-space metrics, respectively.

By separating the time component we have,γµDµ = γt∂t+
1
4γ

tωabt γab+γ
i∂i+

1
4ω

ab
i γab.

Now, we are ready to write out the time variation ofψ,

i∂tψ = −i
(
γt
)−1

(

γi∂i +
1

4
γiωabi γab +

1

4
γtωabt γab

)

︸ ︷︷ ︸

H

ψ , (7)

whereγab = γaγb.
Hence, we have identified the Hamiltonian for a Dirac fermionon a curved manifold. In

section 5 we will proceed to its diagonalization analogously to the flat case and discuss its
implementation on an optical lattice.
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4. An example: Dirac Hamiltonian in Rindler’s Universe

As an example, we will derive Dirac’s Hamiltonian in a particularly simple spacetime. Let us
start by recalling that the Hamiltonian in curved spacetime, when a timelike killing vector
is present, is the integral of the Hamiltonian density on a timelike hypersurface. In 2+1
dimensions we have,

H =

∫

dΣ2 ψ̄γtHψ . (8)

The differential is the volume element on a timelike slice and includes the determinant of the
metric,dΣ2 =

√−gdxdy.
In Rindler’s space, the metric takes the form

ds2 = −(ax)2dt2 + dx2 + dy2 . (9)

We are interested in this metric for two reasons. First, it isthe metric seen by an observer
in constant acceleration in flat spacetime. Therefore, it could have implications for earth-
dwelling detectors observing cosmic background radiation. Second, it is the near-horizon
metric of a Schwarzschild black hole.

The Rindler metric suggests the choice ofdreiveine0 = |ax|dt, e1 = dx, e2 = dy.
Using (5) we may compute the spin connection, whose only non-vanishing component is
w01
t = a x

|x| . Dirac equation (7), greatly simplifies in this spacetime,

i∂tψ = −ia|x|
(

−γ2
(

∂x +
1

2|x|

)

+ γ1∂y

)

︸ ︷︷ ︸

H

ψ . (10)

where we have used thatγ0γ1γ2 = −1, which holds only in 2+1 dimensions. In what follows,
we adopt the gamma matrices representation choice

σx = −γ2, σy = γ1, σz = −iγ0.

In order to carry out the discretization analogously to how it is done for the case of a gauge
theory, we note that the Hamiltonian can be written in terms of the Hamiltonian density (10)
as

H =

∫

dxdy ψ†Hψ =
1

2

∫

dxdy (Hψ)†ψ +
1

2

∫

dxdy ψ†Hψ

=
ia

2

∫

dxdy x
(
(∂xψ

†)σxψ + (∂yψ
†)σyψ − ψ†σx∂xψ − ψ†σy∂yψ

)
. (11)

In this symmetric form the spin-connection term disappearsand it turns out again once
integrating by parts.

The discretized version of the Hamiltonian (11) is simply obtained by the substitution
∂xψ → ψm+1,n−ψm,n

∆ and∂yψ → ψm,n+1−ψm,n

∆ , with x = ∆m andy = ∆n. One readily
gets

H =
ia

2

∑

m,n

m
(

ψ†
m+1,nσxψm,n + ψm,n+1σyψm,n

)

+H.c. . (12)

Therefore, a lattice with hopping matrices given byJiUi = imσi, i = x, y, growing linearly
in the x direction gives an appropriate description of free massless fermion in a Rindler
spacetime. Such an Hamiltonian can be in principle implemented in a OL. This problem
will be tackled in the next section.
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5. Dirac equation in curved spaces and optical lattices

In view of the explicit realization in a OL we focus to the classes of spacetime where the
massless fermion propagation can be described by the Hubbard model of the form

H =
i

2

∑

Jmn

(

ψ†
m+1,nσxψm,n + ψ†

m,n+1σyψm,n

)

+ h.c. . (13)

As discussed in full details in the Appendix B, we find that thelattice Hamiltonian reduces to
this simple form only if the metric is static. In 2+1 dimensions it is equivalent to say that it
can be written (in a certain coordinate system) in a diagonalform as

ds2 = −f2(x, y)dt2 + f−2(x, y)e2Φ(x,y)(dx2 + dy2) . (14)

With this choice of coordinates the hopping rate is simply given byJmn = eΦ(xm,yn).
This is not the only requirement to be satisfied to reproduce such propagation on a OL,

however. Indeed, it is important to note that, even if the Dirac Hamiltonian written in the
symmetric form (13) is the same for any choice of the functionf in (14), the corresponding
Hamiltonian system is distinct for each metric as the canonical momentum is

Π = i
√−gψ̄γt = if−2e2Φψ†,

and depends explicitly onf . Now, in optical lattice experiments the canonical momentum is
fixed by the anticommutation relation to be simplyiψ† that impliesf = eΦ. Thus the cold
fermions in the optical lattice simulate the propagation ofmassless fermions in a metric of the
form §

ds2 = −e2Φdt2 + dx2 + dy2 . (15)

The Rindler metric (9) corresponds toΦ = log(ax).
Before moving to the explicit implementation of the Hamiltonian (13) in OL, let us

briefly discuss to what extent it is a good description of the dynamics of massless fermions
in a space time given by (15). There are two kind of limitations. On one hand, due to finite
size of the OL we are able to cover only a finite portion of spacetime. On the other end, the
lattice approximation is valid when the metric, or the function Φ, is sufficiently smooth and
slowly varying over one lattice space∆. It is worth to note that the second problem can be
circumvented by using techniques from lattice gauge theory(the continuum limit is obtained
by extrapolation).

These two limitations should not obscure the physical content, however, as OL with up
to 300× 300 sites can be achieved. This implies that the overall variation of the metric over
lattice can be of order one. Further considerations in the case of Rindler space are given in
section 7.

5.1. Experimental realization

In this section we discuss briefly how one can achieve the appropriate site-dependent hopping
rateJmn in an OL. We propose two different techniques.

Recently it was proposed in [101, 31], that the intensity of the hopping can be
tailored almost at will by considering bichromatic spin-independent superlattices that trap
the hyperfine states of alkali bosonic or fermionic atoms. The split of the hyperfine levels is
controlled by a magnetic field. The hopping between neighboring Zeeman sublevels of the
F (lower) hyperfine manifold, i.e. our "electrons", is induced via adiabatic elimination of an

§ It is worth noting that for a generic functionΦ the metric is curved and not Weyl-invariant, cfr [100].
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intermediateF = F ± 1 (upper) hyperfine manifold coupled toF via an off-resonant Raman
transition. For the details of the scheme for fermionic40K atoms, we refer to the original
proposal [31].40K haveF =9/2, and allow in principle to simulate any pseudo-spinF ′ ≤9/2,
employing the splitting of the Zeeman sub-levels in a magnetic filed, and optical pumping to
the relevant sub-levels. For the purposes of the present paper it sufficient to haveF ′ = 1/2, or
alternatively to use from the very beginning atoms withF = 1/2 in the ground state manifold,
such as6Li.

To be more concrete, consider a6Li Fermi gas loaded on a 2D square optical lattice of
sizeL×L, where the relevant information of our quantum simulator isencoded in the Zeeman
sub-levels of the hyperfine manifoldF =1/2. Laser-assisted tunneling methods allow us to
design arbitrary operatorsUrν dressing the hopping between lattice sitesr → r + ν, where
r = mx̂ + nŷ, m,n,∈ {1...L}, andν ∈ {x̂, ŷ}. Usually, such schemes rely on Raman
couplings to auxiliary states trapped in the links of the original lattice and belonging to a
different hyperfine manifold. Here, following [101, 31] we use bichromatic spin-independent
superlattices , and use the secondary minima ofF =3/2 as bus states to mediate the hopping.
Note that the individual addressing of each hopping rate is granted by the Zeeman splitting
within the hyperfine manifolds, and the different detuningsof the Raman lasers. These
detunings can be quite large, so that the lifetimes of atoms on the lattice (limited by photon
absorption and spontaneous emission) can be quite large, oforderτl ∼ 1s. By making the
Raman laser intensity/detunings and/or Zeeman splitting spatially dependent one obtains the
desired spatially dependent hopping rates which is necessary for the realization of curved
space-times, equation (13). On top of that, is is possible touse Feschbach resonances to turn
off the atom-atom scattering, and make the system essentially non-interacting.

An alternative, and perhaps even a simpler method to realizethe Fermi-Hubbard model
of the form of (13) can be achieved by taking into account the finite waist of the lasers
used for the generation of the hopping terms. In general, this is an undesirable feature, and
it can usually be neglected. Indeed, typically Gaussian laser beams of waistw are used,
characterized by a Rayleigh length —the the distance along the direction of propagation from
the waist to the place where the area of the cross section is doubled—zR = πw2/λ with λ
denoting the wavelenght. That is to say, within a volume ofw2 × zr, the ideal planar wave
is a good approximation, at least around the center of the beam. For a lattice withL = 30,
its linear size is30 × λ/2, so that focusing a laser on the whole latticew ≃ 15λ leads
to zR ≃ 700λ, so that the plane wave description can be even used for an array of a few
hundreds of 2D30× 30 lattices.

There are, however, no technical obstacles to focus the lasers on much smaller spots,
smaller thanLλ/2, keepingzr still quite large. Actually, such spacial modulation of the
intensity due to the waist of "real" lasers can be used to induce hopping terms that depend
non-trivially on the position [29]. In general, the hoppingrate, i.e. the modulus of the
hopping term, is proportional to the intensity of the laser producing it. For instance, taking the
paradigmatic example of the hopping induced by the Raman transition in Jaksch and Zoller’s
setup [15], an optical lattice implementing the Hamiltonian of (13) can be achieved for Raman
lasers propagatingall in the same direction, once we consider only the radial waistand neglect
the waist along the beam‖. In this case, the shape of the laser intensity will correspond to the
eΦ factor of the metric.

Comparing the two methods explained above, the former has the advantage that, in

‖ At the moment, it is not clear to us whether it is possible to engineer the hopping matricesσx andσy with parallel
and anti-parallel Raman laser. Actually, we do not know of any explicit realization of such hopping in a setup á
la Jaksch and Zoller. Maybe, the dark state or slow-light method [14] is more promising. The main point that the
hopping rate is controlled by the intensity, remains valid.
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principle, any shape ofJmn, i.e. any metric of the form (15), can be engineered, but at
the price of dealing with a quite involved experimental apparatus, while the latter, although it
allows for a restricted choice ofJmn (for instance a Gaussian shape) is almost for free. The
desired hopping rate profile is obtained by reverse engineering of laser waist.

6. Density of states at the Fermi level as simple observable

Let us turn to the discussion of possible detection schemes of Dirac physics in curved
spacetime. A simple observable that characterizes such physics, and that contain information
about the effects of the beam waist is the density of states [81, 102, 103]. This quantity
is routinely measured in graphene using scanning tunnel [89, 90] and electron transmission
spectroscopy [87, 88]. For ideal graphene at zero temperature the density of states is zero at
the Fermi level and is proportional to|E| (once we have fixedEF = 0) as the charge carries
are described by massless fermions propagating in flat space. In the presence of deformations
of the graphene sheet its deviation from the free behavior can be analytically computed at
first order from the propagator of the Dirac equation. Following [81], by modeling such
deformations as perturbations of the Minkowski metric it ispossible to compute the Green
function treating the correction to the free equation as an interacting termV . In fact, in this
section we will first reproduce the computation of [81] for a metric of the form (15), instead
of the spatial deformation (as in (A.1)) considered there.

Our final goal is to determine the local density of states, defined by
∫

dw
√−gd2rρ(w, r) ≡ # of states, (16)

in terms of the Feynman propagator (see appendix) using the relation

ρ(w, r) = sign(w)
1

π
Im
[

Tr ŜF (w, r, r)γ
t
]

, (17)

wherer = (x, y).
In order to findŜF (w, r, r) we start by using the defining equation for the fermion

propagator

− i
√−gγµ D

Dxµ
SF (x,x

′) = δ3(x− x′), (18)

where thex indicates a point of the spacetime, to a metric of the form (15). By retaining terms
linear inΦ, the above equation can be written as

− (i(γµ
∂

∂xµ
)Flat + V (x))SF (x,x

′) = δ3(x − x′) , (19)

where

V = iγ1

(

Φ∂x +
1

2
∂xΦ

)

+ iγ2

(

Φ∂y +
1

2
∂yΦ

)

, (20)

is the effective “external potential”. As we are interestedto ŜF (w, r, r′) and due to the time
translation invariance

SF (x,x
′) = SF (t− t′, r, r′) =

∫
dw

2π
e−iw(t−t′)ŜF (w, r, r

′),

it is convenient to perform the Fourier transformation in time of (19)

(wγ0 − i∇r · γ − V (r)) ŜF (w, r, r
′) = δ2(r − r′) . (21)
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The above equation can be solved consistently within the first order approximation by

Ŝ1
F (w, r, r

′) =

∫

d2r′′Ŝ0
F (w, r, r

′′)V (r′′)Ŝ0
F (w, r

′′, r′) , (22)

where

Ŝ0
F (w, r, r

′) =

∫
d2k

(2π)2
wγ0 − k · γ
w2 − k2 + iǫ

eik(r−r′) , (23)

is the free fermion propagator and space translation’s invariance holds. By using the Fourier
transformation ofΦ(r′′)

Φ(r′′) =

∫
d2p

(2π)2
eip·r

′′

Φ(p) , (24)

equation (22) can be explicitly computed performing the integration inr′′.
The relevant contribution to the trace turns out to be linearin w. Explicitly

Tr[Ŝ1
F (w, r, r)γ0] =

∫
d2p

(2π)2
eip·rΦ(p)Γ(w,p) , (25)

with

Γ(w,p) =

∫
d2k

(2π)2
4w|k− 1

2p|2
(w2 − k2 + iǫ)(w2 − (k− p)2 + iǫ)

] . (26)

The above integral is logarithmically divergent, but its imaginary part is not. It is easy to
show that this is the only part contributing to the density. Indeed, asΦ(p) is the Fourier
transformation of a real function,Φ(p)∗ = Φ(−p), andΓ(w,p) is even inp, Γ(w,p) =
Γ(w,−p), one finds

(

Tr[Ŝ1
F (w, r, r)γ0]

)∗

=

∫
d2p

(2π)2
e−ip·rΦ(p)∗Γ(w,p)∗

=

∫
d2p

(2π)2
eip·rΦ(p)Γ(w,p)∗, (27)

which immediately implies

δρ(w) = sign(w)
1

π

∫

d2r

∫
d2p

(2π)2
eip·rΦ(p) ImΓ(w,p) . (28)

The explicit expression for ImΓ(w,p) is

ImΓ(w,p) = 2w − w

π
Im

[
arctanχ(w, p)

χ(w, p)

]

, (29)

whereχ(w, p) = p√
|4w2−p2|(Θ(4w2−p2)−iΘ(−4w2+p2))

, andp ≡ |p|. More details are given

in the Appendix D.
Hence, the density of states always receives a correction proportional toΦ(r) itself

δρ(w) =

∫

d2r
2|w|
π

Φ(r) − |w|
π2

∫

d2r

∫
d2p

(2π)2
eip·rΦ(p) Im

[
arctanχ(w, p)

χ(w, p)

]

. (30)
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6.1. Example: Density of states for a Gaussian beam

We are now able to compute the correction to the density of state when the hoppingJ has
a Gaussian shape due to the finite laser beam waist. Under the assumption that the Raman
lasers propagate alongy direction, this implies thatΦ(x, y) = −(x

a
)2, wherea is of order102

lattice spacings [2]. AsΦ(p) = + (2π)2

a2
δ′′(px)δ(py), the second term of (30) turns out to be

zero and the correction to the density of state simply reduces to

δρ(w) =

∫

d2r
2|w|
π

Φ(r) (31)

providing a clear experimental signature. The local density of states gets a quadratic
correction inx.

Incidentally, the same cancellation happens in case of an exponential behavior ofJ , i.e.
for a linearΦ(r). Consequently, the simple relation (31) applies also to this case.

6.2. Experimental detection

A recent review of the detection methods that can be applied to investigate Dirac physics
with ultracold fermions in non-Abelian gauge fields is contained an article authored by one
of us [91]. Here we just summarize this discussion with particular focus on density of states.
Let us start by observing that for a non-interacting Fermi gas atT = 0, the total number of
fermionsNF =

∫ µ
dEρ(E), whereµ is the chemical potential, equal atT = 0 to the Fermi

energyEF . We see thatρ(EF ) = dNF /dEF so that measuring of the variance ofNF with
EF allows to determineρ(EF ). If the systems is confined additionally in a slowly varying
harmonic potentialV (r), a local chemical potential can be introducedµ(r) = EF − V (r),
and the corresponding local density of states, related to the local density by

n(r) =

∫

dEn(E)Θ(µ(r) − E),

whereΘ(.) is the Heaviside (step) function. In this case we get

dn(r)/dµ(r) = ρ(µ(r)),

i.e. a similar formula to the Streda formula used in [91] for detection of Hall conductivity.
The determination of density of states can be achieved by:

• Measurements of the total number of fermions as a function ofthe chemical potential.
Here, the best currently available methods are: directin situ individual atom detection
[92, 93, 94], or quantum spin polarization spectroscopy [95, 96]

• Measurements of the (coarse-grained) local density of fermions as a function of the
local chemical potential. Again, the best currently available methods are: directin situ
individual atom detection [92, 93, 94], or quantum spin polarization spectroscopy with
spatial resolution [97].

• Measurements of frequency-momentum resolved single particle excitation spectrum,
such as those being done in Bragg (Raman) scattering spectroscopy (for a state-of-the-art
report see [98]). The spectrum in such processes is proportional to the density of initial
states of the scattering process.

Of course, many other methods, such as atomic ARPES, noise interferometry, or even
absorbtion and/or phase contrast imaging can give at least indirect information aboutρ(E).
All of these methods are well developed in experiment with ultracold atoms (see [91] and
references therein).
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7. Conclusions and Outlook

In this paper, we discussed the simulation of the Dirac equation in artificial curved space-
time with cold atoms. We showed that using state-of-the-arttechniques it is possible to
simulate relativistic fermion dynamics in curved spacetimes with aflat 2D squarelattice for
an interesting class of 2+1 metrics. Moreover, we pointed out the relation between a certain
class of Hubbard models and Dirac’s Hamiltonian in curved backgrounds, which can be
employed to make analytic computations in the continuum limit of the former. We proposed
to characterize theNatureof Dirac fermions on the lattice by measuring the density of states
at the Fermi level. This observable can be, on one hand, analytically computed in perturbation
theory in terms of Dirac propagator, and, on the other hand, is accessible to measurements.

The present study opens the way to the direct observation of elusive effects such as
Rindler noise. Because we deal with odd dimensional (2+1) Rindler system, the Dirac
thermal noise, measured by an ideal point-like De-Witt detector as a consequence of the
local acceleration, is expected to be “anomalous” (see Ch.8of [78]), i.e. it should follow
Bose-Einstein distribution. This issue is currently underinvestigation.
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Appendix A. Dirac Hamiltonian in spatially (graphene like) deformed metric

Now we consider a different situation where the 2+1 metric isspatially non-trivial. Such a
case is relevant in describing the properties of a graphene sheet with ripples. The most generic
spacial deformation (at least in some patch) can be always written as

ds2 = −dt2 + e2Φ(x,y)(dx2 + dy2). (A.1)

Thedriebeinare

e0 = dt e1 = eΦ(x,y)dx e2 = eΦ(x,y)dy i = x, y ,

and the spin-connection can be chosen to be non-trivial in the spacial part only

w12 = ∂yΦdx− ∂xΦdy. (A.2)

It follows that the curvature is

Ω = 2e−2ΦΩ12
xy = −2e−2Φ(∂2x + ∂2y)Φ . (A.3)

For instance, the slices of the metric (A.1) at constant timewill be spheres or hyperboloids
for Φ a positive or a negative quadratic form ofx andy, respectively.

Applying (7) to this case we find

i∂iψ = Hψ = −iγ0e−Φ

(

γ1(∂x +
1

2
∂yΦγ12) + γ2(∂y −

1

2
∂xΦγ12)

)

ψ . (A.4)
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We are tempted to interpret the above Hamiltonian as that of fermions coupled to a
“geometric” non-Abelian vector potentialA ≡ (∂yΦ,−∂xΦ)σz . Adopting the the gamma
matrices’ representation of the previous section, we can write it as

Hψ = −ie−Φ (σx(∂x + iAx) + σy(∂y + iAy))ψ , (A.5)

where the presence ofA indicates that the rotation in thexy-plane, i.e. theSO(2) subgroup
of the Lorentz group, is promoted to a local symmetry in the background described by the
metric (A.1). Such identification is related to the treatment of the conical defects in the
graphene sheets (dislocations and disclinations) as sources of magnetic fluxes. However, that
this interpretation here is misleading as the gauge group does not commute with the spacetime
symmetry, asσz anticommutes withσx andσy .

Taking in account this fact, the Hamiltonian density can more appropriately be written
as

H(s.d.) = −i
(

σx(∂x +
1

2
∂xΦ) + σy(∂y +

1

2
∂yΦ)

)

ψ , (A.6)

where the symmetric role ofx andy is evident.
Now we are ready to compute the total Hamiltonian. By rewritting (8) we get

H =

∫

dxdy e2Φ(x,y) ψ†H(s.d.)ψ . (A.7)

Using the the same manipulations as in the previous section we can recast it into a form where
the spin-connection is not present,

H =
i

2

∫

dxdy eΦ(x,y)
∑

i=x,y

(
(∂iψ

†)σiψ − ψ†σi∂iψ
)
. (A.8)

It follows that the discretized version ofH , as in Rindler spacetime, takes the form of a SU(2)
Fermi-Hubbard model with the modulus of hopping depending on the position

HFH =
i

2

∑

m,n

eΦ(m∆,n∆)

∆

(

ψ†
m+1,nσxψm,n + ψm,n+1σyψm,n

)

+ h.c . (A.9)

At first sight it seems very surprising that the discretized Hamiltonian of massless fermions
in Rindler geometry coincides with the one of fermions propagating in metric of the form
of (A.1). Indeed, by takingΦ = ln(ax) the expression (A.9) reduces to (12). Such an
apparent contradiction disappears upon closer inspection. At the end, from the point of view
of the Dirac Hamiltonian for both metrics, what has changed with respect to the flat case is
the effective speed of light, or equivalently the hopping rate, which becomes position (and
direction) dependent.

Although the origin of the position-dependent hopping rateis different in the two cases, it
comes from the Hamiltonian density in the Rindler case whileis due to the invariant measure
in the other, the effect is the same. Roughly speaking, thereare two possible way of modifying
the effective speed of light in one spacetime direction, letus sayx: one is to changegtt while
the other is to changegxx by an inverse factor.

Nevertheless, the eigenfunctions and the spectra of the twoSchrödinger problems remain
different as the Hamiltonian densities in the two cases are.
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Appendix B. The generic case

In order to treat the generic case let us retrace a few steps and analyze the formal expression for
the Hamiltonian (8). First of all, we show that it corresponds to the Legendre transformation
of the relativistic Lagrangian:

L =

∫

L = i

∫ √−g ψ̄γµDµψ , (B.1)

once we have chosen the coordinates to have that the timelikeKilling vector isK = ∂t, which
implies∂tgµν = 0. Indeed, by definingH = δL

δ∂tψ
∂tψ − L, the expression (8) is recovered

H ≡
∫

h = −i
∫ √

−g ψ̄
(

γi∂i +
1

4
γµw ab

µ γab

)

ψ , i = x, y. (B.2)

Now, it is instructive to check explicitly that the Hamiltonian above is a Hermitian
operator due to the existence of a timelike isometry. By using that (γµ)† = γ0γ

µγ0 and
noticing that

(
ψ̄ γµw ab

µ γab ψ
)†

= −ψ̄ w ab
µ γab γ

µψ ,

we get that

H† = i

∫ √−g
(

(∂iψ̄)γ
i − 1

4
ψ̄ w ab

µ γabγ
µ

)

ψ . (B.3)

In order to compare the above expression withH it is convenient to integrate by parts and
rewrite it as

H† = − i

∫ √−g ψ̄
(

γi∂i +
1

4
w ab
µ γabγ

µ + γi∂i ln
√−g + ∂iγ

i

)

ψ

= H − i

∫ √−g ψ̄
(
1

4
w ab
µ [γab, γ

µ] + γi∂i ln
√−g + ∂iγ

i

)

ψ . (B.4)

H† andH are the same if and only if the metric, and consequently the driebein, are
invariant under time translation. Indeed, due to the conventional constraint∇µe

a
ν +w a

µ ebν =
0, it is true that

eaν∇µe
ρ
a = −eρa∇µe

a
ν = −eνaw a

µ eρb , (B.5)

which, using the commutator[γab, γµ] = 4eµcγ[aηb]c, implies

1

4
w ab
µ [γab, γ

µ] = γaw
ab
µ eµb = −(∇µe

µ
c )γ

c = −∇µγ
µ . (B.6)

The cancellation follows from the identity

∂iγ
i + γi∂i ln

√−g = ∇iγ
i = ∇µγ

µ , (B.7)

as∂µ ln
√−g = Γνµν and∂tγt = γt∂t ln

√−g = 0 if and only if ∂tgµν = 0.
At this point, we can use expression (B.3) forH† to get a Hamiltonian symmetrical inψ

andψ†. By writingH ≡ 1
2 (H +H†) we find

H =
i

2

∫ √−g
(
(
∂iψ̄γ

iψ − ψ̄γi∂iψ
)
− 1

4
ψ̄w ab

µ {γab, γµ}ψ
)

. (B.8)

Let us characterize the termΘ ≡ − 1
4 ψ̄w

ab
µ {γab, γµ}, which can be regarded as the

obstruction to write the lattice Hamiltonian simply as

H =
i

2

∑

Jmn

(

ψ†
m+1,nσxψm,n + ψ†

m,n+1σyψm,n

)

+ h.c. , (B.9)
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as found for the special cases discussed in the previous sections. Using the relation between
the spin-connection and the driebein and the anticommutator {γab, γµ} = 2eµcγabc –in 2+1
dimensions it reduces to{γab, γµ} = − 1

3e
µcǫabc, it follows that

Θ =
1

12
eµaeνb∂µe

c
ν ǫabc =

1

12
eiaeνb∂ie

c
ν ǫabc . (B.10)

Hence, we conclude thatΘ is identically zero when the metric is diagonal, as for the Rindler
metric (9) and the spatially deformed metric (A.1). In orderto be as general as possible, we
observe that any 2+1 spacetime admitting a timelike Killingvector can be always reduced, at
least locally, to the form

ds2 = −f2(x, y)(dt + λ(x, y))2 + f−2(x, y)e2Φ(x,y)(dx2 + dy2) , (B.11)

whereλ(x, y) = λx(x, y)dx + λy(x, y)dy is one-form independent of time.
It follows that:

e0 = f(dt+ λ) , ei = f−1eΦdxi , xi = x, y, i = 1, 2 ,

and that the inverse driebein are

e0 = f−1∂t , e1 = −fe−Φλx∂t + fe−Φ∂x , e2 = −fe−Φλy∂t + fe−Φ∂y

The spin-connection can be chosen to be:

w01 = fe−Φ∂xfdt+
fe−Φ

2
(∂x(fλy)− ∂y(fλx)) dy

w02 = fe−Φ∂yfdt−
fe−Φ

2
(∂x(fλy)− ∂y(fλx)) dx

w12 =
f−1e−Φ

2

fe−Φ

2
(∂x(fλy)− ∂y(fλx)) dt

+

(

∂y(Φ− ln f)− f2e−Φ

2
λx (∂x(fλy)− ∂y(fλx))

)

dx

−
(

∂x(Φ− ln f) +
f2e−Φ

2
λy (∂x(fλy)− ∂y(fλx))

)

dy . (B.12)

This implies the following relation for the coefficients:

w 01
y = −w 02

x = f−2eΦw 12
t ,

and thatw 12
y can be obtained fromw 12

x by exchangingxwith y and 1 with 2 (which amounts
for the minus sign), accordingly to the symmetry of the metric (B.11).

We are ready to computeΘ. After some algebra we get

Θ =
f3e−2Φ

12
(∂xλy − ∂yλx) . (B.13)

The above expression means that the spin-connection will cancel in the symmetric form of
the Hamiltonian if and only the metric is static, i.e. the off-diagonal terms due toλ can be
reabsorbed by a change of coordinates. To prove this we note that the conditionΘ = 0 implies
that the formλ is exact, i.e. there exists a functionF = F (x, y) such thatdF = λ. Indeed,
this is the case as as can be seen by redefining the time coordinate asT = t+ F , as the final
metric is diagonal.

With the choice of the metric (B.11), the overall hopping rateJmn is

Jmn = eΦ(xm,yn).
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Appendix C. The density of states

This section is devoted to deriving the relation between thedensity of states as a function of
the energyρ(E) and the propagator in a spacetime of dimensions(1, d). In order to do so we
will follow a constructive procedure. By definition we have

∫

dE ρ(E) = # of eigenstates of the HamiltonianH . (C.1)

We will express the number of states as the number of poles in the propagator when averaged
over the set of eigenstates ofH , {|n〉}, which we demand be complete and normalizable (as
is the case for any sound Hamiltonian operator). Furthermore, we assume that the position
operator eigenstates|r〉 can be completed to give an orthonormal basis|r〉|i〉 wherei encodes
all internal degrees of freedom, such as the spin. Using the theorem of residues and integrating
on a rectangular contour around the real axis of width2ǫ > 0 , we can write:

# e.s. ofH =
1

−2πi

∫

dE
∑

n

(
1

E + iǫ− En
− 1

E − iǫ− En

)

= − 1

π
Im
∫

dE
∑

n

〈n| 1

E −H + iǫ
|n〉

= − 1

π
Im
∫

dE

∫

ddrddr′
∑

n,i,i′

〈n||r〉|i〉〈r|〈i| 1

E −H + iǫ
|r′〉|i′〉〈r′|〈i′||n〉

= − 1

π
Im
∫

dE

∫

ddr〈r|〈i| 1

E −H + iǫ
|r〉|i〉 . (C.2)

Form the above equation we conclude that

ρ(E) =
1

π
Im
∫

ddr〈r|〈i| 1

H − E − iǫ
|r〉|i〉 , (C.3)

that is the equation 34 given in [104]. To warm up we compute the density of state in the free
case. As the Hamiltonian is diagonal in momentum space, it isconvenient to writeρ(E) in
this basis:

ρ(E) =
1

π
Im
∫

d2Ωp

(

〈p,+| 1

E −H + iǫ
|p,+〉+ 〈p,−| 1

E −H + iǫ
|p,−〉

)

=
1

π
Im
∫

d2r

∫

d2Ωp

(

〈p,+||r〉 |p|+ E

|p|2 − E2 − isign(E)ǫ
〈r||p,+〉

+〈p,−||r〉 −|p|+ E

|p|2 − E2 − isign(E)ǫ
〈r||p,−〉

)

=
1

π
Im
∫

d2r

∫
d2p

(2π)2
2E

|p|2 − E2 − isign(E)ǫ
, (C.4)

whered2Ωp = d2p
(2π)22|p| is the Lorentz invariant measure and the normalization of the

momentum states|p,±〉 is fixed accordingly. By taking to beS =
∫
d2r the volume of

the system and by going to polar coordinates one finds

ρ(E) =
S

π
Im
∫ +∞

0

dp

2π

2pE

p2 − E2 − isign(E)ǫ
. (C.5)

The last integral can be solved in many ways, for example by changing variable toz = p2 and
regularizing the integral with cut-off
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∫ Λ2

0

dz

2π

E

z − E2 − isign(E)ǫ
=

E

2π

(

log(
Λ2 − E2

E2
) + log

(
1− isign(E)ǫ

1 + isign(E)ǫ

))

=
E

2π

(

log(
Λ2 − E2

E2
) + 2πi(Θ(E)−Θ(−E))

)

.(C.6)

As the imaginary part is independent of the cut-off, the finalresult, as expected, is

ρ(E) = S
|E|
π
, (C.7)

which is in agreement with the result quoted in [104].
It is worth-while to note thatρ(E) can be written in terms of the Feynman propagator.

This fact can be derived in a more general setting. By definition, 1
E−H+iǫ is the Fourier

transformation in time of the retarded propagator defined bythe equation

(i∂t −H)G+(t− t′) = δ(t− t′)⊗ Ispin (C.8)

with boundary conditionsG+(t − t′) = 0 for t < t′. On the right-hand side of (C.8), the
identity in spin-space has been written explicitly to remind the reader thatG+(t−t′) in general
acts as a matrix on the internal degrees of freedom. After multiplying on the left byγt and on
the right byγt and taking the expectation value with eigenstates of the position operator the
above equation gives

− iγµ∂µG+(t− t′, r, r′)γt = δ(t− t′)δd(r− r′)⊗ Ispin, (C.9)

where we useγtγt = 1. Hence, we conclude thatG+(t− t′, r, r′)γt is related to the Feynman
propagator as it solves the same equation. The precise relation can be derived by taking the
boundary conditions into account. This can be explicitly checked by Fourier-transforming to
momentum space. Indeed,

1

E −H + iǫ
γt =

E − γtγ
ipi

E2 − |p|2 + isign(E)ǫ
γt =

Eγt − γipi
E2 − |p|2 + isign(E)ǫ

=
1

γµpµ − isign(E)ǫ
. (C.10)

The above relation between the retarded propagator and Feynman propagator can be extended
using perturbation theory to the interactive second quantized formalism. To conclude, let us
remark that it is better to use the local definition of density(17) because it is easy to make it
generally covariant in order to apply it in a curved gravitational background. In this way, the
generalize notion of inner product is properly taken into account due to (19).

Appendix D. The computation ofΓ

In order to compute ImΓ(w,p) we note that the integral of (26) can be split in

Γ(w,p) = 4w

∫
d2k

(2π)2

(
1

k2 − w2 − iǫ
+

w2 − 3
4p

2 + p · k
(k2 − w2 − iǫ)((k− p)2 − w2 − iǫ)

)

. (D.1)

The first integral has been computed above for the free case and its imaginary part gives

Im
∫

d2k

(2π)2
4w

k2 − w2 − iǫ
= 2w . (D.2)
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The second integral is convergent and can be computed using Feynman parameter. After some
algebra one gets

4w Im
∫

d2k

(2π)2
w2 − 3

4p
2 + p · k

(k2 − w2 − iǫ)((k− p)2 − w2 − iǫ)
=

= − w

πp
Im

(
√

4w2 + iǫ− p2 arctan

[

p
√

4w2 + iǫ− p2]

])

= − w

πp

√

|4w2 − p2|
(

Θ(4w2 − p2) Im arctan

[

p
√

4w2 + iǫ− p2]

]

+

−Θ(−4w2 + p2) Rearctan

[

p
√

4w2 + iǫ− p2]

])

, (D.3)

where
√

4w2 + iǫ− p2 =
√

|4w2 − p2|
(
Θ(4w2 − p2)− iΘ(−4w2 + p2)

)
and p is the

modulus ofp, p = |p|.
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