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Abstract

An asymptotic formula for the sum of the first n primes is derived. This

result improves the previous results of P. Dusart. Using this asymptotic

expansion, we prove the conjectures of R. Mandl and G. Robin on the

upper and the lower bound of the sum of the first n primes respectively.

1 Introduction

Let pn denote the nth prime 1 2. Robert Mandl conjectured that

∑

r≤n

pr <
npn
2
.

This conjecture was proven by Rosser and Schoenfeld in [1] and is now
referred to as Mandl’s inequality. An alternate version of the proof was given
by Dusart in [2]. In the same paper, Dusart also showed that

∑

r≤n

pr =
n2

2
(lnn+ ln lnn− 3/2 + o(1)). (1)

Currently, the best upper bound on Mandl’s inequality is due to Hassani
who showed that (See [3]) for for n ≥ 10,

∑

r≤n

pr <
npn
2

−
n2

14
. (2)

With regards to the lower bound, G. Robin conjectured that

np[n/2] <
∑

r<n

pr. (3)

This conjecture was also proved by Dusart in [2]. However, neither 2 nor 3
give exact growth rate of

∑

r≤n pr. In this paper, we shall derive the asymptotic
formula for

∑

r≤n pr. Both Hassani’s improvement of Mandl’s inequality and
Robin’s conjecture follow as corollaries of our asymptotic formula.
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2 Asymptotic expansion of
∑

r≤n pr

Theorem 2.1. (M. Cipolla) There exists a sequence (Pm)m≥1 of polynomials
with rational coefficients such that, for any integer m,

pn = n

[

lnn+ ln lnn− 1 +
m
∑

r=1

(−1)rPr(ln lnn)

lnr n
+ o

(

1

lnm n

)]

.

This was proved by M. Cipolla in a beautiful paper (See [5]) in 1902. In the
same paper, Cipolla gives recurrence formula for Pm and shows that every Pm

has degree m and leading coefficient 1
m . In particular,

P1(x) = x− 2, P2(x) =
1

2
(x2 − 6x+ 11). (4)

Lemma 2.2. If f is monotonic and continuous and defined in [1, n] and then,

∑

r≤n

f(r) =

∫ n

1

f(x)dx +O(|f(n)|+ |f(1)|).

Proof. Well known. (See [4], 1.62-1.67, Page 19-20)

Theorem 2.3. There exists a sequence (Sm)m≥1 of polynomials with rational
coefficients such that, for any integer m,

∑

r≤n

pr =
n2

2

[

lnn+ ln lnn−
3

2
+

m
∑

r=1

(−1)rSr(ln lnn)

lnr n
+ o

(

1

lnm n

)]

.

Further, every Sm has degree m and leading coefficient 1/m. In particular

S1(x) = x− 3, S2(x) =
x2

2
−

7x

2
+

27

4
.

Proof. We define p(x) as

p(x) = x lnx+ x ln lnx− x+

m
∑

r=1

(−1)rxPr(ln lnn)

lnr n
. (5)

where Pr(x) is the same sequence of polynomials as in Theorem 2.1. It follows
form Lemma 2.2 that

∑

r≤n

pr = 2 + 3 +

∫ n

3

p(x)dx +O(pn) + o

(

∫ n

3

x

lnm x

)

.

Now pn ∼ n lnn where as

∫ n

3

x

lnm x
∼

n2

2 lnm n

which grows much faster than n lnn. Hence

∑

r≤n

pr =

∫ n

3

p(x)dx + o

(

n2

ln2 n

)

. (6)
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All we need to do is the integrate each term of 5. Except for a couple of
simple terms, integration of the terms of 5 will result in an infinite series and
due to 6, we can stop the series when the growth rate of a new term is equal to
or slower than the error term in 6. Since Pm(ln lnx) is a polynomial of degree
m and has rational coefficients with leading coefficient 1/m, the integration of
each terms of p(x) will result in an infinite series of the type

∫ n

3

xPm(ln lnx)dx =
(−1)mn2

2

∞
∑

i=1

Qm,i(ln lnn) +O(1)

where Qm,i(x) is a polynomial of degree m with rational coefficients and leading
coefficient 1/m. Thus the polynomial Sm(x) is of degree m and has rational
coefficients with leading coefficient 1/m.

To find the first two terms of the polynomial Sm(x) we integrate the first
four terms of p(x). The first four terms of p(x) are

x ln x+ x ln lnx− x+
x ln lnx− 2x

lnx
−
x ln2 lnx− 6x ln lnx+ 11x

2 ln2 x
. (7)

Integrating each term separately, we have

∫ n

3

x lnxdx =
n2 lnn

2
−
n2

4
+O(1) (8)

∫ n

3

x ln lnxdx =
n2 ln lnn

2
−

n2

4 lnn
−

n2

8 ln2 n
+O

(

n2

ln3 n

)

(9)

−

∫ n

3

xdx = −
n2

2
+O(1) (10)

∫ n

3

x ln lnx

ln x
dx =

n2 ln lnn

2 lnn
+
n2 ln lnn

4 ln2 n
−

n2

4 lnn
+O

(

n2 ln lnn

ln3 n

)

(11)

− 2

∫ n

3

x

lnx
dx = −

n2

lnn
−

n2

2 ln2 n
+O

(

n2

ln3 n

)

(12)

−
1

2

∫ n

3

x ln2 lnx

ln2 x
dx = −

n2 ln2 lnn

4 ln2 n
+O

(

n2 ln2 lnn

ln3 n

)

(13)

3

∫ n

3

x ln lnx

ln2 x
dx =

3n2 ln lnn

2 ln2 n
+O

(

n2 ln2 lnn

ln3 n

)

(14)

−
11

2

∫ n

3

x

ln2 x
dx = −

11n2

4 ln2 n
+O

(

n2 lnn

ln3 n

)

(15)

Adding 8 - 15 we obtain
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∑

r≤n

pr =
n2

2

[

lnn+ ln lnn−
3

2
+

ln lnn

lnn
−

3

lnn
−

ln2 lnn

2 ln2 n

+
7 ln lnn

2 ln2 n
−

27

4 ln2 n
+ o

(

1

ln2 n

)]

. (16)

Notice that taking the first four terms of 16 we obtain Dusart’s result in 1. This
proves the theorem.

3 The inequalities of Mandl and Robin

From the asymptotic expansion of
∑

r≤n pr we can not only prove the inequal-
ities of Mandl 1and Robin 3 but also refine them.

Lemma 3.1.

∑

r≤n

pr =
npn
2

−
n2

4
−

n2

2 lnn
+
n2 ln lnn

4 ln2 n
−

49n2

8 ln2 n
+ o

(

n2

ln2 n

)

.

Proof. Follows trivial by using the asymptotic expansion of pn from Theorem
2.1 in 16

Since the second and the third term in Lemma 3.1 are negative, it implies
that for all sufficiently large n,

∑

r≤n pr <
npn

2 . This proves Mandl’s conjecture
given in 1. But using Lemma 3.1, we can do much better than Mandl’s conjec-
ture and Hassani’s bound given in 2. Based on actual computation, we suggest
the following refinement of Mandl’s inequality. For n ≥ 835

∑

r≤n

pr <
npn
2

−
n2

4
−

n2

2 lnn
+
n2 ln lnn

4 ln2 n
. (17)

Lemma 3.2.

∑

r<n

pr = np[n/2] +
2 ln 2− 1

4
n2 +O

(

n2 ln lnn

lnn

)

.

Proof. Taking [n/2] in place of n in the asymptotic expansion of nth prime we
obtain

np[n/2] =
n2

2
(lnn+ ln lnn− 1− ln 2) +O

(

n2 ln lnn

lnn

)

=
npn
2

−
n2 ln 2

2
+O

(

n2 ln lnn

lnn

)

Using Lemma 3.1 we can reduce this to

=
∑

r<n

pr +
n2

4
−
n2 ln 2

2
+O

(

n2 ln lnn

lnn

)

This proves the lemma.

Since the second term of Lemma 3.2 is positive, it follows that for all suffi-
ciently large n, Robin’s conjecture is true.
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