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ABSTRACT

We describe a correlation function statistic that quantifies the amount of spatial and kine-
matic substructure in the stellar halo. We test this statistic using model stellar halo realizations
constructed from the Aquarius suite of six high-resolutionN-body simulations in combination
with the GALFORM semi-analytic galaxy formation model. These simulations show consider-
able scatter in the properties of stellar haloes. We find thatour statistic can distinguish between
these plausible alternatives for the global structure of the Milky Way stellar halo. We com-
pare with observational data and show that pencil beam surveys of∼ 100 tracer stars (such
as the Spaghetti Survey) are not sufficient to constrain the degree of structure in the Milky
Way halo with this statistic. Larger area surveys with> 1000 tracer stars (such as BHB stars
in the Sloan Digital Sky Survey) provide much tighter constraints on comparisons between
models and data. In our simulations, we find examples of haloes with spatial and kinematic
substructure consistent with the available Milky Way data.
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1 INTRODUCTION

In the Cold Dark Matter (CDM) cosmogony, galactic stellar haloes
are built up in large part from the debris of tidally disrupted satel-
lites (e.g. Searle & Zinn 1978; White & Springel 2000; Bullock &
Johnston 2005; Cooper et al. 2010). Discovering and quantifying
halo structures around the Milky Way may provide a useful di-
agnostic of the Galaxy’s merger history (e.g. Helmi & de Zeeuw
2000; Johnston et al. 2008; Gómez & Helmi 2010). Upcoming
Milky Way surveys (for example with PanSTARRS1, LAMOST,
HERMES and the LSST) will provide large datasets in which
to search for structure, and theGaia mission will determine six-
dimensional phase-space coordinates for all stars brighter than
V ∼ 17, from which it should be possible to untangle even well-
mixed streams in the nearby halo (Gómez et al. 2010).

Testing the CDM model by comparing these observations with
numerical simulations of stellar halo formation requires that the
‘abundance of substructure’ be quantified in a straightforward way,
with a method equally applicable to simulations and observations.
Algorithms already exist for identifying substructure in huge multi-
dimensional datasets (e.g. Sharma & Johnston 2009), such asthose
expected fromGaia, supplemented by chemical abundance mea-
surements (Freeman & Bland-Hawthorn 2002). These algorithms
can also be applied to simulations, although this is not straightfor-
ward. One problem is that current (cosmological) hydrodynamic
simulations still fall short of the star-by-star ‘resolution’ of the
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Gaia data, particularly in the Solar neighbourhood (e.g. Brown,
Velázquez & Aguilar 2005).

In the outer halo, longer mixing times allow ancient struc-
tures to remain coherent in configuration space for many gigayears.
However, 6DGaia data will be restricted to relatively bright stars.
In the near future studies of the outer halo (beyond∼ 20 kpc) will
continue to rely on a more modest number of ‘tracers’ (giant and
horizontal branch stars). For these stars, typically only angular po-
sitions and (more uncertain) estimates of distance and radial veloc-
ity are available. Current simulations contain as many particles as
there are (rare) tracer stars in observational samples. This enables
the comparison that we present here between models and data that
are already available. We focus on quantifying the degree ofstruc-
ture in rare tracer stars in a generic way, which we apply to these
data and to simulations of stellar haloes.

Most studies of spatial and kinematic structure in the Milky
Way halo have given priority to the discovery of individual over-
densities (exceptions include Bell et al. 2008, Xue, Rix & Zhao
2009 and Helmi et al. in preparation). Relatively few have investi-
gated global statistical quantities for the entire stellarhalo, although
several authors have suggested an approach based on clustering
statistics. Re Fiorentin et al. (2005) analysed the velocity-space
clustering of a small number of halo stars in the Solar neighbour-
hood, using a correlation function statistic. Following early work by
Doinidis & Beers (1989), Brown et al. (2004) examined the angu-
lar two-point correlation function of photometrically selected blue
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horizontal branch (BHB) stars in the 2MASS1 catalogue, probing
from ∼ 2− 9 kpc. They detected no significant correlations at lat-
itudes|b| & 50◦, but did detect correlations on small scales (1◦,
∼ 100 pc) at lower latitudes, which they attributed to structure in
the thick disc. Lemon et al. (2004) performed a similar analysis for
nearby F stars in the Millennium Galaxy Catalogue and found no
significant clustering.

Starkenburg et al. (2009) used a correlation function infour
dimensions (which we discuss in detail below) to identify sub-
structures in the Spaghetti pencil-beam survey of the distant halo,
from which they obtained a significant detection of clustering and
set a lower limit on the number of halo stars in all substructures.
Similarly, Schlaufman et al. (2009) constrained the mass fraction
of the halo in detectable substructure by estimating the complete-
ness of their overdensity detection algorithm. Starkenburg et al. and
Schlaufman et al. concluded respectively that> 10% (by number
of stars) and∼ 30% (by volume) of the Milky Way halo belongs to
groups meeting their own definitions of phase space substructure.
These methods were tested on ‘mock catalogues’ of tracer stars
constructed from simplified models of the stellar halo. Alsoof par-
ticular relevance to this work is the study of Xue et al. (2009), who
considered the pairwise radial velocity separation of a large sample
of halo BHB stars as a function of their separation in space, but
found no evidence of clustering.

The statistic we develop below is more general than the oth-
erwise similar approach of Starkenburg et al. (2009) and more sen-
sitive than that of Xue et al. (2009). Following Starkenburget al.
(2009), we define a two-point correlation function using a metric
that combines pairwise separations in the four most readilyob-
tained phase space observables for halo stars (angular position, ra-
dial distance and radial velocity). We apply this statisticto the data
analysed by Xue et al. (2009) and demonstrate that a significant
signal can be extracted.

A metric of the kind we propose can be tuned to probe a spe-
cific scale of clustering by adjusting the weight given to each of
its components (e.g. Starkenburg et al. 2009). However, it is not
clear what signal is to be expected from a ‘typical’ΛCDM stellar
halo which is a superposition of many sub-components with a com-
plex assortment of morphologies in phase space. We can identify no
clearly ‘optimal’ metric. Instead, we make a fiducial choiceof scal-
ing which we test using the self-consistent accreted halo models of
Cooper et al. (2010). These incorporate a fullΛCDM galaxy for-
mation model and are based on high-resolution cosmologicalsimu-
lations from the Aquarius project (Springel et al. 2008). Having de-
fined our metric, we are able to make direct comparisons between
these simulations and the data of Xue et al. (2008). We show that
even though both the metric and our choice of scaling are simple,
this approach has the power to discriminate quantitativelybetween
qualitatively different stellar haloes.

We describe the basis of our method in Section 2 and the ob-
servational data to which we compare in Section 3. In Section4 we
describe our simulations and our procedure for constructing mock
catalogues. In Section 4.3 we discuss how our technique relates
to the similar approach of Starkenburg et al. (2009) in the context
of the Spaghetti Survey (Morrison et al. 2000). We show that the
number of stars in this survey is too small to give useful constraints
with our approach. In Section 6 we apply our method to a much
larger sample of BHB stars (Xue et al. 2008) from the 6th data re-
lease (DR6) of the Sloan Digital Sky Survey (SDSS SEGUE), and

1 Two Micron All Sky Survey (Skrutskie et al. 2006)

compare these data to our simulations. Our conclusions are given
in Section 7.

2 METRICS FOR PHASE-SPACE DISTANCE

The most readily obtained phase-space observables for halostars
are their Galactic angular coordinates,l andb, heliocentric radial
distance,d, and heliocentric line-of-sight velocity,vhel. From their
angular position and distance estimate, each star can be assigned
a three-dimensional position vector in galactocentric Cartesian co-
ordinates,r (X,Y, Z), and a radial velocity corrected for the Solar
and local standard of rest motions,vGSR (hereafterv). We begin by
defining a scaling relation (metric),∆, which combines these ob-
servables into a simple ‘phase-space separation’ between two stars:

∆2

ij = |ri − rj |
2 + w2

v(vi − vj)
2. (1)

Here,|ri−rj | is the separation of a pair of stars in coordinate
space (in kiloparsecs), andvi − vj is the difference in their radial
velocities (in kilometres per second). The scaling factorwv has
units ofkpc km−1 s, such that∆ has units of kpc. The choice of
wv is arbitrary unless a particular ‘phase space scale’ of interest can
be identified. This is not straightforward; we discuss some possible
choices below.

The aim of this paper is to exploreξ(∆), the cumulative two-
point correlation function of halo stars in the metric defined by
Equation 1. Throughout, we use the estimator

1 + ξ(∆) =
DD(< ∆)

〈RR(< ∆)〉
. (2)

HereDD(< ∆) counts the number of pairs in the sample separated
by less than∆, and〈RR(< ∆)〉 is the equivalent count of pairs of
points randomly placed in the volume of the survey, averagedover
a number of realisations.

The definition of∆ given by Eqn. 1 is similar but not identical
to the4-distancemetric of Starkenburg et al. (2009). These authors
define the phase-space separation of two stars,δ4d, to be

δ24d,ij = w̃φφ
2

ij + w̃d(di − dj)
2 + w̃v(vi − vj)

2. (3)

The observables in Eqn. 3 are the same as those in Eqn. 1. In this
definition, the distance in configuration space between two stars is
split into an angular component,φ, and a radial component,d. The
constant scaling factors,̃w, normalize each component to its max-
imum observable value in the Spaghetti survey (described below).
Starkenburg et al. choosẽwφ = 1/π2, w̃d = ηd,ij/(130 kpc)

2,
andw̃v = ηv,ij/(500 kms−1)2. Theηij terms are intended to in-
corporate into the metric itself the observational errors,σd,v, ond
andv. They are defined relative to the typical error of a star in the
survey:

ηd,ij =
(σd,i/di)

2 + (σd,j/dj)
2

2〈σd/d〉
2

(4)

ηv,ij =
σ2

v,i + σ2

v,j

2〈σv〉
2

. (5)

If theseη terms are neglected (i.e.ηd,v = 1), the metric of
Starkenburg et al. can be related to Eqn. 1 by separating radial dis-
tance into transverse and parallel components, i.e.r2 = r2‖ + r2⊥.
Ther‖ term is exactly equivalent tod in Eqn. 3, but transforming
the angular separation of the stars to a transverse distance, r⊥, is
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Figure 1. Upper panel: the4-distancecumulative correlation functionξ(<
δ4d) defined by Starkenburg et al. (black squares with Poisson error bars)
for 101 RGB stars from the Spaghetti survey (Starkenburg et al. 2009). Grey
triangles (slightly offset inδ4d for clarity) show the same function setting
η = 1 in the metric of Starkenberg et al. (see text). Lower panel: correlation
functions in the same metric for 2558 BHB stars (6 < r < 60 kpc) from
the SDSS DR6 sample of Xue et al. (2008).

less straightforward2. At small angles, wherer2⊥ = r2 − r2‖ ≈

w2

φφ
2

ij , the scaling between our metric and that of Starkenburg et
al. corresponds to∆ = (130 kpc) × δ4d, with wφ = 130/π ∼
41.4 kpc rad−1 andwv = 0.26 kpc km−1 s.

Starkenburg et al. suggest that pairs of stars separated by a
suitably smallδ4d can be regarded as a ‘group’. To determine
the optimum value ofδ4d to define groups in a given survey3,
they examine the cumulative two-point correlation function with
a DD/〈RR〉 estimator equivalent to Eqn. 2. Starkenburg et al.
compute〈RR〉 by repeatedly ‘reshuffling’ the distances and ve-
locities of stars in the sample amongst their (fixed) angularcoor-
dinates(l, b). As described below, we adopt the same procedure
when computing our correlation function,ξ(∆).

Fig. 1 shows two correlation functions in the Starkenburg et
al. 4-distancemetric. The first of these is for giant branch stars
from the Spaghetti survey (as in Fig. 1 of Starkenburg et al. 2009)
and the second is for a much larger sample of BHB stars in SDSS

2 Separating the components of distance in the metric in this way is natural
where radial distance error dominates the uncertainty. Onesimple way to
proceed may be to include an ‘r dθ’ term in the angular separation, where
r is defined (for example) as the mean distance of the two stars.In a mod-
ified Eqn. 3 this could be achieved by settingwφ,ij ∝

√

didj . With this
definition, larger values of∆ result for pairs of the same angular separation
lying at larger mean absolute distances (note that this is not the case in the
Starkenburg et al. formulation of Eqn. 3). However, this treatment is not
sensible at large angular separations.
3 That is, a value large enough to confidently link together many stars,
without creating spurious groups.

DR6 extending4 to ∼ 60 kpc (Xue et al. 2008). These datasets are
described in more detail in the following sections.

We also show in Fig. 1 the equivalent correlation functions set-
ting ηd = 1 andηv = 1 in Eqn. 3 as described above. These terms
make interpretation of the metric distance more complicated. When
they are included, pairs with larger errors have largerδ4d, and so
are assigned to a higher-separation bin in the cumulative correlation
function. Including these terms has a practical advantage if δ4d is
used only as a ‘structure finder’, as they ‘clear out’ dubiouspairs
from the smallest separation bins. However,δ4d then depends not
only on the physical phase-space coordinates of two stars, but on
how well those coordinates are measured. For example, increasing
the radial separation of a pair by 10 kpc and improving the mea-
surement of distance for both stars by a factor of 10 (relative to the
average of the sample) would result in the sameδ4d. ThusDD/RR
is not a straightforward measurement of physical clustering when
these weighting factors are used. Fig. 1 shows that settingη = 1
affects the significance of the correlation function signalfor these
two surveys at the smallest separations but makes little difference
to the overall shape. This is especially true in the case of the SDSS
BHB stars.

Both samples show a significant signal inξ(< δ4d) at small
separations. Starkenburg et al. adoptedδ4d = 0.05 as a suitable
‘linking length’ to identify meaningful groups in the Spaghetti sur-
vey. Here we are not concerned with the identification of individual
groups. Instead, our aim is to use ourξ(< ∆) correlation function
to quantify in a statistical sense theoverall nature of structure in
the halo.

3 OBSERVATIONAL SAMPLES FROM SPAGHETTI AND
SDSS

Spaghetti is a survey of the stellar halo in 134 pencil-beam fields
covering∼ 52 sq.deg. at high Galactic latitudes (Morrison et al.
2000; Dohm-Palmer et al. 2000). Of these 134 fields, 101 were tar-
geted randomly within the region defined in Galactic coordinates
by b > 30◦ and0 < l < 210◦; the remaining 33 were targeted
randomly in the regionb < −30◦. Metal-poor red giant branch
(RGB) halo star candidates were identified photometricallyusing a
combination of Washington System filters (Morrison et al. 2001).
In a subset of 52 fields (amounting to∼ 25 sq.deg.) all candidates
were followed up spectroscopically to distinguish true giants from
nearby metal-poor dwarfs. Radial velocities and metallicities were
determined from the spectra of 101 confirmed halo RGB stars with
errors of10-15 km s−1 and 0.25–0.3 dex respectively. Distances
for these stars were determined from spectroscopic luminosity es-
timates as described by Morrison et al. (2000, 2003). Errorsassoci-
ated with the spectroscopic metallicity measurements (used to se-
lect fiducial globular cluster colour-magnitude tracks) are the most
significant contribution to a typical distance error of∼ 15 per cent.

Xue et al. (2008) have published a catalogue of 2558 stars
from SDSS DR6 which they identify as halo BHBs with high con-
fidence (contamination< 10%), using a combination of colour cuts
and Balmer line diagnostics. This sample ranges in distancefrom

4 In the case of the Xue et al. BHB stars we have setw̃d = 130 kpc in
Eqn. 3. Starkenburg et al. definẽwd as the maximum distance probed by the
survey – the Xue et al. high-confidence sample extends towd = 60 kpc,
and the most distant BHB found in the full SDSS sample lies at∼ 90 kpc.
However, adjusting̃wd to these ‘limits’ makes a negligible difference to the
correlation function.



4 A.P. Cooper et al.

4− 60 kpc; a cut on distance error excluded more distant stars ob-
served in SDSS. The errors on distance (∼ 5%) and radial velocity
(5−20 km s−1) for stars in the Xue et al. catalogue are comparable
to or better than those of Spaghetti. The Xue et al. BHBs are not
a complete sample in any sense. In particular, as described by Xue
et al., the targeting of SDSS spectroscopy disfavours follow-up of
more distant BHBs. Completeness estimates are difficult forboth
surveys, particularly for SDSS, because of the complex procedures
by which candidates are identified and confirmed.

In the study of the Galactic escape velocity profile for which
the Xue et al. sample was obtained, the authors further restricted the
data to 2401 stars by selecting only stars with a height|z| > 4 kpc
above the Galactic plane. This cut was designed to exclude thick
disc BHB stars. In our analysis of the data we retain the full high-
confidence sample of 2558 BHBs and do not impose any restriction
on |z| in our mock observations, beyond that of the SDSS footprint.

Xue et al. (2009) studied the pairwise radial velocity distri-
bution of the Xue et al. (2008) BHB sample as a function of dis-
tance separation,〈|∆vr|〉(∆r). They found no significant devia-
tion from a constant|∆vr| at any scale in∆r. From comparisons
to the simulations of Bullock & Johnston (2005), Xue et al. con-
cluded that this statistic is not capable of detecting structure against
a more smoothly distributed background in phase space made up
from well-mixed streams. However, the observed signal was not
compared to the expected signal from random realisations.

4 STELLAR HALO SIMULATIONS

4.1 N-body and galaxy formation model

The mock observations that we use to test theξ(< ∆) correlation
function are derived from simulations of the accreted stellar halo
presented in Cooper et al. (2010). These simulations approximate
the dynamics of stars in dwarf satellites of Milky Way-like galaxies
by ‘tagging’ appropriate particles (i.e. those strongly bound within
subhaloes) in the Aquarius suite of high-resolution N-bodysimu-
lations (Springel et al. 2008). Each ‘tag’ associates a darkmatter
(DM) particle with a stellar population. This technique is valid in
the regime of high mass-to-light ratios, which is supportedin this
case by observations of stellar kinematics in dwarf galaxies (e.g.
Walker et al. 2009).

The tagging method has a single free parameter, the fractionof
most bound particles chosen in each DM halo for each assignment
of newly-formed stars (see Cooper et al. 2010, for further details).
This parameter was fixed (to a value of 1 per cent) by requiringthe
population ofsurvivingsatellites at the present day to have a dis-
tribution of half-light radius as a function of luminosity consistent
with Milky Way and M31 observations5. The Cooper et al. mod-
els differ from the earlier models of Bullock & Johnston (2005) in
that they treat the full cosmological evolution of all satellites self-
consistently in a single N-body simulation, and use a comprehen-
sive semi-analytic model of galaxy formation (Bower et al. 2006)
constrained by data on large scales and compatible with the ob-
served MW satellite luminosity function. Both the Cooper etal. and
the Bullock & Johnston simulations produce highly structured stel-
lar haloes built from the debris of disrupted dwarf galaxies. Other
halo components formedin situ may be present in real galaxies

5 The luminosity function of surviving satellites in these models also
agrees with MW and M31 data. This agreement is mostly due to the un-
derlying galaxy formation model.

(e.g. Abadi, Navarro & Steinmetz 2006; Zolotov et al. 2009) but
these are likely to be more smoothly distributed than the accreted
component (Helmi et al. in preparation).

As in Cooper et al. (2010), we refer to our six simulations as
haloes Aq-A, Aq-B, Aq-C, Aq-D, Aq-E and Aq-F. From these sim-
ulations, we construct catalogues of tracer stars (representing RGB
or BHB stars) by converting the stellar mass assigned to eachdark
matter particle into an appropriate number of stars. Each DMpar-
ticle can give rise to many tracer stars if it is tagged with sufficient
stellar mass.

The positions and velocities of these tracer stars are interpo-
lated between nearby tagged DM particles in phase space. To ac-
complish this, the 32 nearest phase space neighbours of eachtagged
particle are identified using the procedure described below. The
mean dispersion in each of the six phase-space coordinates is then
calculated for each particle by averaging over these neighbours.
These dispersions define a 6D ellipsoidal Gaussian kernel centred
on the particle, from which the positions and velocities of its tracer
stars are drawn randomly. Each progenitor object (set of tagged DM
particles accreted as members of a single subhalo) is treated indi-
vidually in this smoothing operation, i.e. particles are smoothed us-
ing only neighbours from the same progenitor (so there is no ‘cross
talk’ between streams from different progenitors). This procedure
can be thought of as a crude approximation to running our original
simulation again including each tracer star as a test particle.

The ‘distance in phase space’ used to identify neighbours in
the interpolation scheme is defined by a scaling relation between
distances in configuration space and velocity space6. For each pro-
genitor, we adopt an individual scaling which corresponds to mak-
ing the median pairwise interparticle separation of its particles in
configuration space (atz = 0) equal to their median separation
in velocity space. In practice, the value of this scaling parameter
makes very little difference to the results we present, whencom-
pared to the extreme choice of selecting only 32 velocity or position
neighbours (disregarding the other three coordinates in each case).
Giving more weight to configuration-space neighbours smears out
velocity substructure within the debris of a progenitor (for exam-
ple, where two wraps of a stream pass near one another). Giving
more weight to velocity neighbours has the opposite effect –stars
can be interpolated over arbitrarily large separations in configura-
tion space, but coherent velocity structures are preserved. There-
fore, the ‘optimal’ choice is the scaling which balances smoothing
in configuration space against smoothing in velocity space.

To quantify this balance between smoothing in configuration
and velocity space, we compute six smoothing lengths for each par-
ticle,ǫx,i andǫv,i, wherei represents a single dimension in space or
velocity. We compute these as the spherically averaged dispersion
in position and velocity, respectively, taken over the 32 phase-space
neighbours of the particle. We define the ‘optimum’ choice ofscal-
ing for eachprogenitor galaxy as that which minimises the quantity

σ2

ǫ =

(

1

ǭx,min

3
∑

i=0

ǫx,i

)2

+

(

1

ǭv,min

3
∑

i=0

ǫv,i

)2

. (6)

This is the sum in quadrature of the mean smoothing lengths incon-
figuration and velocity space, normalized respectively byǭx,min,

6 In this part of the calculation, we are only interested in finding neigh-
bours, so the absolute values of these distances are not important. This scal-
ing of velocity space to configuration space for the purpose of resampling
the simulations should not be confused with the∆ metric we define for our
analysis of clustering.
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Aq-A

20 40 60 80 100 120 140

Figure 2. Sky distribution of halo RGB stars in simulation Aq-A; colours indicate mean distance from the observer in kiloparsecs.This is a Mollwiede
projection in Galactic coordinates, centred on(l, b) = (0, 0), takingr⊙ = 8kpc. White lines delineate the Spaghetti survey target areas and white squares
a fiducial set of 52 randomly located1◦ fields (not to scale). The accreted component of the galacticbulge produces the elongated central feature at small
distances. Here the major axis of this component is orientated from bottom right (further from the observer) to top left (closer to the observer).

Figure 3. Fiducial realisation of a Spaghetti-like survey in halo Aq-A resembling the Spaghetti data (black dashed lines and points). The fiducial fields are
those shown in Fig. 2. From left to right the panels show (a) the correlation function in the metric of Starkenburg et al. (2009) and distributions of (b) radial
distance and (c) line-of-sight velocity (without correcting for the motion of the local standard of rest). Blue lines and points correspond to mock observations
with our standard mock catalogue, sampled at a rate defined byf−1

RGB
= 1000M⊙/star.

the ‘minimal’ mean smoothing length in configuration space (ob-
tained from the 32 nearest configuration space neighbours) and
ǭv,min, the ‘minimal’ mean smoothing length in velocity space (ob-
tained from the 32 nearest velocity space neighbours). We find that
the scaling obtained by matching the median interparticle separa-
tions in position and velocity as described above is typically a good

approximation to this optimal value – a similar result is discussed
in more detail by Maciejewski et al. (2009).

In the Cooper et al. model, the most bound 1% of DM parti-
cles in a halo at the time when a given stellar population forms in a
satellite are chosen as tracers of that population. Hence, each DM
particle to which stars are assigned has an individual mass-to-light
ratio, M/L, which can be as high as∼ 1 (i.e.Mstellar ∼ 104 M⊙)
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and as low as∼ 10−6. This will affect the density of stars seeded
by a DM particle independently of the density of its neighbours in
phase space (i.e. a low M/L particle will create a denser ‘cluster’ of
tracers relative to a high M/L particle with the same neighbouring
positions and velocities). We have tested an alternative approach
in which the M/L of each particle in a given progenitor is resam-
pled by distributing the total stellar mass of the progenitor evenly
amongst its tagged particles7. We find that the extra clustering due
to a few ‘hot’ particles in our default approach makes no difference
to our results. Many of the lowest M/L particles are in the bulge
component of the halo which is largely excluded (at least from our
final SDSS mock observations) by cuts in distance and Galactic
latitude.

4.2 Tracer Stars

Each N-body dark matter particle in our simulation contributes a
number of tracer stars to our mock observations, based on thestellar
population with which it has been ‘tagged’. In the case of Spaghetti,
the tracers are RGB stars meeting the (complex) selection criteria
of the survey. Here we assume a global scaling between the stellar
mass associated with each N-body particle,M⋆, and the number
of Spaghetti red giants it contributes to our mock catalogues, i.e.
NRGB = fRGBM⋆ wherefRGB is the number of tracer stars per
unit mass of the original stellar population8 . For each N-body par-
ticle, the actual number of RGB stars generated is drawn froma
Poisson distribution with meanNRGB.

The correlation function results described below are indepen-
dent of the choice offRGB, provided that the underlying distribu-
tion is well sampled at a given scale. We have therefore selected a
fiducial value off−1

RGB
= 1000M⊙/star. Fig. 3 shows that with

this value, the normalisations of the radial velocity and distance
histograms in a Spaghetti-like field set are similar to thoseactu-
ally observed in Spaghetti. Morrison (1993) determined a value of
f−1

RGB
∼ 620 LV,⊙/star for halo giants (RGB and AGB) in the

Solar neighbourhood, corresponding to approximately the same ra-
tio (assumingM/L ∼ 2 and a minimal AGB contribution).

We obtain distances and radial velocities to each RGB star
assuming a randomly oriented vector of lengthr⊙ = 8 kpc link-
ing the observer to the Galactic centre. Each random placement of
the observer on the ‘Solar shell’ is referred to below as oneran-
dom realisationof the mock catalogue. Wherever the observer is
placed on this spherical shell, Galactic longitude and latitude are
defined in the same way with respect to the footprint of the survey,
with (l, b) = (0, 0) being the vector directed from the observer to
the centre of the halo. As there is no Galactic plane in our simula-
tions (which contain only the accreted component of the haloand
the bulge), there is no direct constraint on the orientationof the
‘rotation axis’ of the galaxy seen by the observer (this is more sig-
nificant in the context of the SDSS survey, so in Section 6 we use
the shape of the halo to fix the orientation of the Galactic plane).
We adopt a Solar motion ofU, V,W = (10, 5.2, 7.2) kms−1 and

7 This is almost equivalent to choosing M/L only once, at the time in the
simulation when the progenitor falls into the main halo (similar to the lower-
resolution model of De Lucia & Helmi 2008).
8 We do this as we prefer to make a straightforward comparison with the
observational data in this paper. In principle, the age and metallicity infor-
mation associated with each stellar population in our modelcould be used to
populate an individual colour-magnitude diagram for each N-body particle,
and make a detailed prediction for the appropriate number oftracers.

a velocity of the local standard of rest about the Galactic centre
vLSR = 220 kms−1.

4.3 Spaghetti survey mock catalogues

We use our stellar halo models to create mock catalogues of indi-
vidual RGB stars, matched to the parameters of the Spaghettisur-
vey described above (including a cut in distance to select stars be-
tween 7 kpc and 130 kpc, the approximate range of the Spaghetti
sample). Four different instruments with three different field sizes
were used in the actual survey. Here we adopt the mean field size
of ∼ 0.5 sq.deg. (Dohm-Palmer et al. 2000) for all 52 fields cor-
responding to the spectroscopic sample. We locate these fields ran-
domly within the constraints on sky area given above. We aver-
age over many different random sets of field positions when mak-
ing comparisons based on a fixed observer position. In both model
and data, the random sample〈RR〉 is generated by reshuffling dis-
tances and velocities in the mock catalogue 1000 times, following
Starkenburg et al. (2009).

Fig. 3 verifies that our Aq-A model halo contains structures
quantitatively similar to those seen by the Spaghetti survey. To il-
lustrate this we have specifically chosen a set of fields for which
the distributions of distance and velocity are well-matched. As we
will show in the following section, however, there is a largeamount
of variance in the recovered signal among mock Spaghetti surveys
adopting different placements of fields (for a fixed observer), and
among different observer positions on the Solar shell.

5 APPLICATION OF THE ∆ METRIC

In this section we describe our choice of the weight factorwv in the
∆ metric (Eqn. 1). We then analyse the clustering of the Spaghetti
and SDSS using our mock catalogues, and discuss the limitations
of Spaghetti.

5.1 Distance - velocity scaling

There is no clearly well-motivated way to choose a value of the
velocity-to-distance scalingwv; without a physical justification, it
must be treated as a free parameter. The choice ofwv determines
the scale of substructure to which the correlation functionis most
sensitive. Naively we expect this to be the typical width andtrans-
verse velocity dispersion of a ‘stream’. It is preferable tofix this
parameter in a universal manner that does not depend on any par-
ticular survey parameters or geometry. We make a fiducial choice
of wv as follows.

In each simulated halo we adopt the SDSS-like survey config-
uration discussed below (without observational errors or assump-
tions about the location of the Sun). We construct (separately) one
dimensional distributions of the separation in radial distance and
velocity between stars. We generate many random realisations of
these distributions by first convolving each simulated starwith
Gaussian kernels of width8 kpc (distance) and80 kms−1 (ve-
locity), and then drawing from the equivalent ‘smoothed’ distribu-
tions. The kernel sizes were chosen as a compromise between sig-
nal (diminished by undersmoothing) and noise (increased byover-
smoothing). Using these random realisations we construct corre-
lation functions for each distribution. These two correlation func-
tions are shown for halo Aq-A in Fig. 4. Although the signals are
intrinsically weak, they have a very similar shape for both dis-
tributions, each with a characteristic ‘turnover’ scale. Matching
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Figure 4. Correlation functions in space separation (blue) and velocity sep-
aration (red) for stars in halo Aq-A. The velocity separation correlation
function has been scaled to match the turnover in the configuration space
separation correlation function by a factorwv = 0.04 kpc km−1 s.

this scale in the two correlation functions corresponds towv ∼
0.04 ± 0.01 kpc km−1 s for the six haloes, which we adopt as
a fiducial value. We caution that although the scales on which
we match the one-dimensional correlation functions are somewhat
smaller than the smoothing scales we adopt to create the random
distributions, this does not guarantee that our choice ofwv is unaf-
fected by our choice of smoothing.

This is not a very satisfactory way of fixingwv. However, in
practice our conclusions are not strongly sensitive to the precise
value we adopt. Values ofwv of the order of0.01–1.0 kpc km−1 s
result in very similarξ(∆) correlation functions. Values lower
than 0.01 kpc km−1 s recover very little signal. Values above
1 kpc km−1 s treat1 km s−1 velocity differences as equivalent to
> 1 kpc separations in space, and so make the cumulative correla-
tion function very noisy on small scales for only a marginal increase
in the overall signal (this noise in turn results in more scatter be-
tween the signals measured by different observers). We find that our
choice ofwv ∼ 0.04 kpc km−1 s is a reasonable compromise. The
above choices can be compared with the approach of Starkenburg
et al. (2009), who take the ratio of the Spaghetti survey limits in
radial distance and velocity to obtainwv = 0.26 kpc km−1 s. Ei-
ther value is acceptable to illustrate the utility of our approach, our
intention in this paper. We therefore adoptwv ∼ 0.04 kpc km−1 s.

Fig. 5 shows the cumulative correlation function with the
metric of Eqn. 1 averaged over many randomly placed observers
for a mock Spaghetti survey9. We show results forwv =
0.26 kpc km−1 s andwv = 0.04 kpc km−1 s. The scatter between
observers is much larger for a Spaghetti-like survey than for the
SDSS-like surveys we focus on below. Overall the choice ofwv

makes little difference. A large value ofwv increases the amplitude

9 When comparing our results with those of Starkenburg et al. (2009), it
is important to note that the∆ metric distance has units of kiloparsecs,
whereasδ4d defined by Eqn. 3 has units of [130 kpc].

Figure 5. The∆ metric cumulative correlation functionξ(< ∆) for mock
Spaghetti surveys in halo Aq-A. Each set of points with errorbars shows the
mean and standard error of 200 random realisations; dashed and solid lines
indicate10th and90th percentiles of the distribution in each bin, respec-
tively. Purple lines/points correspond towv = 0.04 and cyan lines/points
to wv = 0.26. Theδ4d metric of Starkenburg et al. (withoutη terms, see
text) is also shown (in grey). These correlation functions are those of mock
catalogues with no observational errors.

of the mean signal but also increases the scatter between observers.
We also show in Fig. 5 the equivalent correlation function using the
δ4d metric of Starkenburg et al. (2009) (rescaled to units of kilopar-
secs, and neglecting theη terms discussed above). These two metric
definitions give similar results. From Fig. 5 we conclude that with
either metric, the signal measured by any single observer inthis
halo using a Spaghetti-like configuration may not be representative
of the halo overall10.

By applying their method to the simulations of Harding et al.
(2001), Starkenburg et al. (2009) find that forδ4d < 0.05 over
80 per cent of pairs in their correlation function are made upof
stars originating in the same progenitor satellite (so called ‘true’
pairs). We find that our choice ofwv = 0.04 recovers a similar
fraction (∼ 70 per cent) of true pairs using the same method. This
supports the claim of Starkenburg et al. (2009) that the majority
of pairs detected in the Spaghetti data are likely to be genuine. In
the largest-scale bin used in our cumulative correlation function,
∆ < 21 kpc, the fraction of true pairs is∼ 40 per cent. The
efficiency with which true pairs are recovered is most relevant to
structure-finding applications and is not important for ourglobal
statistic. However, such high fractions do indicate that the cluster-
ing of stars from individual progenitor galaxies makes a substantial
contribution to the signals we recover.

We conclude that, as expected, the∆ metric is very similar
to theδ4d metric of Starkenburg et al. in the limit of small angular
separations and withη = 1 in Eqns. 4 and 5. The∆ metric has the
advantage of a more straightforward definition. Furthermore, from

10 This conclusion does not invalidate thedetectionof significant substruc-
ture in the Spaghetti data with this approach by Starkenburget al. (2009)
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Figure 6. Upper panel: The∆ metric cumulative correlation function
ξ(< ∆) of the Spaghetti survey (Poisson error bars). Lower panel:ξ(< ∆)
for the SDSS DR6 sample of Xue et al. (2008).

the wide scatter around the mean signal in Fig. 5 it is clear that an
individual Spaghetti-like survey cannot place a strong constraint on
the structure of the halo overall using either statistic.

5.2 Observations of ξ(< ∆) Spaghetti and SDSS

In Fig. 6 we showξ(< ∆) computed with the same observational
data used in Fig. 1. In the case of the Spaghetti data, there isa
clear reduction in the clustering signal relative to Fig. 1.This can
be most easily understood in the limit of small angular separations
as discussed above. In this limit, the transverse and perpendicular
components of distance are coupled in the∆ metric. In effect, an-
gular separations are translated to transverse distances,with a fixed
angular scale corresponding to a larger ‘r⊥’ at largerr‖. Pairs of a
givenφij in theδ4d metric can therefore be displaced to a relatively
higher- or lower-separation bin in the∆ metric, depending on their
radial distance. This effect does not significantly reduce the num-
ber of〈DD〉 pairs. However, the number of random pairs in small-
separation bins increases on average in the∆ metric, where pairs
physically close to the observer but separated by large angular dis-
tances can be assigned small transverse separations. This reduces
the significance of observed pairs in small separation bins.Most of
the signal in the Spaghetti survey comes from only a few excess
data pairs, so this dilution has a significant effect.

The cumulative correlation function of the much larger SDSS
BHB sample is very similar in both theδ4d and∆ metrics. This
suggests that the differences between the two metrics are small in
practice. This is not surprising. To within an order of magnitude, the
weights inδ4d maximise the signal in Spaghetti, which is similar in
spirit to the empirical approach described in the previous section.

5.3 The halo-average signal and pencil-beam surveys

A useful survey should recover ‘global’ properties of the halo
with high significance, i.e. properties that are insensitive to the ob-

Figure 7. ξ(< ∆) for an ‘enhanced’ Spaghetti-like survey (in halo Aq-
A) having 200 pencil beams at high latitude in each Galactic hemisphere.
Black points show the mean signal (with its standard error),and black lines
the 10–90 per cent range of the mean signal averaged over manyobservers.
Cyan points and lines correspond the distribution of signals for many sur-
veys (with randomly placed fields) carried out by a single randomly chosen
observer.

server’s position on the surface of the Solar shell. We have shown
that our metric can recover a clustering signal due to structure in the
halo, using the data from a Spaghetti-like survey. However,Fig. 5
demonstrates that the signal from such a survey measured by any
individual observer is extremely sensitive to the placement of its
pencil beams. A corollary of this is that the ‘halo average’ signal of
many observers also has a large scatter - in other words, the survey
is limited by ‘cosmic variance’. In this sense, ‘blind’ application of
ξ(< ∆) to the data from Spaghetti cannot constrain the properties
of the stellar halo, even if those data were complete in the surveyed
fields.

The SDSS sample of BHB stars provides a much more sig-
nificant measure of the global signal, as we demonstrate in the fol-
lowing section. However, SDSS is an expensive survey. Further-
more, in future it may be interesting to compare the correlation
functions of different tracers that can be surveyed only in the man-
ner of Spaghetti (in which costly spectroscopy of individual targets
is required to construct the sample). In Fig. 7 we show a pencil
beam survey covering both Galactic caps with 200 fields, using the
distance limits of Spaghetti. Although the scatter remainslarge, the
signal now deviates significantly from zero at small separations.
The local observer’s signal is also a reasonable measure of the halo
average. This is encouraging, because it implies that only arela-
tively modest improvement is required over Spaghetti to provide
useful constraints on halo structure (as suggested by Starkenburg
et al. 2009). Halo simulations such as those of Cooper et al. (2010)
could be used to optimise a particular survey to detect clustering
due to accreted substructures, accounting for the effects of obser-
vational errors and incompleteness, which we have not addressed
here.
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6 CLUSTERING OF SDSS BHB STARS

We make mock SDSS surveys in a similar manner to the mock
Spaghetti surveys described above using the same catalogues of
tracer stars. Although the number density of BHB stars per halo is
not equal to that of RGB stars even under our assumption of a uni-
form underlying population, theξ(< ∆) statistic is not sensitive to
the absolute number of tracers. Accounting for inhomogeneity in
the stellar populations of the halo may introduce more significant
differences between the distributions of BHB and RGB stars.The
‘bias’ that may be introduced by choosing particular tracerpopula-
tions is beyond the scope of this paper.

For a given observer location, we select all tracer stars in
our catalogue within the SDSS DR6 footprint having distances
6 − 60 kpc. We do not include any stars gravitationally bound to
satellites. However, we do include stars in their tidal tails (which
by our definition are part of the stellar halo). We note that intheir
study of the pairwise velocity distribution of their BHB catalogue,
Xue et al. (2009) exclude nine stars deemed to belong to globu-
lar clusters. We do not exclude these stars from our analysisof the
SDSS data.

In Fig. 8 we compare all six haloes with the observations of
SDSS BHBs shown in Fig. 6. It is clear from Fig. 8 that the dis-
tribution of signals around the mean of many observers is much
narrower than that for the Spaghetti survey show in Fig. 5. Because
of the more extensive sky coverage of SDSS, fewer random orien-
tations are required for the global halo signal to converge than in
the case of Spaghetti. We find 80 randomly placed observers tobe
sufficient. For each of these observers, we compute the correlation
function using 20 random ‘shufflings’ of the data.

Panel (a) of Fig. 8 shows that all haloes have an average sig-
nal clearly deviating from zero at small separations. Furthermore,
significant differences are apparent in the average clustering signal
between each of our six simulated haloes. This demonstratesthat
this statistic can distinguish between plausible alternatives for the
structure of the MW halo in aΛCDM model. In particular, halo Aq-
C (purple) shows considerably more ‘substructure’ at all distances.
Visually, this halo is dominated by several massive, dynamically
young streams from recently-accreted satellites (see figures 6 and 7
of Cooper et al. 2010). Halo Aq-B (cyan), which has a lower clus-
tering signal, is centrally concentrated, and contains only a small
number of coherent low-mass streams. Halo Aq-E (blue) is also
centrally concentrated, but differs from Aq-B in having a substan-
tial accreted ‘thick disc’ component. Haloes Aq-A (black) and Aq-
D (green) are of intermediate mass and contain a variety of com-
plex features in different stages of mixing. Halo Aq-A contains a
Sagittarius-like stream and several widely dispersed clouds/shells,
while Aq-D shows a highly elongated coherent complex of bright
streams. Halo Aq-F is unusual – most of its stars are accretedin
a late major merger and it is substantially brighter than theMilky
Way at the Solar radius. For these reasons it more closely resembles
the ‘shell’-dominated haloes of some elliptical galaxies than those
of Milky-Way like spirals. Its clustering signal is the lowest of our
six models and is dominated by a much larger number of stars close
to the observer. Other than the ‘shell’ system, very little coherent
structure is apparent in this halo.

In summary, the clustering signal detected by ourξ(< ∆)
statistic broadly reflects the visual impression of the amount of spa-
tially coherent structure in each halo. However, to make a realistic
comparison with the Milky Way data, it is important to account
for the effects of observational errors (which become more signifi-
cant at small scales). The consequences of including observational

errors in the simulated data are shown in panel (b) of Fig. 8. Each
distance and radial velocity is perturbed by representative Gaussian
errors ofσd = 5% andσv = 15 kms−1 respectively (Xue et al.
2008). As expected, this smears out structure at small scales and
suppresses the clustering signal in all haloes. Halo C in particular
shows a much reduced signal, although the similarities and differ-
ences between the haloes are mostly preserved. An exceptionto
this is the reduction in the signal from Aq-D relative to thatof Aq-
E, at small metric separations. This is likely to be because the stellar
halo in Aq-D is more extensive than that of Aq-E (see Cooper etal.
2010). The small-scale clustering signal is presumably generated
by stars further from the observer in Aq-D than in Aq-E. These
stars have larger distance errors.

It is also relevant that the sky distribution of structure inour
simulated haloes stellar halo is not random with respect to the ori-
entation of the Galactic plane (and hence, with respect to the cov-
erage of the Sloan survey). It is a strong prediction of our models
that a planar alignment of halo debris will be observed in theMilky
Way. This correlated alignment of tidal features is a natural con-
sequence of structure formation inΛCDM, because the direction
from which most massive substructures are accreted is determined
by the filamentary nature of the large-scale structure. These ‘accre-
tion axes’ are correlated with the spin vector and shape of the main
halo, and hence with the likely orientation of the Galactic plane
(Libeskind et al. 2005; Li & Helmi 2008; Lovell et al. 2010).

In panel (c) of Fig. 8 we show the clustering signals for the
case in which we restrict the observer’s position to a ‘Galactic
plane’. We define this as the plane perpendicular to the minorprin-
cipal axis of the inertia tensor for halo stars with galactocentric radii
less than 3 kpc (see Cooper et al. 2010). The observer is randomly
located on a circle of radius 8 kpc in this plane, and the ‘parity’
of the Galactic poles is also randomized (this is important,because
SDSS coverage is mostly concentrated around only one Galactic
pole and the halo need not be symmetric).

As described in Cooper et al. (2010), an ‘accreted bulge’ com-
ponent is present in all of our haloes. In all cases the shape of this
component is triaxial (oblate in the case of halo Aq-E) and issim-
ilar to the shape of the dark halo in the same region. Our choice
of alignment ensures that the major axes of this component lie in
the Galactic plane. Hence, the practical effect of restricting the ob-
server to the ‘Galactic plane’ is to prevent this (nearby) component
from intruding into the SDSS footprint at high Galactic latitudes.
There are other plausible choices of Galactic alignment (for exam-
ple, relative to the shape or spin vectors of the entire dark halo).
However, any choice is somewhat arbitrary in the absence of aself-
consistent simulation of a galactic disc11. We choose to orient the
Galactic plane relative to the accreted bulge because, of all the plau-
sible choices, it has the most significant influence on the clustering
signal. Even in this case, the overall effect is modest. In some cases
(e.g. halo C) the amplitude of the mean signal increases slightly
and the scatter between signals decreases.

Finally, in panel (d) of Fig. 8 we show the results of constrain-
ing the orientation of the Galactic plane and also includingobser-
vational errors. This provides a more realistic comparisonwith the
observational data. Haloes with a high degree of coherent substruc-
ture on large scales (represented by our halo Aq-C) appear tobe
incompatible with the Milky Way, as do those with very littlesub-

11 In a full hydrodynamic simulation the effects of feedback and adiabatic
contraction may also make the halo more spherical (e.g. Tissera et al. 2010;
Abadi et al. 2010).



10 A.P. Cooper et al.

Figure 8. (a) The mean clustering signalξ(< ∆) of 20 Solar-shell observers with a SDSS-like survey. Each halo simulation is represented by a pair of lines
of the same colour (indicated in the legend). A solid line indicates the90th percentile of the distribution ofξ(< ∆) in each radial bin, and a dashed line the
10th percentile.ξ(< ∆) for MW BHB stars from the catalogue of Xue et al. (2008) is shown with open circles and orange error bars (identical in all four
panels). (b) Mock observations convolved with observational errors ofσd/d = 0.05 andσv = 15 km s−1. (c) Mock observations oriented such that the
Galactic ‘Z’ direction is aligned with the minor axis of the halo ellipsoid within 3 kpc, but not convolved with errors. (d) Mock observations with errors of (b)
and constrained alignment of (c).

structure due to the dominance of stars from a single progenitor
accreted on a radial orbit (Aq-F). Our four remaining haloesare
all broadly consistent with the data, with the MW having slightly
more than the typical amount of substructure on the smallestscales
in our analysis (∆ ∼ 1 kpc).

7 CONCLUSIONS

We have analysed the correlation functionξ(< ∆) of halo stars,
defining their separations in four dimensions of phase spaceusing
a metric (which we call∆) in readily-obtained observables (angu-
lar and radial separation and radial velocity difference).A statistic

of this type usefully quantifies kinematic and spatial substructure
in the halo, and can easily be applied to observational data and
catalogues generated from theoretical models. This analysis is par-
ticularly well suited to analysing the distant halo – other methods
for studying clustering in many dimensions may be more suitable
for the ‘fine grained’ data on the nearby halo that will soon beob-
tained by theGaia mission (e.g. Gomez et al. 2010). We aim to
apply other clustering statistics to our haloes in future work.

We have computedξ(< ∆) for mock observations of six stel-
lar haloes in the simulations of Cooper et al. (2010). All of these
haloes were formed from satellites disrupted withinΛCDM dark
haloes selected as plausible hosts for the Milky Way. Our statistic
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distinguishes quantitatively between these six qualitatively differ-
ent scenarios. On average, all six haloes show statistically signifi-
cant correlations on scales in our metric equivalent to∼ 1−10 kpc.

We find that small pencil-beam surveys such as Spaghetti sam-
ple too few stars and cover too small an area to be well suited to
analysis with our proposed statistic. Instead we have analysed a
much larger catalogue of BHB star observations from the SDSS
(Xue et al. 2008). The current Milky Way data are consistent
with those simulated haloes having a moderate degree of spatial
and kinematic substructure. Haloes dominated by massive coher-
ent structures and haloes with little or no substructure appear less
consistent with the Milky Way.

Our comparison between our models ofΛCDM stellar haloes
and the Milky Way data demonstrates the potential of the statisti-
cal approach suggested by Starkenburg et al. (2009) and Xue et al.
(2009). However, our application can only serve as a basic consis-
tency test for substructure kinematics in these models. Although the
properties of our model stellar haloes may vary between different
semi-analytic implementations, it is nevertheless encouraging that
our fiducial model passes this basic test.

A number of aspects of this approach could be improved with
further work. It seems desirable to use well-measured radial veloc-
ity data to boost a clustering signal (such as our correlation func-
tion) above that obtained from configuration space data alone (as
demonstrated by Starkenburg et al. 2009). However, no meansof
including these velocity data is, as yet, well-supported bytheory
(including the approach we adopt here). The parametrised metric
we have used to illustrate the concept of scaling radial velocity sep-
arations to ‘equivalent’ configuration space separations is straight-
forward choice, and it is empirically useful in recovering amea-
surable signal. Nevertheless, we have not found any compelling or
‘universal’ way to select (or even justify the assumption of) the
scaling parameter (wv). Improving either the definition of the met-
ric itself or the means of fixing this parameter is a clear priority for
extensions of this approach. A similar issue affects the weighting
of velocity information in clustering algorithms (e.g. Sharma et al.
2010).

A more extensive comparison between a stellar halo model
and the observational data should also take account of effects such
spectroscopic incompleteness. In addition, the fraction of the stel-
lar halo expected to be made up from components formed ‘in situ’
(i.e. within Milky Way-like galaxies themselves, rather than in ac-
creted systems) is not well constrained (Abadi et al. 2006; Zolotov
et al. 2009, see also Helmi et al., in preparation). It seems reason-
able to expect in situ halo components to be distributed smoothly,
with spherical or axial symmetry. The absence of these components
in our models may therefore lead to an artificially high cluster-
ing signal. It is possible to place crude limits on the fraction of
stars in a ‘missing’ smooth component, for example by comparing
the RMS variation of projected star counts in our models (Helmi
et al., in preparation) to the Milky Way (Bell et al. 2008). How-
ever, the uncertainties involved are substantial. Including an ad hoc
smooth component in the clustering analysis above would also re-
quire assumptions about its velocity distribution, which are even
less straightforward. There is a pressing requirement for complete
observational samples, even if they do not probe the most distant
halo. The LAMOST Galactic survey is likely to be the first to ap-
proach this goal.

In summary, we have taken a first step in adapting a well-
studied cosmological statistic, the two-point correlation function,
to the study of the Milky Way halo. We have presented an appli-
cation making few modelling assumptions, using high-resolution

N-body simulations of stellar halo assembly. Our statisticcan dis-
tinguish between plausible alternatives for the structureof Milky
Way-like stellar haloes. At least one of our six simulationsis con-
sistent with currently available data for the Milky Way. With further
refinements and more data, this approach can provide a practical
and productive way to quantify the structure of the Milky Wayhalo
for comparison with numerical models.
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