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Theory of cooperation in a micro-organismal snow-drift game
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We present a mean field model for the phase diagram of a community of micro-organisms, inter-
acting through their metabolism so that they are, in effect, engaging in a cooperative social game.
We show that as a function of the concentration of the nutrients glucose and histidine, the com-
munity undergoes a phase transition separating a state in which one strain is dominant to a state
which is characterized by coexisting populations. Our results are in good agreement with recent
experimental results, correctly predicting quantitative trends and the phase diagram.
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Cooperative phenomena in biology are difficult to treat
because of the complexity and heterogeneity of the inter-
actions, but a qualitatively successful approach is cooper-
ative game theory—the effort to encapsulate the complex
interactions into parameters describing the binary out-
come of pairwise interactions between individuals[IH7].
The central element in game theory is the payoff matrix,
which describes the score accruing to each member of
an interacting pair depending upon their action in the
game. For example, in the Prisoner’s Dilemma, the two
players can either “cooperate” or “defect”. Cooperation
yields a reward R, whilst if both defect, they receive a
punishment P. If one defects and the other cooperates,
the defector receives a temptation 7" while the coopera-
tor receives the sucker’s payoff S. If T > R > P > §,
then there is a dilemma: a rational player would defect
to receive the highest payoff independent of the state of
the other player, so that if both parties play rationally,
each will end up with the punishment P. However, if
they had both cooperated, they would have received the
reward R. Two-body interactions are paradoxical in co-
operative games, a forceful indicator of how collective
effects can override selfish one-body behavior.

Such seemingly abstract games have biological real-
izations in the dynamics of microbes and viruses. In a
pioneering study, Turner and Chaol8, 0] demonstrated
that an RNA virus ¢6 is engaging in the Prisoner’s
Dilemma by measuring the payoff matrix. In their ex-
periment, ¢6 is a wild-type complete strain, capable of
producing all the necessary intracellular products for in-
fection, and acts as a cooperator. ¢H2 is a mutant strain,
which evolves a defective strategy when cultured at high
miltiplicities-of-infection. During the co-infection of a
microbial host by these two strains, the fitness of the
whole community increased initially, but dropped even-
tually. The final drop was unexpected because in evolu-
tion fitness usually increases. The dilemma was explained
using game theory. By constructing the payoff matrix ac-
cording to the measured mean fitness at different initial
ratios of the two strains, the authors showed that the
virus was effectively trapped in the Prisoner’s Dilemma,

which caused the final drop. To escape the dilemma, sev-
eral years later, the same authors[I0] cultured another
strain ¢L1 to compete with ¢H2. This time the payoff
matrix obeyed the inequalities 7' > R > S > P and so
conformed to the condition for the so-called Snowdrift
Game, in which coexistence of the two strains were ob-
served.

In these two experiments, the payoff matrices are mea-
sured, but not manipulated. However, in a recent exper-
iment, the payoff matrix was actually manipulated by
genetically engineering Saccharomyces cerevisiae (bud-
ding yeast)[I1]. Budding yeast’s primary carbon intake
is a monosaccharide, such as glucose and fructose. In a
monosaccharide-absent environment, dormant genes are
derepressed, enabling the digestion of alternative nutri-
ents, such as disaccharide lactose and sucrose[I2]. In the
experiment, wild-type cooperative strains have an intact
SUC2 gene, which codes for the enzyme invertase to hy-
drolyze sucrose into glucose and fructose. However, 99%
of the product from sucrose hydrolysis is released back
into the media, giving rise to the possibility that mutant
defectors with the SUC2 gene knocked out could make
use of the metabolite without having to pay the price of
manufacturing glucose. In order to tune the cost of co-
operation and hence the payoff matrix, the authors en-
gineered cooperators to be a histidine auxotroph, which
relies on histidine importation from the media. Having
an intact histidine gene, defectors are not affected. Thus
limitation of histidine concentration in the media coerces
the metabolism of cooperators, increases the cost of coop-
eration, and thus affects the payoff matrix. By changing
the glucose and histidine concentration provided with a
fixed portion of sucrose, the authors empirically obtained
a transition from the dominance of defectors, which cor-
responds to the Prisoner’s Dilemma, to the coexistence
of both strains, which is a Snowdrift Game. The ability
to manipulate collective properties of the microbial world
by genetic engineering is impressive, but what is lacking
is a predictive understanding of the direct dependence of
cooperator fraction on nutrition concentrations.

The purpose of this paper is to build up a phenomeno-
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FIG. 1: (Color online) Experimental design of the two strains
and sucrose metabolism[TT].

logical model linking game theory and experimental mea-
surable quantities. We calculate the population struc-
ture, i.e. the fraction for cooperators and defectors, at
different glucose and histidine concentrations, and repro-
duce the phase diagram for the transition from domi-
nance of a single strain to coexistence of both. We resort
to game theory at the phenomenological level because the
collective effects here are highly nonlinear due to complex
metabolism. Our model implies a consistent nonlinearity
responsible both for the yeast growth and glucose pro-
duction.

The interactions between cooperative and defective
strains are complicated for the following two reasons.
First, there are two sources of nutrition supplies sucrose
and glucose(Fig. . Sucrose is easy to model because
it has a single source and single mode of consumption,
originating from the media and being consumed only by
cooperators. However, glucose has two sources: the ini-
tial glucose added into the media, and the local glucose
increment from sucrose decomposition by cooperators.
The actual glucose concentration surrounding yeast cells
depends on the cooperators’ metabolism and concentra-
tion, whose relation is not clearly known. Second, in
sucrose hydrolysis, cooperators suffer a negative cost in
invertase synthesis, but at the same time win a positive
cost by generating glucose for themselves. The balance
between the positive and negative cost is subtle and hard
to handle. In order to circumvent these two obstacles, we
model a simple situation where the two strains are at the
same nutrition level. This should be applicable to the
experimental situation because cooperative strains ulti-
mately live on the monosaccharide glucose no matter if it
is absorbed from the surrounding media or decomposed
from sucrose. In this way, our system can be simplified as
a coexistence problem of two strains living on the same
nutrition glucose.

Next we use game theory to identify the conditions for
coexistence. The key here is to construct a payoff matrix
with experimental data. Here, the two strains are en-
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FIG. 2: (Color online) Flow chart for the construction of
growth rates for defectors and cooperators, respectively.

gaging in a cooperative game: if the payoff for defectors
exceeds that of cooperators, defectors will dominate; if
the payoff for cooperators exceeds that of defectors, co-
operators will dominate. Therefore only when the pay-
offs for cooperators and defectors are equal to each other,
will coexistence be achieved. The payoff for players is the
mean fitness for species, which is measured as the growth
rate. Thus, our next task is to construct the dependency
of growth rates on experimental observable quantities.

The first input into the calculation is the measured
nonlinear dependency of growth rate b (hr=!) on glucose
concentration g (%)[11]:

b=m9%, (1)

where v; = 0.44, and o = 0.15. The nonlinearity
« = 0.15, which may come from the metabolism of the
yeasts, is more or less unexpected[I3]. Although the non-
linear relation, and the coefficients as well, were measured
for mutant cheaters in a media of 5% sucrose and vari-
ous concentrations of glucose, we assume that the basic
nonlinearity still applies in a mixed community. Hence
we import it into our model as a starting point for the
construction of growth rates. Next, we add wild-type
cooperators to the above media of mutant cheaters (see
Fig. . The cooperators generate glucose from sucrose
hydrolysis. From the perspective of the defectors, glu-
cose concentration increases and the increment goes up
with the increase in cooperator fraction. At first glance,
one might assume that the increment is linearly propor-
tional to the cooperator fraction. However, we argue here
that the increment is nonlinear and raised to the power
of the same parameter o because sucrose decomposition
depends also on the metabolism of cooperators. Then we
have

ba =71(g +72f")7, (2)

where b; denotes the growth rate for defectors, v, is a
fixed parameter for cooperation, and f is the fraction of
cooperators. When the cooperator’s metabolism is co-



erced by histidine concentration, we need to give a dis-
count on the increment. Combining the discount with
72, we obtain the growth rate for defectors

ba =v(9 +vf)" (3)

where v is a general discount, a combined effect of the
artificial discount in histidine limitation and the natural
cost in cooperation, and -y varies with histidine concen-
trations.

Finally, we model the growth rate of cooperators (Fig.
. As mentioned above, cooperators’ metabolism is dis-
counted by a ratio v compared to that of defectors, which
leads to

be = (g +~7f*)7, (4)

where b, is the growth rate for cooperators. Up to here,
we have put the two strains on the same carrying capac-
ity of glucose and incorporated the cost for cooperation
in invertase synthesis, but the obstacle for the positive
cost in glucose reservation remains. Such a positive cost
depends on metabolism and sucrose concentration. Since
the sucrose concentration is fixed in the experiment, we
expect a compensation for cooperators, labeled by a con-
stant ¢, depending only on histidine concentrations. (¢
might in principle be a function of v since both depend
monotonically on histidine concentration. Including the
positive cost for cooperation, we finally obtain

be = y71(g +7f)* + ¢ (5)

Eq. and compose the central part of our model.
These two equations show clearly the contribution of
wild-type cooperators to the increase in glucose concen-
tration as v f%, which is nonlinear in the cooperator frac-
tion mediated by histidine limitation. This model bal-
ances the discount « for cooperators, which represents the
negative cost, and the introduction of a single-variable
function ¢ depending on histidine concentration, which
represents a positive cost. The positiveness of { implies
that the engineered yeasts are engaging in a snowdrift
game.

In our model of cooperation, we have input three non-
trivial arguments: (i) The two a’s in Eq.(3) and are
the same, implying the same nonlinear mechanism, which
might be the metabolic system, in yeasts growth and
sucrose decomposition; (ii) The two «’s in Eq. are
the same, implying the same discount in yeasts’ growth
and sucrose decomposition by cost of cooperation medi-
ated by histidine limitation; (iii) ¢ is a single-function of
histidine concentration, represnting that cooperators are
compensated for production of glucose.

Now we verify that these assumptions are consistent
with the data. Based on our reasoning from game theory
that the growth rates for cooperators and cheaters are
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FIG. 3: (Color online) Coexistence of the two strains with
the variation in glucose and histidine concentration[I1]. (a)
Cooperator fraction with the variation in glucose and histi-
dine concentration at equilibrium. (b) Mean growth rate of
coculture with different glucose and histidine concentrations
at equilibrium.

the same at equilibrium, the growth rates measured in
Fig. should be valid for either strain. Interpreting
them as the growth rates for defectors, we can import
the data in Fig. [3| for various glucose and histidine con-
centrations into Eq. and calculate the discount ~.
According to our argument (i), we expect that v is the
same at the same histidine concentration but different
glucose concentrations; this is supported by the standard
deviations shown in Table[[} We neglect the data for very
small cooperator fractions, especially for the extinction
of cooperators, such as those when histidine concentra-
tion is as low as 0.005, since they will either generate
large deviation with very small bias in measurement or
cause the cooperation term v f% to vanish. Averaging
among different glucose concentrations, we can see that
the discount v gets smaller when histidine is more dilute.
The latter two o, are smaller than the previous two since
fewer data are averaged.

Next, we interpret the data in Fig. as growth rates
for cooperators and plug in the values of v shown in Ta-
ble [ into Eq. (5). Our arguments (ii) and (iii) predict
that ¢ depends only on histidine concentration, which
is consistent with the standard deviation for ¢ in Table
[Tl The positive cost for cooperators diminishes with the



TABLE I: Negative cost -y for cooperators at various histidine
concentrations.

[his] /(20 pg ml1™1) 1 02 005 0.02
v 0.186 0.136 0.0607 0.0274
standard deviation o, 0.02 0.02 0.006 0.006

TABLE II: Postive cost ¢ for cooperators at various histidine
concentrations.

[his) /(20 pg ml™!) 1 02 005 0.02
¢ 0.269 0.260 0.241 0.222
standard deviation o¢ 0.003 0.004 0.007 0.02

limitation in histidine. The latter two o are bigger than
the previous two since we extend the data for those not
incorporated in the calculation of v in Table[]}
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FIG. 4: (Color online) (a) Theoretical result for cooperator
fraction at various glucose and histidine concentrations. (b)
Experimental result for cooperator fraction at various glucose
and histidine concentrations.

With the discounts v and gain ¢ in hand, we can now
show the consistency of our theory by calculating the
cooperator fraction at equilibrium. Setting by = b, in Eq.

4

and , we plot the cooperator fraction in Fig. .
As a comparison, we replot the corresponding data from
experiment[I1] in Fig. [4p. The similarity between the
theoretical calculation and experimental measurement is
striking and supports our model.

Based on game theory, we have proposed a phenomeno-
logical model for wild-type cooperative and mutant defec-
tive strains in a mixed media of glucose and sucrose. We
circumvented the obstacle of modeling sucrose decom-
position, which increases glucose concentration, incurs a
cost as invertase syntheses for cooperators, and rewards
them with a small fraction of the glucose produced, by
attributing positive and negative cost for cooperation to
growth rates. Then we constructed a theory of coopera-
tion, determining the dependency of growth rates for de-
fectors and cooperators on experimental quantities such
as glucose and histidine concentration. Our calculation
of cooperator fraction at equilibrium is consistent with
experimental observations, showing the two strains are
engaging in a snowdrift game. These methods should be
useful in the design of future experiments to manipulate
collective properties of micro-organism communities.
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