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Transformation Optics in Nonvacuum Initial Dielectric Media
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Previous formulations of transformation optics have generally been restricted to transformations
from relatively simple initial media, such as the vacuum, because of limitations due to their non-
covariance. I show that a completely covariant approach enables arbitrary transformations from
arbitrarily complex initial linear dielectrics.

PACS numbers: 42.15.Eq, 41.20.Jb, 02.40.Hw, 42.25.-p

I. INTRODUCTION

The nascent field of metamaterial based transforma-
tion optics has garnered much attention in the past few
years, beginning with the highly publicized development
of an electromagnetic cloak [1–4]. The original approach
to transformation optics was based on purely spatial co-
ordinate transformations [1, 3, 5]. A step toward gen-
eralizing the allowed transformations [6] was based on a
similarity between the constitutive equations for electro-
magnetic fields in a curved vacuum space-time to the con-
stitutive equations for electromagnetic fields in materials
residing in Minkowski space-time developed by Plebanski
and De Felice [7, 8]. However, the Plebanski-De Felice
equations are not strictly covariant, as cautioned by Ple-
banski himself. Furthermore, the use of the Plebanski-
De Felice equations in transformation optics is somewhat
unsatisfying because it requires identifying a coordinate
transformation in flat space-time with a curved mani-
fold in a rather nonrigorous manner. More recently a
completely covariant and manifestly four-dimensional ap-
proach to transformation optics has been developed that
is both more rigorous and more widely applicable [9, 10].
It seems likely that many useful technological appli-

cations of transformation optics will require, as a design
specification, that the apparatus operate in a nonvac-
uum environment, such as water or a coolant fluid. Such
a scenario has mostly fallen outside the domain of va-
lidity of transformation optics because the Plebanski-De
Felice equations are strictly only valid for vacuum space-
times. It might be expected that, for isotropic prior di-
electrics, the constant parameters of the prior simply re-
place the vacuum values [6], which turns out to be true
in that special case, but in general it is not possible to
treat arbitrary prior materials with the Plebanski-De Fe-
lice equations because the vacuum is always isotropic
and nonmagnetoelectric whereas dielectric media are not.
At the level of Maxwell’s equations in three dimensions,
other approaches [1, 5, 11] have the potential to accom-
modate prior dielectrics with matrix-valued permeability
and permittivity for special cases of purely spatial trans-
formations. Those approaches are somewhat limited in
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scope by failing to incorporate the most general trans-
formations, which include time [12], and do not include
more complicated material parameters such as magneto-
electric couplings.
I demonstrate that a completely covariant and man-

ifestly four-dimensional approach to transformation op-
tics allows for general transformations within arbitrary
prior nonvacuum material distributions. While purely
spatial transformations from relatively simple initial ma-
terials agree with what might be expected from other
approaches, certain classes of transformations and more
complicated materials require the completely covariant
approach, where I find that the resulting material pa-
rameters depend on the initial material parameters in
complicated and unexpected ways.
This paper is organized as follows. Section II briefly

summarizes the completely covariant, manifestly four-
dimensional description of classical electrodynamics.
Section III sketches the completely covariant approach
to transformation optics developed in Refs. [9, 10] and
presents the main result found therein. Sections IV – VI
examine a variety of transformations within various prior
dielectric media, including isotropic and anisotropic me-
dia with and without magnetoelectric couplings. To high-
light the effects of the prior dielectric media the transfor-
mations are kept quite general, except for the example of
a square cloak embedded in an anisotropic, nonmagneto-
electric media, shown in Sec. VA. I conclude with some
discussion in Sec. VII.

II. CLASSICAL ELECTRODYNAMICS

Assume space-time to consist of a manifold M and

metric g. The electric field ~E and magnetic flux ~B are
combined into a single mathematical object, the covari-
ant field strength tensor F, that in a local Cartesian
frame or Minkowski space-time has the matrix represen-
tation

Fµν =







0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0






. (1)

Additionally, the electric flux ~D and magnetic field ~H are
combined into the covariant excitation tensor G, that in
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a local Cartesian frame or Minkowski space-time has the
matrix representation

Gµν =







0 Hx Hy Hz

−Hx 0 Dz −Dy

−Hy −Dz 0 Dx

−Hz Dy −Dx 0






. (2)

Maxwell’s equations are succinctly expressed as dF = 0,
and dG = J, where d is the exterior derivative, and J is
the charge-current 3-form (see, e.g., Ref. [13]).

Furthermore, in a linear dielectric medium there exists
a relationship between F and G given by the constitutive
equation [9, 10]

G = χ(⋆F), (3)

which in component form reads

Gµν = χ αβ
µν ⋆ σρ

αβ Fσρ. (4)

In Eq. (3), ⋆ is the Hodge dual on (M,g), which for
present purposes is to be understood as a map from 2-
forms to 2-forms that has components

⋆ µν
αβ =

1

2

√

|g|ǫαβσρg
σµgρν . (5)

The tensor χ contains information on the dielectric ma-
terial’s properties such as permittivity, permeability, and
magnetoelectric couplings. We take χ to be indepen-
dently antisymmetric on its first two and last two indices,
and in vacuum χ(⋆F) = ⋆F. This last condition means
that the classical vacuum is treated as a linear dielectric
with trivial χ, recovering the usual, trivial, constitutive
relations in vacuum.

The components of the constitutive equation provide a
set of six independent equations that in Minkowski space-
time can be collected in the form

Ha = (µ̌−1) b
a Bb+(γ̌1

∗) b
a Eb, Da = (ε̌∗) b

a Eb+(γ̌2
∗) b

a Bb,
(6)

where the notation ǎ denotes a 3×3 matrix. Rearranging
these to

Ba = (µ̌) b
a Hb+(γ̌1)

b
a Eb, Da = (ε̌) b

a Eb+(γ̌2)
b

a Hb, (7)

gives a representation that may be more familiar and in
which subsequent results will be expressed. These three-
dimensional representations of the completely covariant
Eq. (3) are essentially equivalent, and it is a simple mat-
ter to switch between them using the relations

ε̌ = ε̌∗ − γ̌2
∗µ̌γ̌1

∗, γ̌1 = -µ̌γ̌1
∗, γ̌2 = γ̌2

∗µ̌. (8)

However, one should be aware that these 3 × 3 matrices
are not strictly tensors but simply components of χ that
have been collected into matrices.

III. TRANSFORMATION OPTICS

To understand transformation optics, start with an
initial space-time manifold (M,g, ⋆), field configuration
(F,G,J), and material distribution χ, where dF = 0,
dG = J, and G = χ(⋆F). Imagine now a map T : M →

M̃ ⊆ M that maps M to some image M̃ and trans-
forms the electromagnetic fields in some smooth way to
a new configuration (F̃, G̃, J̃). Because the underlying
space-time is physically unaltered the manifold is still
described by (M,g, ⋆). But for the new field configura-
tion to be physically supported, there must exist a new
material distribution χ̃. Therefore dF̃ = 0, dG̃ = J̃, and
G̃ = χ̃(⋆F̃) holds on M̃ . Such a transformation could,

for example, map M to an image M̃ that contains a hole,
i.e. a region from which the fields will be excluded, as in
the case of an electromagnetic cloak.

Using the inverse, T , of the map T , the initial F and
G are related to the final F̃ and G̃ by the pullback of T ,
denoted as T ∗. This implies

G̃ = T ∗(G) = T ∗(χ(⋆F)) = χ̃(⋆T ∗(F)), (9)

which can be solved for χ̃ as a function of x ∈ M̃ , giving
[9, 10]

χ̃ τη
λκ (x) =

− Λα
λΛ

β
κχ

µν
αβ

∣

∣

∣

T (x)
⋆ σρ
µν (Λ−1)πσ(Λ

−1)θρ ⋆ τη
πθ .

(10)

In Eq. (10) Λ is the Jacobian matrix of T , Λ−1 is the ma-
trix inverse of Λ, and in solving for χ̃ we have made use
of the fact that on a four-dimensional Lorentzian mani-
fold, acting twice with ⋆ returns the negative, ⋆⋆F = −F.
Note that the initial material tensor χ must be evaluated
at T (x), while everything else is evaluated at x. Equa-
tion (10) represents the core of transformation optics in
linear dielectric materials. Because χ µν

αβ on the right

hand side of Eq. (10) need not be for vacuum, we can
use this to examine transformation optics in nonvacuum
initial, or prior, dielectric media.

IV. ISOTROPIC PRIOR DIELECTRIC

Suppose we wish to impose a transformation within
a prior nonvacuum dielectric material residing in
Minkowski space-time, such that the final result will be
a dielectric material embedded in the same material. As-
sume Cartesian coordinates and let the prior dielectric
be at rest with respect to the laboratory system in which
the electromagnetic fields are measured. Begin, for sim-
plicity, by letting the prior dielectric be isotropic with
parameters µp and εp, and with vanishing magnetoelec-
tric coupling.
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A. Spatial and Temporal Scaling

Consider the transformation

T (t′, x′, y′, z′) = (t, x, y, z) = (t′, x′, -ay′, z′) (11)

applied in some region y1 ≤ y ≤ y2. This spatial co-
ordinate scaling has been previously studied and forms
the basis of a so-called superlens [2, 14]. If the transfor-
mation takes place in vacuum Minkowski space-time, the
well known results for the corresponding material param-
eters are ε̌ = µ̌ = -diag(a-1, a, a-1), and γ̌1 = γ̌2 = 0, in
the representation of Eq. (7).

Allowing χ in Eq. (10) to describe an isotropic ma-
terial rather than vacuum and calculating χ̃, one in-
stead finds parameters ε̌ = -εpdiag(a-1, a, a-1), µ̌ =
-µpdiag(a-1, a, a-1), and γ̌1 = γ̌2 = 0. This simple re-
sult is perhaps not so surprising, and might be guessed
in advance by simply replacing the vacuum parameters
with the material parameters.

Next, consider a similar scaling transformation applied
to the time component

T (t′, x′, y′, z′) = (t, x, y, z) = (-at′, x′, y′, z′) (12)

during some time interval t1 ≤ t ≤ t2. It may be readily
shown [9] that such a transformation in vacuum corre-
sponds to an isotropic material ε̌ = µ̌ = -a, with vanish-
ing magnetoelectric coupling. Repeating the calculation
with a prior isotropic dielectric, Eq. (10) returns the not
unexpected result ε̌ = -aεp, µ̌ = -aµp, and γ̌1 = γ̌2 = 0.

B. Spatially Dependent Time Transformation

Until now it has been, for the sake of illustration, as-
sumed that T = T−1. But there is no guarantee that
T−1 exists. It is apparent from Eq. (10) that the map of
interest is actually T rather than T . Henceforth, to avoid
any issues related to the existence of T−1, we refer only
to a map from M̃ to M which, for the sake of consistent
notation, we continue to refer to as T and assume it is
well-defined on M̃ .

Consider the slightly more non-trivial transformation

T (t, x, y, z) = (t′, x′, y′, z′) = (f(x)t, x, y, z) (13)

which mixes space and time with an arbitrary function
f(x). A specific example of this type of transforma-
tion has been previously considered in more detail for
an initial vacuum Minkowski space-time [12]. Turning
the crank on Eq. (10) with the prior isotropic dielectric
χ, extracting the material parameters from χ̃, and using
Eq. (8) to express the results in the representation of Eq.

(7) returns

ε̌ =
εp

f(x)





1 0 0
0 1 0
0 0 1



 , µ̌ =
µp

f(x)





1 0 0
0 1 0
0 0 1



 ,

γ̌1 = γ̌2
T =

f ′(x)t

f(x)





0 0 0
0 0 1
0 -1 0



 ,

(14)

which is again scaled by the material parameters just
as before. So far, none of these results appear to be
particularly unusual or unexpected, but consider the next
example.

C. Time Dependent Spatial Transformation

In Ref. [9] it was observed that magnetoelectric cou-
pling terms seem to arise whenever space and time are
mixed in either a spatially dependent time transforma-
tion or a time dependent spatial transformation. It is
easy to see that the magnetoelectric couplings of Eq. (14)
come from the spatial dependent time transformation. It
is then natural to next consider the transformation

T (t, x, y, z) = (t, x, g(t)y, z), (15)

which mixes space and time with an arbitrary function
g(t). Turning the crank on Eq. (10) with a prior isotropic
dielectric returns the material parameters

ε̌\µ̌ = εp\µp







g(t)
h(t,y) 0 0

0 1
g(t) 0

0 0 g(t)
h(t,y)






,

γ̌1 = γ̌2
T =

yg(t)ġ(t)εpµp

h(t, y)





0 0 1
0 0 0
-1 0 0



 ,

(16)

where we use the notation ε̌\µ̌ to denote either ε̌ or µ̌,
an overdot ġ(t) denotes a time derivative, and

h(t, y) = 1− y2ġ2(t)εpµp. (17)

In this case the resulting material parameters are not
so trivial as the previous examples, depending on a com-
bination of both the prior dielectric material parameters
εp and µp. It is not obvious how such a result could
be anticipated from the Plebanski-De Felice approach,
which is formulated specifically for vacuum space-times.
In the following examples it will be clear that a naive
application of the Plebanski-De Felice approach fails for
more complicated prior dielectrics.

V. ANISOTROPIC PRIOR DIELECTRIC

It is interesting that effects such as those seen in the
last example arise even at the level of an isotropic prior
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dielectric. The calculations can just as easily be repeated
for an arbitrary anisotropic prior, where the results can
become significantly more complicated. For simplicity,
consider a prior anisotropic dielectric material described
by ε̌p = diag(εpxx, ε

p
yy, ε

p
zz) and µ̌p = diag(µp

xx, µ
p
yy, µ

p
zz),

with vanishing magnetoelectric coupling.
Repeating the calculations for the transformation of

Eq. (13) now leads to the material parameters

ε̌ =
1

f(x)





εpxx 0 0
0 εpyy 0
0 0 εpzz



 ,

µ̌ =
1

f(x)





µp
xx 0 0
0 µp

yy 0
0 0 µp

zz



 ,

γ̌1 = γ̌2
T =

f ′(x)t

f(x)





0 0 0
0 0 1
0 -1 0



 .

(18)

This result may have been anticipated based on the re-
sults found in Eq. (14). Do the results of the time depen-
dent spatial transformation in a prior isotropic dielectric,
Eq. (16), allow us to anticipate the result of the same time
dependent spatial transformation in a prior anisotropic
dielectric? Repeating the calculations for the transforma-
tion of Eq. (15) with a prior anisotropic dielectric leads
to the material parameters

ε̌ =









g(t)εp
xx

1−y2ġ2(t)εpxxµ
p

zz

0 0

0
εp
yy

g(t) 0

0 0
g(t)εp

zz

1−y2ġ2(t)εpzzµ
p

xx









,

µ̌ =









g(t)µp

xx

1−y2ġ2(t)εpzzµ
p

xx

0 0

0
µp

yy

g(t) 0

0 0
g(t)µp

zz

1−y2ġ2(t)εpxxµ
p

zz









,

γ̌1 = yg(t)ġ(t)







0 0
εp
zz

µp

xx

1−y2ġ2(t)εpzzµ
p

xx

0 0 0
-εp

xx
µp

zz

1−y2ġ2(t)εpxxµ
p

zz

0






,

(19)
with γ̌2 = γ̌1

T. Indeed, this result mirrors several fea-
tures of Eq. (16), but the additional complexity of the
anisotropic dielectric contributes some slight differences
between the two sets of results. Carefully note, for ex-
ample, how the xx and zz components of ε̌ and µ̌ depend
on the combinations εzzµxx and εxxµzz, and similarly for
the components of γ1 and γ2.

A. Square Cloak

The transformations considered thus far have been rel-
atively simple and generic. Consider the more concrete
and well-known example of a square cloak [4], embedded
in the prior anisotropic dielectric described previously.

In this case the transformation is

T (t, x, y, z) =

(

t,
s2(x − s1)

(s2 − s1)
,
ys2(x− s1)

x(s2 − s1)
, z

)

, (20)

for constants s1 and s2, resulting in the material param-
eters

ε̌ =









(x−s1)ε
p

xx

x
∗ ∗

−
ys1ε

p

xx

x2

y2s2
1
εp
xx

+x4εp
yy

x3(x−s1)
∗

0 0
s2
2
(x−s1)ε

p

zz

x(s2−s1)2









, (21)

and similarly for µ̌, while γ̌1 = γ̌2 = 0. This should
be compared to the vacuum result obtained by setting
εpxx = εpyy = εpzz = 1. Because the square cloak trans-
formation is purely spatial and the prior dielectric has
no magnetoelectric coupling, this result should in princi-
ple be obtainable with the approach of Ref. [5], based on
an explicit application of Maxwell’s equations. However,
it is clearly not obtainable from the Plebanski-De Felice
equations.

VI. MAGNETOELECTRIC PRIOR

DIELECTRIC

So far the discussion has focused on prior dielectrics
with vanishing magnetoelectric coupling. The existing
literature gives no indication as to how a prior dielectric
with non-vanishing magnetoelectric couplings should be
accommodated, but the completely covariant approach
facilitates such a prior material just as easily as any
other prior material and one proceeds in exactly the same
way in all cases. Let a prior dielectric material with
non-vanishing magnetoelectric couplings be described by
scalar-valued εp and µp, and magnetoelectric couplings

γ̌1
p = (γ̌2

p)T =





0 γp
xy γp

xz

-γp
xy 0 γp

yz

-γp
xz -γp

yz 0



 . (22)

These material parameters are given in the three-
dimensional representation of Eq. (7), but the calcula-
tions proceed with χ, which is more intimately related
to the three-dimensional representation of Eq. (6). So it
is important to first determine the parameters of χ by
changing to the representation of Eq. (6). We are now
in a position to reconsider the transformations given by
Eqs. (11)–(13), and (15).
The spatial scaling of Eq. (11) now leads to ε̌ =

-εpdiag(a-1, a, a-1), µ̌ = -µpdiag(a-1, a, a-1), and

γ̌1 = γ̌2
T =







0 γp
xy -

γp

xz

a

-γp
xy 0 γp

yz
γp

xz

a
-γp

yz 0






. (23)

Note that if this magnetoelectric coupling can be inter-
preted as a velocity [2] (which is not always possible [9]),
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then we must rescale its y-component relative to such a
velocity in the vacuum case. On the other hand the tem-
poral scaling of Eq. (12) now leads to ε = -aεp, µ = -aµp,
γ̌1 = -aγ̌1

p, and γ̌2 = -aγ̌2
p.

The spatially dependent time transformation of Eq.
(13) now leads to ε = εp/f(x), µ = µp/f(x), and

γ̌1 = γ̌2
T =

1

f(x)





0 γp
xy γp

xz

-γp
xy 0 γp

yz + tf ′(x)
-γp

xz -γp
yz − tf ′(x) 0



 .

(24)
Lastly, the time dependent spatial transformation of

Eq. (15) now leads to

ε̌\µ̌ =
εp\µp

w







g(t) yġ(t)γp
yz 0

∗
w+y2ġ2(t)((γp

xy
)2+(γp

yz
)2)

g(t) yġ(t)γp
xy

∗ ∗ 0






,

γ̌1 = γ̌2
T =

1

w





0 zγp
xy g(t) (yġ(t)εpµp + zγp

xz)
∗ 0 zγp

yz

∗ ∗ 0.



 ,

(25)
where ∗ indicates a matrix element whose value is ob-
tained by the appropriate symmetry properties of the
matrix (ε̌ and µ̌ are symmetric while γ̌1 and γ̌2 are anti-
symmetric)

z = (1− yġ(t)γp
xz), and w = z2 − y2ġ2(t)εpµp. (26)

This example demonstrates a case where neither the
Plebanski-De Felice approach nor the approach of Ref. [5]
are applicable, but is handled easily with the totally co-
variant approach. The result clearly illustrates the com-
plexity that may arise, even for simple transformations,
when the prior dielectric material is complicated, and in
general a particular component of the final material may
depend on several parameters of the prior material.

VII. DISCUSSION

Using a totally covariant approach, I have demon-
strated the extension of transformation optics to non-
vacuum scenarios. I have shown that for transformation

optics in prior nonvacuum dielectric media, the material
parameters of the prior media may appear in the final ma-
terial parameters in complicated and unpredictable ways.
The exact manner in which the prior material parame-
ters appear naturally depends both on the characteris-
tics of the prior material (i.e. whether it is isotropic or
anisotropic, and whether there are non-vanishing magne-
toelectric couplings), and on the transformation. Strictly
speaking it is not possible to obtain such results from the
Plebanski-De Felice equations, as these are formulated
for vacuum space-times. Because of the relatively trivial
nature of an isotropic material, using the Plebanski-De
Felice equations and a naive scaling of the vacuum dielec-
tric parameters with the material parameters happens
to work for simple transformations. For more compli-
cated materials and transformations this naive approach
no longer works and the completely covariant approach
becomes necessary.
When the transformation is a spatially dependent scal-

ing of time such as Eq. (13), the required material pa-
rameters are a simple scaling of the prior material pa-
rameters. On the other hand, time dependent spatial
transformations such as that of Eq. (15) generally ap-
pear to require a material whose parameter complexity
increases with the complexity of the prior dielectric. An
exotic time dependent transformation is not required to
see interesting and unanticipated behaviors, as the fa-
miliar square cloak embedded in an anisotropic dielectric
demonstrates.
Although the example transformations and initial di-

electric materials reported here were necessarily limited,
I wish to emphasize that the completely covariant formu-
lation of transformation optics encompasses all types of
transformations and arbitrarily complex linear dielectric
materials, and that the calculations proceed identically
in all cases. As transformation optics designs become
more complex, the completely covariant approach will
be needed to handle the required transformations and
materials.
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