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Restriction maps on 1-cohomology of
(algebraic) groups

David I. Stewart

New College, Oxford

Abstract. Our first theorem is a version of the five lemma in a certain situation of

pointed sets arising from non-abelian 1-cohomology. For our second, we show that

a connected, unipotent algebraic group Q acted on by a reductive algebraic group G

admits a filtration Q = Q(1) ≥ Q(2) ≥ · · · ≥ Q(n) = 1 with successive quotients

having the structure of G-modules. From these two theorems we deduce our third

theorem: if G is a reductive algebraic group, with B a Borel subgroup and Q a

unipotent algebraic G-group, then the restriction map H1(G,Q) → H1(B,Q) is an

isomorphism. This is a generalisation in the case n = 1 of Cline, Parshall, Scott and

van der Kallen’s result that Hn(G,V ) ∼= Hn(B,V ) for any rational G-module V . We

also prove the easy generalisation when n = 0. In the case n = 1 we use our result to

get a corollary about complete reducibility and subgroup structure.
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1 Introduction

Let G be a group. The low degree cohomology of G with coefficients in another
group Q on which G acts is often very important in group theory. For instance
in degree 0, H0(G,Q) is the number of fixed points of the action of G on Q,
H1(G,Q) measures the number of complements to Q in the semidirect product
QG, and H2(G,Q) (where defined) measures the number of non-equivalent
group extensions

1 → Q → E → G → 1.

For instance, a classical result of Schur-Zassenhaus says that if G is a finite group
and Q is a normal Hall subgroup (i.e. Q ⊳ G and (|G|, |G/Q|) = 1), then Q
has a complement K such that G = QK is a semidirect product. When Q is
abelian, this amounts to saying H2(G,Q) = 0.

In this paper we consider the situation where Q is in general, a non-abelian G-
group. First off, we give the definitions of the 0th, 1st and 2nd cohomology
groups of G with coefficients in Q (where defined). When Q fits into a short
exact sequence

{1} → R → Q → S → {1}

and where the image of R in Q is contained in the centre Z(Q) of Q, we get
an exact sequence of non-abelian cohomology (Proposition 2.2). We consider
the restriction of this exact sequence to a subgroup B of G and show how
conditions on the restriction maps of cohomology Hn(G,R) → Hn(B,R) and
Hn(G, S) → Hn(B, S) can be used to deduce conditions on the restriction
H1(G,Q) → H1(B,Q) and H0(G,Q) → H0(B,Q) (Theorems 3.1 and 3.2).
For abelian Q this would come down to a simple application of the equally simple
‘five lemma’ but in the non-abelian case, we must use the technique of twisting
from Galois cohomology, which we explain in §2.3.

We apply this in the special situation whereG is a reductive algebraic group acting
(morphically) on a unipotent algebraic group Q. Let B be a Borel subgroup of G.
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A result due to Cline, Parshall, Scott and van der Kallen says that Hn(G, V ) ∼=
Hn(B, V ) for any finite dimensional rational G-module V . We show that Q
has a central filtration by G-modules (Proposition 3.9) and then use this fact
to extend the Cline, Parshall, Scott and van der Kallen result by applying our
Theorems 3.1 and 3.2 inductively to show that Hn(G,Q) ∼= Hn(B,Q) for n = 0
and n = 1.

In the case n = 1 this has the Corollary 3.12 on subgroup structure related to
Serre’s notion of G-complete reducibility via a result of Bate, Martin, Roerhle
and Tange: Let P be a parabolic subgroup of G with Levi subgroup L, let H be
a closed, reductive subgroup of P and let B be a Borel subgroup of H . Then H
is conjugate to a subgroup of L if and only if B is.

2 Preliminaries

2.1 Definitions

We start with some standard material. Let G be a group and let Q be a G-set,
that is, a set with an action of G.

Then we define H0(G,Q) as the set QG of fixed points of G acting on Q, i.e.
H0(G,Q) = {q ∈ Q : qg = q, ∀g ∈ G}.

If further Q is a G-group, then we may define the 1-cohomology H1(G,Q) as
follows.

Firstly, a 1-cocycle is a map γ : G → Q satisfying the cocycle condition, i.e.
γ(gh) = γ(g)hγ(h). The set of all 1-cocycles is denotes Z1(G,Q). We say that
two 1-cocycles γ, δ are cohomologous and write γ ∼ δ if γ(g) = q−gγ(g)q. Then
we define H1(G,Q) as the set of equivalence classes of Z1(G,Q) under ∼; i.e.
H1(G,Q) = Z1(G,Q)/ ∼.

There is a distinguished point in Z1(G,Q) given by the trivial cocycle 1 : G → Q;
1(g) = 1. The equivalence class of the trivial cocycle, [1] ⊆ Z1(G,Q) is the set
of coboundaries and we denote this distinguished point inH1(G,Q) by B1(G,Q).

If R is an abelian G-group we can go further and define the second cohomology.

We define a 2-cocycle to be a map γ : G × G → R satisfying the 2-cocycle
condition, i.e. γ(gh, k)γ(g, h)k = γ(g, hk)γ(g, k). The set of all 2-cocycles is
denoted Z2(G,R). Two 2-cocycles γ and δ are cohomologous and write γ ∼ δ if
there is a map (morphism) φ : G → R with δ(g, h) = γ(g, h)φ(g)hφ(h)φ(gh)−1.
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We then defineH2(G,R) to be the set of equivalence classes of Z2(G,R)modulo
∼, i.e. H2(G,R) := Z2(G,R)/ ∼.

Again there is a distinguished point in Z2(G,R) given by the trivial 2-cocycle 1

and its class in H2(G,R) is denoted by B2(G,R).

2.2 Exact sequences

Where one has a G-homomorphism of G-groups ρ : R → Q, it is clear that
one gets natural maps of the sets of cocycles Z i(G,R) → Z i(G,Q) by post-
composing with ρ, for each i that we have defined above. It is then easy to
see that cohomologous cocycles map to cohomologous cocycles, and so this
induces maps of cohomology H i(G,R) → H i(G, S) for 0 ≤ i ≤ 2 (again, where
defined).

If {1} → R → Q → S → {1} is a short exact sequence of G-groups, then as
usual:

Proposition 2.1 ( [Ser94, Prop. 38]). Let R⊳Q be G-groups and let S := Q/R
be the corresponding G-group obtained from the natural action of G on the
quotient. Then there is an exact sequence of cohomology

{1} → H0(G,R) → H0(G,Q) → H0(G, S)

δ
→ H1(G,R) → H1(G,Q) → H1(G, S)

where if qR represents an element in H0(G, S) ∼= (Q/R)G the map δ is given
by δ(qR) = [q−gq] and all other maps are natural.

Proof. One checks easily that δ does indeed give a map H0(G, S) → H1(G,R)
as stated and that it is well-defined; i.e. if q′R = qR then [q′−gq′] = [q−gq]; to
prove exactness at each point is equally straightforward.

If R is a central subgroup of Q then one can say slightly more:

Proposition 2.2 ( [Ser94, Prop. 43]). Let R ≤ Z(Q) and S := Q/R having the
natural G-action on the quotient. Then there is an exact sequence of cohomology

{1} → H0(G,R) → H0(G,Q) → H0(G, S)

δ
→ H1(G,R) → H1(G,Q) → H1(G, S)

∆
→ H2(G,R),

where the map ∆ is given by ∆([γ]) = [α] and α is formed by α(g, h) =
γ(g)hγ(h)γ(gh)−1.

4



Proof. Again it is straightforward to check that ∆ is well-defined and that the
sequence is exact at each point.

2.3 Twisting

Let R be a G-set and let Q be G-group with an action on R which commutes
with the action of G. i.e.

(rq)g = (rg)q
g

for all r ∈ R, q ∈ Q, g ∈ G

This happens for instance if R and Q are both G-groups with R ≤ Q.

Now fix an arbitrary 1-cocycle γ ∈ Z1(G,Q) and define r ∗ g = rgγ(g).

This is a new action of G on R as

r ∗ (gh) = rghγ(gh) = rghγ(g)
hγ(h) = rgγ(g)hhγ(h) = r ∗ g ∗ h.

We call this the ∗-action of G on R with respect to γ. The set R with the
∗-action is again a G-set, denoted Rγ and is called a twisted form of R. We say
that Rγ is obtained by twisting R by γ.

Observe that if ρ : Q → S is a homomorphism of G-groups with the image of γ
under ρ ◦ being β ∈ Z1(G, S) then we get a map ρβ : Qγ → Sβ.

In particular, if R is a G-stable normal subgroup of Q with Q/R given the natural
G-action then for any cocycle γ ∈ Z1(G,Q), we have a well-defined twisted form
(Q/R)γ of Q/R. (Here we denote the image of γ in Z1(G,Q/R) by γ, also.)

Now we note further that if R ≤ Z(Q) then the ∗-action of G on R coincides
with the usual action of G on R. So in this case, if {1} → R → Q → S → {1}
is a short exact sequence of G-groups, then it is clear that so is {1} → R →

Qγ
ρ
→ Sγ → {1}. (The map ρ obviously commutes with the action of G.)

Thus for any γ, we get from Proposition 2.2, a new exact sequence of cohomol-
ogy:

1 → RG → QG
γ → SG

γ → H1(G,R) → H1(G,Qγ) → H1(G,Sγ) → H2(G,Rγ),

where by the proposition below, H1(G,Q) ∼= H1(G,Qγ) and H1(G, Sγ) ∼=
H1(G, S).

Proposition 2.3 ( [Ser94, Prop. 35 bis]). Let R be a G-group and γ ∈
Z1(G,R). Then the map

θγ : H1(G,Rγ) → H1(G,R); [δ] 7→ [δγ],
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where δγ denotes the map g 7→ γ(g)δ(g), is a well-defined bijection, taking the
trivial class in H1(G,Rγ) to the class of γ in H1(G,R)

2.4 Commutative diagrams

We now give some commutative diagrams that we shall need in the proof of
the main result. Note that if B ≤ G then for each 0 ≤ i ≤ 2 we get maps
H i(G,Q) → H i(B,Q) by restriction.

Proposition 2.4. Let B be a subgroup of G acting on a short exact sequence
{1} → R → Q → S → {1}, such that the image of R in Q is central. Then:

(i) Restriction to B of the exact sequence of cohomology from Proposition
2.2 gives rise to the following commutative diagram, where the rows are
exact and the vertical arrows are restrictions:

1 −−→ RG −−→ QG −−→ SG δG−−→ H1(G,R)




y





y





y





y





y

1 −−→ RB −−→ QB −−→ SB δB−−→ H1(B,R)

−−−→ H1(G,Q) −−−→ H1(G, S) −−−→ H2(G,R)




y





y





y

−−−→ H1(B,Q) −−−→ H1(B, S) −−−→ H2(B,R).

(ii) Let γ ∈ Z1(G,Q) be a 1-cocycle, and let {1} → R → Qγ → Sγ → {1}
be the short exact sequence from §2.3. If β ∈ Z1(B,Q) denotes the
restriction of γ to B, then we have the following commutative diagram

{1} −−−→ R −−−→ Qγ −−−→ Sγ −−−→ {1}




y





y





y





y





y

{1} −−−→ R −−−→ Qβ −−−→ Sβ −−−→ {1}.

,

where the vertical arrows are restrictions. Moreover,

(iii) restriction from G to B gives rise to the following commutative diagram,
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where the rows are exact and the vertical arrows are restrictions:

1 −−→ RG −−→ QG
γ −−→ SG

γ

δG−−→ H1(G,R)




y





y





y





y





y

1 −−→ RB −−→ QB
β −−→ SB

β

δB−−→ H1(B,R)

−−−→ H1(G,Qγ) −−−→ H1(G, Sγ) −−−→ H2(G,R)




y





y





y

−−−→ H1(B,Qβ) −−−→ H1(B, Sβ) −−−→ H2(B,R).

Proof. A moment’s thought is required to see that (i) is true. For instance, if
qR ∈ Q/R ∼= S with (qR)g = qR for all g then (resGB◦δG)(qR)(b) = [q−•q](b) =
q−bq = δB(qR) = δB(res

G
BqR) for all b ∈ B.

(ii) is clear.

(iii) follows immediately from (i) and (ii).

We also need to relate some of maps of (i) and (iii) together.

Proposition 2.5 ( [Ser94, p47]). Let G be a group and ρ : Q → S any G-
homomorphism of G-groups with γ ∈ Z1(G,Q) and β its image in Z1(G, S) .
Then we have the following commutative diagram:

H1(G,Q)
ρ◦

−−−→ H1(G, S)

θγ

x





θβ

x





H1(G,Qγ)
ργ◦

−−−→ H1(G, Sβ),

where the vertical maps are the bijections of Proposition 2.3.

Proof. Again this is clear: take [δ] ∈ H1(G,Qγ). Then θγ [δ] = [δγ] ∈ H1(G,Q).
In turn

ρ ◦ ([δγ]) = [(ρ ◦ δ)(ρ ◦ γ)] = [(ρ ◦ δ)β]

and the latter is clearly equal to θβ(ργ([δ])).

Proposition 2.6. Let B be a subgroup of G and Q a G-group, with γ ∈
Z1(G,Q) and β ∈ Z1(B,Q) its restriction to B. Then we have the following
commutative diagram
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H1(G,Qγ)
θγ

−−−→ H1(G,Q)




y





y

H1(B,Qβ)
θβ

−−−→ H1(B,Q)

where the vertical maps are restriction.

Proof. On elements

[δ] //

��

[δγ]

��
[δ|B] // [δ|Bβ] = [δ|Bγ|B]

Putting together the last three propositions:

Proposition 2.7. With the hypotheses of Proposition 2.4, we have the following
commutative partial cuboid

H1(G,R) //

��

H1(G,Q)

��

// H1(G, S)

��

H1(G,R) //

��

H1(G,Qγ)

??
�

�
�

�
�

�
�

�
�

��

// H1(G, Sγ)

??
�

�
�

�
�

�
�

�
�

��

H1(B,R) // H1(B,Q) // H1(B, S)

H1(B,R) // H1(B,Qβ) //

??
�

�
�

�
�

�
�

�
�

H1(B, Sβ)

??
�

�
�

�
�

�
�

�
�

,

where rightward arrows are part of four exact sequences running through the
central vertical square.

Proof. The front and back faces are subdiagrams of Proposition 2.4(i),(iii); the
top and bottom faces commute by Proposition 2.5; the vertical squares commute
by Proposition 2.6.

8



2.5 Group theoretic interpretations

The following material is completely standard but we include it so as to put our
main results into a group theoretic context.

Let G be a group and Q a G-group. Then we can define the semidirect product of
G and Q, Q⋊G to be Q×G as a set, and with a multiplication (q1, g1).(q2, g2) =
(q1.q

g1
2 , g1.g2). It is easy to check that this makes Q⋊G into a group with identity

element 1 and inverse (q, g)−1 = (q−g−1

, g−1).

One has a short exact sequence of groups

{1} → Q → Q⋊G → G
π
→ {1}

where the last map is simply projection to the second factor. This sequence splits
since ι : G → Q ⋊ G; g 7→ (1, g) gives π ◦ ι the identity map on G. We have
{(q, 1) : q ∈ Q} identifying Q with its image in Q ⋊ G. Thus we usually just
write Q⋊G = QG and (q, g) = qg.

Now take a cocycle γ ∈ Z1(G,Q). Then in the semidirect product Q ⋊ G the
group G′ := {γ(g)g ∈ QG : g ∈ G} is isomorphic to G, QG′ = QG and G′

has trivial intersection with the image of Q in Q ⋊ G. In other words, G′ is a
complement to Q in QG′. Similarly if G′ is a complement to Q, projection to
G defines a cocycle γ : G → Q. Thus one shows that Z1(G,Q) is in bijection
with the set of complements to Q in QG. In fact, two complements G1 and G2

are conjugate in QG by an element q of Q if an only if the two cocycles γ1 and
γ2 defined by them are cohomologous via q. Thus the Q-conjugacy classes of
complements to Q in QG are in bijection with the pointed set H1(G,Q).

One then has H1(G,Q) ∼= H1(B,Q) if and only if the Q-conjugacy classes of
complements to Q in QG are in bijection with the conjugacy classes of comple-
ments to Q in QB.

3 Main results

3.1 Versions of the five lemma

Theorem 3.1. Let {1} → R → Q → S → {1} be a short exact sequence of
G-groups, such that the image of R is central in Q. Let B ≤ G. Then in the
following diagram,

9



SG δG−−−→ H1(G,R)
ιG−−−→ H1(G,Q)

πG−−−→ H1(G, S)
∆G−−−→ H2(G,R)

h1





y

h2





y

h3





y

h4





y

h5





y

SB δB−−−→ H1(B,R)
ιB−−−→ H1(B,Q)

πB−−−→ H1(B, S)
∆B−−−→ H2(B,R).

the following hold:

(i) If h2 and h4 are surjective and h5 is injective, then h3 is surjective.

(ii) If h2 and h4 are injective and the restriction maps SG
γ → SB

β are surjective
for any γ ∈ Z1(G, S) with γ|GB = β, then h3 is injective.

(iii) If the hypotheses of (i) and (ii) hold, then h3 is an isomorphism.

Proof. Assume the hypotheses of (i) and take γ ∈ H1(B,Q). We need to
produce a pre-image β, say, such that h3(β) = γ. We get started by the diagram
chase used to prove the five lemma for diagrams of abelian groups.

Let δ := πB(γ). As the bottom row is exact, ∆B(δ) = 1. As h4 is surjective, we
have a pre-image ǫ with h4(ǫ) = δ.

Since the last square commutes, h5(∆G(ǫ)) = 1 and since h5 is injective,
∆G(ǫ) = 1.

Now, the top row is exact, so ǫ ∈ ker∆G and hence ǫ ∈ imπG; say, ǫ = πG(η),
say. Let h3(η) = θ.

Since the penultimate square commutes, we have σ(θ) = δ.

The picture is now as follows:

∗
δG−−−→ ?, ∗

ιG−−−→ ?, η
πG−−−→ ?, ǫ

∆G−−−→ 1

h1





y

h2





y

h3





y

h4





y

h5





y

∗
δB−−−→ ?, ∗

ιB−−−→ γ, θ
πB−−−→ δ

∆B−−−→ 1,

where we would like to establish the ?s and are not interested in ∗s.

In the case of abelian groups, one would continue the proof of the five lemma
by taking the difference γ − θ; observing that this maps under πB to 1 and
continuing the diagram chase. Since we cannot do this in the case of pointed
sets we use twisting by η and continue into the partial cuboid of Propostion 2.7.
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∗
ιG //

h2

��

?, η

h3

��

πG // ǫ

h4

��

?2
ι′G //

h2

��

?3, 1

θη

??
�

�
�

�
�

�
�

�
�

h′

3

��

π′

G // 1

θǫ

??
�

�
�

�
�

�
�

�
�

�
�

h′

4

��

∗
ιB // γ, θ

πB // δ

?1, 1
ι′B // γ′, 1

π′

B //

θθ

??
�

�
�

�
�

�
�

�
�

1

θδ

??
�

�
�

�
�

�
�

�
�

�
�

,

Here we are using the fact that the bijection in Proposition 2.3 takes the neutral
element in H1(G,Qη) to the element η in H1(G,Q) and the fact that the partial
cuboid is commutative.

Now in the front bottom row, as γ′ ∈ ker π′

B, we have γ′ ∈ im ι′B. Thus we
may put κ in place of ?1. Since h2 is a surjection, we may put λ in place of ?2.
Then we replace ?3 with µ = ι′G(λ) and by the fact that the front left square
commutes, h′

3(µ) = γ′. Finally if we replace ? with ν := θη(µ) the commutativity
of the central vertical square gives us our preimage of γ.

For (ii) the picture in the partial cuboid is as follows:

∗
ιG //

h2

��

γ, δ

h3

��

πG // ζ

h4

��

1, ν
δ′G //

h′

1

��

1, κ
ι′G //

h2

��

1, δ′

θγ

??
�

�
�

�
�

�
�

�
�

h′

3

��

π′

G // 1

θζ

??
�

�
�

�
�

�
�

�
�

�
�

h′

4

��

∗
ιB // ǫ

πB // η

1, µ
δ′B // 1, λ

ι′B // 1
π′

B //

θǫ

??
�

�
�

�
�

�
�

�
�

�
�

1

θη

??
�

�
�

�
�

�
�

�
�

�
�

where we have twisted by γ. Here a preimage κ of δ′ under i′G exists since δ′ is
in the kernel of π′

G. Simlarly µ is a preimage of λ under δ′B; and ν is a preimage
of µ under h′

1.

This shows that δ′ = ι′G(δ
′

G(ν)) and hence is equal to 1 since the composition
of these two maps is trivial. Thus γ = δ since θγ is a bijection.

11



(iii) is now obvious.

Proposition 3.2. Let 1 → R → Q → S → 1 be a short exact sequence of
G-groups, (with R not necessarily central in Q) and let B be a subgroup of G.
Then in the following diagram:

1 −−→ RG −−→ QG −−→ SG δG−−→ H1(G,R)

h1





y

h2





y

h3





y

h4





y

h5





y

1 −−→ RB −−→ QB −−→ SB δB−−→ H1(B,R).

,

(i) If h2 and h4 are surjective and h5 is injective, then h3 is surjective.

(ii) If h2 and h4 are injective then h3 is injective.

(iii) If h2 and h4 are isomorphisms and h5 is an injection then h3 is an isomor-
phism.

Proof. The usual proof of the five lemma goes through in this case. Where one
would take the ‘difference’ of two elements g and h in an abelian group one uses
the element gh−1. The proof then works as normal.

Corollary 3.3. Suppose H i(G,R) ∼= H i(B,R) for 0 ≤ i ≤ 2 and all abelian
G-groups R. Let Q be any G-group with a finite central filtration, i.e. Q =
Q1 ≥ Q2 ≥ Q3 ≥ · · · ≥ Qn = {1} with Qi ⊳ Q and Qi/Qi+1 ≤ Z(Q/Qi+1) for
all i; then we have QG ∼= QB and H1(G,Q) ∼= H1(B,Q).

Proof. This is a simple induction using the previous two results. The case n = 2
is given by the hypotheses as Q is then abelian. If we know the result up to n−1
then set R = Qn, and S = Q/Qn. Then the hypotheses of Theorem 3.1(iii) and
Proposition 3.2(iii) hold and we are done.

3.2 Algebraic G-groups

Let G be a reductive algebraic group defined over a field k and let B be a
Borel subgroup of G. A parabolic subgroup P of G is any closed subgroup of G
containing a Borel subgroup. Any parabolic subgroup has a Levi decomposition
P = LRu(P ) where L is a Levi subgroup of P , i.e. any closed, maximal reductive
subgroup of P ; and Ru(P ) is the unipotent radical of P , i.e. Ru(P ) is the
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maximal, closed, unipotent, normal subgroup of P . This decomposition is a
semidirect product. Thus there is a short exact sequence

{1} → Ru(P ) → P
π
→ L → {1}

with a splitting ι : L → P such that π ◦ ι is the identity map on L.

Let Q be another algebraic group defined over k. Then we say Q is a G-group
if there is a homomorphism φ : G → Autk(Q). One checks that all the work
of the previous sections goes through in the category of linear algebraic groups
provided one adds ‘closed’ in the right places; for instance H1(G,Q) is now in
bijection with the set of closed complements to Q in GQ up to Q-conjugacy.

We need some further definitions.

Definition 3.4. Let G be a group and Q a G-group. Then we say that Q has
a central filtration by G-modules if there is a sequence

Q = Q(1) ≥ Q(2) ≥ · · · ≥ Q(n) = 1

of G-groups with Q(i) ⊳ Q and where for each 1 ≤ i ≤ n, Q(i)/Q(i + 1) has
the structure of a G-module and is central in Q/Q(i+ 1); i.e. Q(i)/Q(i+1) ≤
Z(Q/Q(i+ 1)).

Recall finally that an algebraic group G comes equipped with an algebra of
regular function k[G]. If An denotes n-dimensional affine k-space, then k[An] =
k[T1, . . . , Tn] is a polynomial ring in the n co-ordinate functions Ti.

Any variety X can be seen as a closed subvariety of An for some n; i.e it is
the vanishing set V (I(X)) of some (radical) ideal I(X) ≤ k[An]. Moreover, we
have k[X ] ∼= k[An]/I(X).

3.3 Unipotent algebraic G-groups

In [Fau75] it is proved that any normal subgroup N of a unipotent algebraic
group Q defined over a perfect field is the zeros of codimG(N) p-polynomials in
the co-ordinate functions of the ambient group. We do not need the full weight
of that result. Nonetheless, we make the

Definition 3.5. A polynomial f ∈ k[T1, . . . , Tn] is a p-polynomial, if it is a linear

combination of terms T pj

i for j ≥ 0.

and the
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Proposition 3.6. Let V be a vector group over k (i.e. V ∼= An) with co-ordinate
functions T1, . . . Tn. If W is any closed subgroup of V then I(W ) is generated
by codimVW p-polynomials in T1, . . . , Tn.

Proof. This is [Fau75, Proposition 2(i)].

Note that when these p-polynomials are not linear, one can have subgroups which
are not subspaces:

Example 3.7. Let char k = p > 0 and take the one dimensional additive groupGa

embedded in A2 by x 7→ (x, xp). Then Ga is a closed, connected subgroup of A2

but not a subspace. It is determined by the vanishing of the single p-polynomial
T p
1 − T2

However, if we can find a k∗-action on W as multiplication by scalars, we really
do have a subspace.

Proposition 3.8. With the hypotheses of 3.6, if W is stable under the action of
the multiplicative group Gm on V determined by v 7→ λv for each λ ∈ Gm(k) ∼=
k∗, then W is generated by codimVW linear polynomials in T1, . . . , Tn and is
hence a subspace.

Proof. By 3.6 we have that I(W ) = 〈f1, . . . fm〉 with each fi a p-polynomial,
with no dependence k[An]-dependence amongst the fi. More specifically,

f1 =a01T1 + a02T2 + · · ·+ a0nTn

a11T
p
1 + a12T

p
2 + · · ·+ a1nT

p
n

...

ar1T
pr

1 + ar2T
pr

2 + · · ·+ arnT
pr

n .

Call the linear part f ′

1 of f1 the linear polynomial a01T1 + · · ·+ a0nTn.

Observe that since the map k → k defined by x 7→ xp is a field automorphism,
the zeros of f1 are the same as the series of F ∗(f1), where F

∗ is the comorphism
of the Frobenius morphism acting as F ∗(Ti) = T p

i . Thus if f ′

i = 0 for any
i we may replace fi with F ∗−1(fi) without changing V (I(W )) and hence the
hypotheses of the proposition.

Now we claim we can arrange that the fi have no linear relation between their
linear parts.

14



To prove the claim, suppose we have k1f
′

1+k2f
′

2+· · ·+kmf
′

m = 0 with 0 6= ki ∈ k
for some i. By reordering the fi, we may assume this is km. Then setting

f̂m = fm −
k1f1 + k2f2 + · · ·+ km−1fm−1

km

we have I(W ) = 〈f1, . . . , fm−1, f̂m〉 with f̂ ′

m = 0. Now we can replace f̂m with
F ∗−1(f̂m) and repeat. As the highest power of T1 amongst all the fi is finite,
this process must terminate in a set of fi with no linear relationship in the f ′

i .

Now if f1 is a linear polynomial then we get W as a subgroup of a lower dimen-
sional vector space An−1 ≤ An defined by the vanishing of f1 and then we have
the claim by induction.

So assume, looking for a contradiction that (*) aij > 0 for some i > 0.

Choose λ ∈ k\Fpi. The morphism V → V ; v → λv correponds to a comorphism
λ∗ where on coordinate functions λ∗(Tj) = λTj (so λ∗(T p

j ) = λpT p
j ).

Now consider λ∗(f1). If λ
∗(f1) is contained in the ideal I(W ) then as its linear

part λ∗(f1)
′ = λf ′

1 we must have λ∗(f1) ≤ 〈f1〉 as there are no linear relationships
between any of the linear parts of the fi by the above claim. Now λ∗(f1) = λf1
since the linear parts must agree; thus the coefficient of T pi

j in λf1 is λaij whereas

in λ∗(f1) it is λ
piaij . But since we chose λ 6∈ Fpi, λ

pi 6= λ, we must have aij = 0.
This is a contradiction to (*).

We are now in a position to prove our second main result.

Theorem 3.9. Let G be a reductive group over an algebraically closed field k
and Q a G-group. Then Q has a central filtration by G-modules.

Proof. Form the semidirect product H := Q⋊G of Q and G; as G is reductive
and Q is unipotent, we note that H = QG is a Levi decomposition of H . Since
this is again a linear algebraic group we may take Q ≤ GL(V ) for some V ;
note also that Q = Ru(H). Take H in a parabolic subgroup P of GL(V ) with
P = Ru(P )L chosen minimal subject to containing H .

Suppose, looking for a contradiction, that the intersection Q′ := Q ∩ L is non-
trivial. Then under the projection π : P → L, the image H ′ := π(H) ≤ L
is a subgroup of the reductive subgroup L with a non-trivial unipotent radical
Q′ := Ru(H

′) contained in L. Thus H ′ is in a non-trivial parabolic subgroup
R = MRu(R) of L, with dimM < dimL. But now P ′ = MRu(R)Ru(P )
contains a Borel subgroup of G and thus is a parabolic subgroup of G and is
strictly contained in P (since the maximal reductive subgroup M of P ′ is strictly
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contained in L). However, H ≤ π(H)Ru(P ) ≤ MRu(R)Ru(P ) = P ′ < P .
This is a contraction as P was chosen minimal subject to containing H ; thus we
conclude that Q ∩ L = {1}.

Now G ∩ Q = {1} as G is reductive, thus we have G ∼= G′ = π(G) and so
GQ = G′Q with G′ ≤ L.

We apply the main result of [ABS90] which states that Ru(P ) has a central
filtration by modules for L. That means a sequence of subgroups Ru(P ) =
Z(1) ≥ Z(2) ≥ Z(3) ≥ · · · ≥ Z(n) with Z(i)/Z(i+ 1) central in Z/Z(i) and
each Z(i)/Z(i + 1) has the structure of an L-module. Restriction to G′ gives
each Z(i)/Z(i + 1) the structure of an G′ module. Finally, we get a filtration
of Q by intersection with the Z(i); that is, letting Q(i) = Z(i) ∩ Q we get a
central filtration Q(i) of the G′-group Q by G′-stable subgroups of G′-modules.

We wish now to find an action of Gm on each Q(i)/Q(i + 1) so that we may
invoke 3.8.

To do this, observe that as Z(L) centralises G′, Z(L) also stabilises each
Q(i)/Q(i+ 1) ≤ Z(i)/Z(i+ 1). Indeed it is easy to see that one can choose a
one-dimensional torus Gm

∼= S ≤ Z(L) acting on each Z(i)/Z(i+1) as scalars.

(For the interested reader, one can do this by choosing standard parabolic sub-
groups such that a level Z(i)/Z(i+ 1) is generated by root groups corresponds
to roots

0 . . . 01 . . . 10 . . . 0 ∗ · · · ∗ 0 . . . 01 . . . 10 . . . 0 ∗ · · · ∗ . . . . . . 0 . . . 0

where there are i > 0 1s and rankssL ∗s taking values 0 or 1 according to whether
the resulting string represents a root. Then if the first time a 1 appears is in
position j not next to a ∗ we have that the torus {hαj

(t) : t ∈ k∗} acts as scalars
on Q(i)/Q(i+1) and is in Z(L) whereas if the first time a 1 appears is position
j next to a single star we can use {hαj−1

(t)−1 : t ∈ k∗} and if the first time j is
in between two stars we can use {hαj−1

(t)hαj
(t2)hαj+1

(t) : t ∈ k∗}.)

As we have our action of Gm as hypothesised in 3.8 we conclude that each
Q(i)/Q(i+1) is aG′-stable subspace of Z(i)/Z(i+1) and hence aG′-submodule.
Hence we have a central filtration of Q by G′-modules.

Finally through the isomorphism G ∼= G′ we then get a central filtration Q(i) of
the G-group Q by G-modules.
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3.4 Cohomology of G with coefficients in a unipotent group

In [CPSvdK77], Cline, Parshall, Scott and van der Kallen proved a result which
has the following generalisation

Theorem 3.10 ( [Jan03, II.4.7]). Let G be a reductive algebraic group over
k and let P be a parabolic subgroup of G. If V is a rational G-module, then
Hn(G, V ) ∼= Hn(P, V ) for all n ≥ 0.

Using the results of the previous sections we will generalise this result in the cases
n = 0 and n = 1 replacing V by an arbitrary, connected unipotent G-group Q.

Theorem 3.11. Let G be a reductive group over an algebraically closed field
k and let Q be a G-group. Let P be a parabolic subgroup of G. Then the
restriction maps

(i) QG = H0(G,Q) → H0(P,Q) = QP ; and

(ii) H1(G,Q) → H1(P,Q)

are isomorphisms of pointed sets.

Proof. Mimicking the proof of 3.3, we see that induction on the length of the
filtration in 3.9, together with 3.2 gives part (i) of the theorem.

Now since we have proved H0(G,Q) ∼= H0(P,Q) for all G-actions on all con-
nected unipotent groups Q (in particular, for all twists (Q/R)γ in the situation
of 3.1) we have the hypotheses for 3.1(iii) and so we conclude, again inductively,
that H1(G,Q) ∼= H1(P,Q).

Finally, we give a corollary on subgroup structure.

We recall Serre’s notion of G-complete reducibility from [Ser98]. A subgroup H
of G is said to be G-completely reducible (or G-cr) if whenever H is contained
in a parabolic subgroup P of G, it is contained in some Levi subgroup of that
parabolic.

Using the above theorem we can show that a closed reductive subgroup H of
G is G-cr if and only if whenever H is in a parabolic subgroup of G, one of its
Borel subgroups is in a Levi subgroup of that parabolic; in other words

Corollary 3.12. Let H be a closed reductive subgroup of G contained in a
parabolic P = Ru(P )L of G and let B be a Borel subgroup of H . Then H is
G-conjugate to a subgroup of L if and only if B is.
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Proof. One direction is trivial, so assume that B is G-conjugate to a subgroup
of L.

Since H is reductive, we have as usual that if H̄ := π(H) denotes the projection
of H to L then H is a complement to Ru(P ) in Ru(P )H̄; hence H corresponds
to some cocycle γ ∈ Z1(H̄, Ru(P )). Now consider B̄ := π(B) ≤ H̄. It is
clear that if β denotes the restriction γ|H̄

B̄
then B corresponds to the cocycle

β ∈ Z1(B̄, Ru(P )).

The hypothesis that B is G-conjugate to L implies that B is Ru(P )-conjugate
to L by [BMRT09, 5.9(ii)]. Thus β must be in the trivial cocycle class in
H1(B̄, Ru(P )). But by Theorem 3.11, H1(B̄, Ru(P )) ∼= H1(H̄, Ru(P )) and so
γ is in the trivial cocycle class in H1(H̄, Ru(P )). Thus H is Ru(P )-conjugate
to a subgroup of L and so clearly it is G-conjugate to a subgroup of L.

Remark 3.13. One has of course the same result with B replaced by any parabolic
subgroup Q of H .
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