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Abstract. We study the following question: given a set P of seven
points and an immersed curve Γ in the real plane R2, all in general posi-
tion, how many real rational nodal plane cubics pass through these points
and are tangent to this curve. We count each such cubic with a certain
sign, and present an explicit formula for their algebraic number. This
number is preserved under small regular homotopies of a pair (P,Γ) but
jumps (in a well-controlled way) when in the process of homotopy we pass
a certain singular discriminant. We discuss the relation of such enumera-
tive problems with finite type invariants. Our approach is based on maps
of configuration spaces and the intersection theory in the spirit of classical
algebraic topology.

1. Introduction

1.1. History. A classical problem in enumerative geometry is the study of
the number of certain algebraic curves of degree d passing through some
number of points in the affine or projective plane. This question is not very
interesting if we consider all curves of degree d, due to the fact that the
set of such curves forms the projective space of dimension 1

2
d(d + 3), so the

question of passing through points is simply a question of solving a system
of linear equations. Thus, one usually asks this question about some families
of algebraic curves of degree d, e.g., curves of a fixed genus g. The simplest
case is g = 0, i.e. rational curves of degree d. In the complex (resp. real)
case the set of rational curves of degree d forms a smooth algebraic variety of
complex (resp. real) dimension 3d− 1, called the Severi variety. There is an
old question of determining the number Nd (resp. Nd(R)) of rational curves
of degree d passing through 3d− 1 points in general position in the complex
(resp. real) projective plane.

The numbers N1 = N2 = N1(R) = N2(R) = 1 go back to antiquity;
N3 = 12 was computed by J. Steiner in 1848. The late 19-th century was
the golden era for enumerative geometry, and H.G. Zeuthen in 1873 could
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compute the number N4 = 620. By then, the art of resolving enumerative
problems had attained a very high degree of sophistication and, in fact, its
foundations could no longer support it. Hilbert asked for rigorous foundation
of enumerative geometry, including it as the 15-th problem in his list.

The 20-th century witnessed great advances in intersection theory. In
the seventies and eighties, a lot of old enumerative problems were solved
and many classical results were verified. However, the specific question of
determining the numbers Nd turned out to be very difficult. In fact, in the
eighties only one more of the numbers was unveiled: the number of quintics
N5 = 87304.

The revolution took place around 1994 when a connection between theo-
retical physics (string theory) and enumerative geometry was discovered. As
a corollary, M. Kontsevich and Yu. Manin in [10] (see also [4]) gave a solution
in terms of a recursive formula

Nd =
∑

d1+d2=d, d1,d2>0

Nd1Nd2

(
d2

1d
2
2

(
3d− 4

3d1 − 2

)
− d3

1d2

(
3d− 4

3d1 − 1

))
.

But all these advances were done in the complex algebraic geometry. In
the real case the situation is different. Until 2000 nothing was known about
Nd(R) for d ≥ 3. In 2000 A. Degtyarev and V. Kharlamov showed that
N3(R) may be 8, 10 or 12, depending on the configuration of 8 = 3 · 3 − 1
points in the plane RP2. This result reflects a general problem of a real enu-
merative geometry: such numbers are usually not constant, but do depend
on a configuration of geometrical objects. A natural way to overcome this
difficulty is to try to assign some signs and multiplicities to objects in ques-
tion so that the corresponding algebraic numbers remain constant. Already
in the work of A. Degtyarev and V. Kharlamov one can see that one can
assign certain multiplicities (signs) to real cubics through a given 8 points,
so that the weighted sum of these cubics is independent on the configuration
of points. In 2003 J.-Y. Welschinger found the way to assign multiplicities
to real curves of any degree. Welschinger’s main theorem is the following: if
we assign to each real curve C the multiplicity (−1)m(C), where m(C) is the
number of solitary points of C, called the mass of C, then the corresponding
weighted sum Wd of all curves through the given points is independent of
the choice of points. The number Wd is called the Welschinger’s invariant.
In particular, |Wd| gives a lower bound for the actual number Nd(R) of real
rational plane curves passing through any given set of 3d− 1 generic points.
In the case of cubics (d = 3) from the Degtyarev-Kharlamov theorem one
can see that W3 = 8.

The questions of passing through some number of points is the simplest
one. The next step is to ask about the number of algebraic curves passing
through some number of points and tangent to some number of another
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algebraic curves. In the complex case in 1996 L. Caporaso and J. Harris
found the recursive formulas in the spirit of M. Kontsevich for such tangency
questions. In the real case that kind of questions of tangency is quite new
and the serious development is just beginning.

1.2. Motivation. We are interested to merge rigid algebro-geometric ob-
jects with flexible objects from smooth topology. We consider algebraic
curves that pass through some number of points and tangent to a smooth
immersed curve.

As a toy model one may consider the case d = 1. Let L be a set of lines
in R2 passing through a fixed point p and tangent to a (generic) oriented
immersed plane curve Γ. The problem is to introduce a sign εl for each such
line l ∈ L so, that the total algebraic number N =

∑
l∈L εl of lines does

not change under homotopy of Γ in R2 r p. It is easy to guess such a sign
rule. Indeed, under a deformation shown in Figure 1a, two new lines appear,
so their contributions to N should cancel out. Thus, their signs should be
opposite and we get the sign rule shown in Figure 1b. Note that only the
orientation of Γ is used to define it; l is not oriented.

p p

Γ Γ

a

+1

Γ

l

−1

Γ

l

b

Figure 1. Counting lines with signs.

Suppose that p is close to infinity (i.e., lies in the unbounded region of
R2 r Γ). In this case we get N = 2 ind(Γ), where ind(Γ) is the Whitney
index (a.k.a. rotation number) of Γ, i.e. the number of turns made by
the tangent vector as we pass once along Γ following the orientation. In
other words, the Whitney index ind(Γ) equals to the degree of the Gauss

map GΓ : S1 → S1 given by GΓ(t) =
γ′(t)

‖γ′(t)‖
, where γ : S1 # R2 is a

parametrization of Γ. Hence, the Whitney index can be calculated as an
algebraic number of preimages of a regular value ξ ∈ S1 of the Gauss map
GΓ, see Figure 2a.
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−1

−1

+1

−1

Γ

ξ

ind(Γ) = −1− 1− 1 + 1 = −2

a

−1

+1

−1

−1

p

Γ

indp(Γ) = −1 + 1− 1− 1 = −2

b

Figure 2. Whitney index of a curve and an index of a point
w.r.t. to a curve.

While N is preserved under homotopies of Γ in R2 r p, it changes when Γ
passes through p, see Figure 3a,b.

p

Γ

N = +2

a

p

Γ

N = 0

b

Figure 3. Counting lines with signs.

The compensating term is also easy to guess and we finally obtain

(1) N = 2 ind(Γ)− 2 indp(Γ) .

Here the index indp(Γ) of p w.r.t. Γ is the number of turns made by the
vector connecting p to a point x ∈ Γ, as x passes once along Γ following the
orientation. It may be computed as the intersection number I([p,∞],Γ;R2)
of a 1-chain [p,∞] (i.e. an interval connecting p with a point near infinity of
R2) with an oriented 1-cycle Γ in R2. See Figure 2b.

The appearance of ind(Γ) and indp(Γ) in the above formula comes as no
surprise: in fact, these are the only invariants of the curve Γ under its homo-
topy in the class of immersions in R r p. These are the simplest finite type
invariants of plane curves, see [1].

In this simple example we see two main distinctive differences of real enu-
merative problems vs. complex problems of a similar passage/tangency type.
Firstly, in the real case we are to count algebraic curves under the consider-
ation with signs. Secondly, over C the answer is a number which does not
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depend on the relative position of the set of points and the curve Γ. Over
R, however, the answer depends on the configuration: it is preserved un-
der small deformations of Γ and the set of points, but experiences certain
(well-controlled) jumps when the configuration crosses certain singular dis-
criminant in the process of homotopy. Thus, in the general case for similar
enumerative problems we should not expect to get an answer as one number,
but rather as a collection of numbers, depending on the relative configuration
of points and the smooth curve.

Two main questions in this kind of problems are

1. How to find such sign rules, i.e. how to assign a certain sign to
each algebraic curve under consideration, so that the total algebraic
number is invariant under small deformations?

2. How does the singular discriminant looks like, and what is the explicit
structure of the formula for the algebraic number of curves?

1.3. Main results and the structure of the paper. In the present work
we study the question of the algebraic number of real plane rational nodal
cubics (curves of degree 3) passing through the set P of seven generic points
and tangent to a generic immersed curve Γ in the plane R2. Degree d = 3 is
the first case when all general difficulties appear, namely the number N3(R)
is different from one and depends on a configuration of points, and curves
may have cuspidal singularities. The general case of real plane rational nodal
curves of degree d may be considered in a similar manner, see Remark 2.3.

A mixture of rigid algebro-geometric objects with smooth topology gives
to our problem a curious flavor, leading to a nice merging of features and
techniques originating in both of these fields. In particular, this type of
passage/tangency problems turns out to be intimately related to a theory
of finite type invariants of plane curves, similarly to the toy case of d = 1
considered in Subsection 1.2 above.

We use the Welschinger’s sign and show an easy way to produce new signs
suitable for tangency questions. The technique of proves uses the concept
of configuration spaces and the intersection theory in the spirit of classical
differential topology.

The question of passage/tangency conditions for real rational plane alge-
braic curves was considered earlier by J.-Y. Welschinger in [14]. He consid-
ered projective curves in RP2 passing through a generic set P and tangent
to a non-oriented smooth simple zero-homologous curve Γ. In [14, Remark
4.3(3)] the author suggested the generalization to the case of a non-oriented
smooth immersed curve Γ, which bounds an immersed disk; unfortunately,
this formula does not extend to arbitrary immersed curves, e.g. to a figure-
eight curve. There is a number of differences between [14] and the present
work. Firstly, we consider oriented curves in R2 (thus adding orientations
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both to the curve and to the ambient manifold). Secondly, we consider
immersed curves. Finally, in contrast with [14], where the author used 4-
dimensional symplectic geometry and hard-core techniques from the theory
of moduli spaces of pseudo-holomorphic curves, we use usual classical tools
of differential topology. In this way we also get a clear geometric interpre-
tation of Welschinger’s number wC as the orientation of a certain surface in
ST ∗R2 (i.e. the manifold of oriented contact elements of the plane), which
parameterizes real rational algebraic curves passing through P .

The paper is organized in the following way. In Section 2 we introduce
objects of our study, define signs of tangency, list the requirements of a
general position, and formulate the main theorem. Section 3 is dedicated to
the proofs. We interpret the desired number of cubics as a certain intersection
number; the main claim follows from different ways of its calculation. In
Section 4 we discuss a relation of the real enumerative geometry to finite
type invariants.

2. The Statement of the Main Result. Sketch of the Proof.

There are three types of real plane rational cubics: cubics with one cross-
ing point, cubics with one solitary point and cuspidal cubics with one cusp
point. The first two types will be called rational nodal cubics. We count the
algebraic number of real plane rational nodal cubics passing through seven
generic points and tangent to a generic immersed curve. We get a number,
which does not depend on a regular homotopy of the curve in a complement
of a certain singular discriminant, see Subsection 2.1. As the curve passes
through the discriminant, this number changes in a well-controlled way, so
that it defines a finite type invariant of degree one, see Section 4. For this
we count rational nodal cubics with signs and add certain correction terms,
which come from the degenerate cases of reducible and cuspidal cubics.

2.1. Curves and points in general position. Let P = {p1, . . . , p7}, pi ∈
R2, i = 1, . . . , 7 be a 7-tuple of (distinct) points in R2. Denote by D(P) the
set of the following degenerate real plane cubics passing through P :

(i) connected reducible cubics passing through P ,
(ii) cuspidal cubics passing through P ,

(iii) real rational nodal cubics passing through P and having a crossing
point at some point of P .

Denote also by np the number of curves in (iii) having a crossing point at
p ∈ P .
Suppose that the 7-tuple P is in general position. By a general position we
mean the following:

1. No three points from P lie on one line.
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x3 + x2 − y2 = 0

Figure 4. A cross-
ing point.

x3 − x2 − y2 = 0

Figure 5. A soli-
tary point.

x3 − y2 = 0

Figure 6. A cuspidal cubic.

2. No six points from P lie on one irreducible conic.
3. Every connected reducible cubic passing through P is the union of a

unique line through some pair of points pi, pj ∈ P , i 6= j and a unique
non-degenerate conic passing through the remaining five points {pk ∈
P|k 6= i, j} that intersect in two different points. Denote by RP the
set of such intersection points. See Figure 7.1

4. There are finitely many cuspidal cubics passing through P . Denote
by CP the finite set of their cusps.

5. For any p ∈ P there are finitely many real rational nodal cubics
passing through P and having a crossing point at p.

1The is another type of reducible cubics passing through seven generic points, namely
the disjoint union of a line and a conic. We are interested only in the connected reducible
cubics. See Remark 3.2.
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Figure 7. Intersection of a line with a conic.

6. All intersection points of curves from D(P) are transversal points,
and all of them but from P are transversal double points.

Now, let Γ be a generic immersed oriented curve in R2 in general position
w.r.t. P . Let us spell this requirement in more details. By a general position
we mean that

7. The curve Γ is generically immersed, i.e., it is a smooth curve with a
finite number of double points of transversal self-intersection as the
only singularities.

8. The curve Γ intersects each of the cubics from the set D(P) transver-
sally, in points which do not belong to P ∪ CP ∪RP .

9. Every cubic passing through P is tangent to Γ at most at one point,
with the tangency of the first order.

Define the singular discriminant ∆ as the set of pairs (P ,Γ) that violate the
general position requirements listed above.

Remark 2.1. The number of curves in D(P) and points in CP ,RP are
bounded from above as follows. The number of points in RP is no more
than

(
7
2

)
= 21. Due to [9], there are at most 24 cuspidal cubics passing

through seven points in general position in CP2, hence #CP ≤ 24. From [12,
Theorem 3.2] one can deduce that np ∈ {0, 1}.

2.2. Signs of points and cubics. We fix the standard orientation oR2 on
the plane R2 once and for all. Let us denote S := P ∪ CP ∪ RP . For each
p ∈ S we define ιp by

ιp =


−8 + 2np if p ∈ P ,
−1 if p ∈ CP ,
+1 if p ∈ RP .

Denote by M := MΓ,P
3,rat,nod(R) the set of real rational plane nodal cubics

passing through P and tangent to Γ. To each C ∈ M we assign a sign
εC = wC · τC , where

• wC = (−1)m(C), where m(C) is the mass of C, i.e. the number of
solitary points of C. For a cubic C we have m(C) ∈ {0, 1}. The
number wC is called the Welschinger’s number of C.
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• τC is a sign of tangency of C with Γ, which is defined similarly to
Subsection 1.2 as follows:
Let p be the point of tangency of Γ with C. For a sufficiently small
radius r, C divides the ball B(p, r) into two parts. Since the tangency
of Γ and C is of the first order, their quadratic approximations at this
point p differ. Hence, Γ ∩B(p, r) belongs to the closure of one of the
two parts of B(p, r) r C. Let n be a normal vector to C at p, which
looks into the closure of the part which contains Γ, and let t be the
tangent vector t to Γ at p. Set τC = +1 if the frame (t, n) defines the
positive orientation oR2 of R2, and τC = −1 otherwise. See Figure 8
(compare also with Figure 1b).

Γ

C

t

n

+1 1

2

−1

Γ

n

t

Cp p

Figure 8. Signs of tangency τC .

Note that while the immersed curve Γ is oriented, the algebraic curve C is
not, and we use just the orientation of Γ in order to define the sign τC .

2.3. The statement of the main result. Let N := NΓ,P
3,rat,nod(R) be the

algebraic number

N =
∑
C∈M

εC

of real rational nodal plane cubics passing through P and tangent to Γ.

The main result in this work is the following

Theorem 2.2. Let P = {p1, . . . p7} ⊆ R2 and Γ be an immersed oriented
curve in R2, all in general position. Then

(2) N = 2 ·

(
8 · ind(Γ) +

∑
p∈S

ιp · indp(Γ)

)
.

The number N is invariant under a regular homotopy of the pair (P ,Γ) in
(each connected component of) the complement of the singular discriminant
∆.
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Remark 2.3. One can consider the case of algebraic curves of a higher degree
d ≥ 4 in a similar way. The number 8 = W3 will be replaced by Wd and the
formula becomes

(3) NΓ,P
d,rat,nod(R) = 2 ·

(
Wd · ind(Γ) +

∑
p∈S

ιp · indp(Γ)

)
.

The set S is again the union S := P ∪CP ∪RP , where P is the set of 3d− 2
generic (distinct) points in R2 and CP (resp. RP) is the finite set of singular
points of cuspidal (resp. reducible) real plane algebraic curves of degree d
passing through P. Weights ιp are defined as follows

ιp =



−Wd + 2 ·
δ∑

m=0

(−1)m · ndp(m) if p ∈ P ,

−(−1)m(C) if p ∈ CP ,

(−1)m(C) if p ∈ RP ,

where

• δ :=
(d− 1)(d− 2)

2
is the maximal number of nodal points of a ratio-

nal plane algebraic curve of degree d,
• ndp(m) is the total number of real rational nodal plane algebraic curves

of degree d and of mass m passing through P and having a crossing
point at p,
• m(C) is the mass of (the unique) cuspidal or reducible curve of degree
d passing through {p} ∪ P.

Note that for d ≥ 4 there are two additional finite sets of singular real rational
plane algebraic curves of degree d passing through P. Namely, curves having
a unique tacnode (A3-type singularity), and curves having a unique ordinary
triple point (D4-type singularity). By considering the bifurcation diagrams of
tacnodes and triple points, it can be easily verified that these singularities do
not contribute to the formula (3). See e.g. figures in [12, Pages 225− 226].

2.4. The main example. Firstly, consider Γ = T , where T = ∂D(p, r) is
a circle of infinitesimally small radius 0 < r << 1 in R2, centered at p.
Suppose that T is far from S, i.e, T is in the complement of some closed disk
D2 which contains S. See Figure 9a.
Viewing T as a point p, i.e. taking the limit r → 0, we get eight generic
points {p} ∪ P in the plane. We have eight real plane rational nodal cubics
passing through {p}∪P , counted with their Welschinger’s signs, see [3]. Thus
the algebraic number N of real plane rational nodal cubics passing through
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Figure 9. Changing a point into a circle.

P and tangent to T counted with the sign εC is equal to 2 · 8 = 16. Indeed,
each rational nodal cubic passing through {p} ∪ P gives 2 rational nodal
cubics passing through P and tangent to T , see Figure 9b. Moreover, from
the definition of the sign τC we have that τC = +1 for any C ∈ M. Thus in
this case

N =
∑
C∈M

wC · τC =
∑
C∈M

wC = 2 ·

 ∑
C passes through {p}∪P

wC

 = 2 · 8 = 16.

Reparameterizing the circle T by S1 → S1, z 7→ zk, k ∈ Z (and deforming
it slightly into a general position) we get a curve denoted by k · T for which
we have ind(k · T ) = k and

N = 2k · 8 = 16 · k.
Since every immersed curve Γ is homotopic in the class of immersions in R2

to k · T , where k = ind(Γ), we have that N = 16 · ind(Γ) for a curve Γ lying
in the complement of some closed disk of a sufficiently large radius, which
contains S.

2.5. The idea of the proof. Consider a solid torusM = D2×S1, where D2 is
a sufficiently large closed disk containing S. We will show that the number N
in Theorem 2.2 is the intersection number I(L,Σ;M) of an oriented smooth
curve L with a compactification Σ of an open two-dimensional surface Σ in
M . The surface Σ is constructed as follows:
For each p ∈ D2rS, we use a contact element (line) of cubics passing through
{p} ∪ P to get Σ as a lift of D2 rS into M . Lifting Γ into M in a similar
way we get L. The Welschinger’s sign wC gives rise to the orientation on Σ
and the orientation of Γ defines the orientation of L.
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In order to define the intersection number, we compactify Σ to get a compact
surface Σ with boundary. This is done by blowing up punctures S on D2,
i.e., we cut out a small open disk around each puncture and then we lift the
remaining domain into M . Due to generality of a pair (Γ,P), L transversally
intersects Σ in a finite number of points (in the interior int(Σ) of Σ). Each
point (p, ξ) ∈ L t Σ corresponds to a cubic passing through P and tangent
to Γ. We prove that the local intersection number I(p,ξ)(L,Σ;M) equals to
τC · wC , and thus

N = I(L,Σ;M).

Now to get the right hand side of the formula (2) we use the homological
interpretation of the intersection number. We take Γ′ := ind(Γ) · T as in
the main example, see Subsection 2.4, so Γ′ is homotopic to Γ in the class
of immersions. Hence [Γ] − [Γ′] = ∂K in C1(D2;Z) for some 2-chain K ∈
C2(D2;Z). Then for the lifts L′ and K of Γ′ and K, respectively, into M we
have [L]− [L′] = ∂K in C1(M ;Z), and hence

I(L,Σ;M) = I(L′,Σ;M) + I(∂K,Σ;M).

From the main example we obtain

I(L′,Σ;M) = 16 · ind(Γ′) = 16 · ind(Γ).

Finally, we show that

I(K, ∂Σ;M) = 2
∑
p∈S

ιp · indp(Γ).

We use the equality

I(∂K,Σ;M) = I(K, ∂Σ;M)

to complete the proof.

Remark 2.4. A simple way to visualize the surface Σ is to apply the above
construction to the model example of Section 1.2. In this case S consists of
one point p and the contact element of any line passing through p is the line
itself (see Figure 18), so the surface is a helicoid, see Figure 13.

3. The proof of the main result.

The manifold of oriented contact elements (directions) of the plane is
ST ∗R2, the spherization of the cotangent bundle of the plane. We fix an
orientation oST ∗R2 = oR2 × oS1 on ST ∗R2, where oS1 is the standard counter-
clockwise orientation on S1.

3.1. Construction of M,Σ,Σ, L.
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Construction of Σ. Consider a 7-tuple P = {p1, . . . , p7} of points in R2 in
general position. Recall that S := P ∪CP ∪RP , see Subsections 2.1–2.2. Let
S := R2 rS, let Ssing be the set of points in S, lying on curves in D(P), and
let Sreg := S r Ssing. Define

Σreg :=

(p, ξ) ∈ ST ∗(R2 rS)
there is a nodal cubic passing
through {p} ∪ P and having ξ
as a tangent direction at a point p

 ,

Σsing :=

(p, ξ) ∈ ST ∗(R2 rS)
there is a cubic in D(P) passing
through {p} ∪ P and having ξ
as a tangent direction at a point p

 .

Denote Σ := Σreg ∪ Σsing, and let π : Σ → S be the natural projection
π((p, ξ)) = p.

Proposition 3.1. The set Σ is a non-compact two-dimensional surface in
ST ∗R2 with the singular subset Σsing. The set Σreg is a non-compact (discon-
nected) two-dimensional submanifold in ST ∗R2, and the map π

∣∣
Σreg

: Σreg →
Sreg is a smooth covering map. The set Σsing is an open one-dimensional
submanifold in ST ∗R2.

Proof. Consider an arbitrary p ∈ S.

(i) If p ∈ Sreg, then eight points {p} ∪ P are in general position and
define a real general pencil of cubics, which contains 8, 10 or 12
rational nodal cubics, see [3]. They all intersect transversally in a
finite number of points.

(ii) If p ∈ Ssing, then eight points {p}∪P are not in general position and
define a real pencil of cubics, which (in addition to a certain number
of nodal cubics) contains at least one cubic from the set D(P). They
all intersect transversally in a finite number of points.

In both cases, lifting the point p to PT ∗R2 using tangent lines of these,
say, k cubics at the point p, we get k points in PT ∗R2, which give 2k points
in the double covering ST ∗R2 of PT ∗R2.

So π
∣∣
Σreg

: Σreg → Sreg is a smooth covering. The set Σsing is a disjoint

union of lifts into ST ∗R2 of cubics from D(P). Since all of them intersect
transversally in a finite number of points, each component of Σsing is a one-
dimensional manifold. The structure of Σ in a small neighborhood of (p, ξ) ∈
Σsing depends on the type of the point p.

Namely, let C ∈ D(P) be a degenerate cubic passing through {p}∪P and
having a tangent line ξ at the point p.
If C is reducible or C is nodal c having a node at some pi ∈ P , the lift of C
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a

ip
pi

pi

pi
ip

b

c

Figure 10. Branch points and folds of Σ.

on the surface Σ has the structure of an open book, and sheets of the book
come in pairs with each pair forming a smooth surface, see Figure 10a, b.
If C is cuspidal, the lift of C on the surface Σ has the structure of a fold, see
Figure 10c.

�

Remark 3.2. The lift of disconnected reducible cubics into ST ∗R2 forms
a disjoint union of smooth curves. Since a disconnected reducible cubic is
not the limit (in the Gromov-Hausdorff sense) of rational cubics, this lift is
disjoint from the surface Σ and hence will not contribute to the intersection
number I(L,Σ;M).

We define an orientation on Σ as follows.
Every point (p, ξ) ∈ Σreg corresponds to a nodal cubic C(p, ξ), passing
through {p} ∪ P with a tangent direction ξ at the point p. To define an
orientation on Σreg, is suffices to indicate a continuous field ν normal to Σreg.
Since T(p,ξ)Σreg t T(p,ξ)S1, such a normal vector ν(p,ξ) is determined by its
projection to T(p,ξ)S1. Recall, that we have already fixed the orientation oS1

on the fiber S1 of ST ∗R2. Then for a nodal cubic C(p, ξ) we set the direc-
tion of T(p,ξ)S1-component of ν(p,ξ) in the direction of oS1 if wC(p,ξ) = +1,
and opposite to this direction if wC(p,ξ) = −1. It remains to show that the
orientation extends over Σsing.
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In a neighborhood of a branch point of Σ, all four sheets of the open book
(which form two smooth leaves) correspond to nodal curves with the posi-
tive Welschinger’s sign (see Figure 10a,b), so the normal field points in the
direction of oS1 on both smooth leaves of the open book.
In a neighborhood of a fold of Σ, there are two sheets that correspond to nodal
curves with opposite Welschinger’s signs (see Figure 10c), so the T(p,ξ)S1-
component of ν(p,ξ) is defined to be zero.
In both cases the orientation extends over Σsing.
Compactification of ST ∗R2 and Σ. In order to use the intersection
theory, we need to compactify both the open manifold ST ∗R2, and the non-
compact surface Σ with punctures over S.

Let D2 := D(0, R), R > 0 be a closed disk in the plane R2 with the center

in the origin and of a sufficiently large radius, such that S ⊆ D(0, R/2) ⊆ D2.
Define M := ST ∗D2 = D2 × S1.

Let us choose 0 < δ << 1 sufficiently small, such that

(a) D(p, δ) ∩ D(q, δ) = ∅ for all p 6= q ∈ S,

(b) D(p, δ) ∩ Γ = ∅ for all p ∈ S,

(c) D(p, δ) ∩ ∂D2 = ∅ for all p ∈ S,

(d) D(p, δ) does not contain points but p of mutual intersections of all
reducible and all cuspidal cubics passing through P for all p ∈ S,

(e) ∂D(p, δ) intersects transversally every C ∈ D(P) for all p ∈ S. These
intersections look as shown in Figure 11a if p is a regular point of C,
and as in Figure 11b–d if p is a singular point of C.

For each p ∈ S we cut out the disk D(p, δ) from D2 (see Figure 12) and
define

S̄ := D2 r
⋃
p∈S

D(p, δ), Σ := π−1(S̄) = Σ ∩
(
S̄ × S1

)
.

For all p ∈ S let σp := Σ ∩ (∂D(p, δ) × S1); it is the union of several
(16, 20, or 24) smooth closed simple curves σip on Σ. We equip σp with the
orientation induced from Σ. Note that σp may be also defined as the lift to
Σ of the clockwise-oriented circle ∂D(p, δ). See Figure 13.
Construction of L. Let Γ = f(S1) be oriented immersed curve, where f :
S1 # R2 is an immersion. Choosing the unit tangent vector to f(t) as the
contact element, we get a lift L of Γ into ST ∗R2:

L := F (S1), F : S1 ↪→ ST ∗R2, t 7→
(
f(t),

f ′(t)

‖f ′(t)‖

)
.

It follows that L is an oriented closed one-dimensional submanifold of ST ∗R2.
If Γ is generic in the sense of 2.1 then L ∩ Σsing = ∅ and L t Σreg 6= ∅.
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D(p, δ)

p

a

D(p, δ)

p

b

p

D(p, δ)

c

D(p, δ)

p

d

Figure 11. The intersection of blowup disks with degenerate cubics.

p
1

p
2

p
3

p
k

p
4

Figure 12. A compactification S of S.

3.2. Two ways to calculate the intersection number I(L,Σ;M). We
will consider two different ways to calculate the intersection number I(L,Σ;M),
which will correspond to the LHS and the RHS of equality (2).
The intersection number I(L,Σ;M) via the algebraic number N .
Every point (p, ξ) ∈ Σ ∩ L corresponds to a rational nodal cubic C(p, ξ),
passing through P and tangent to Γ at the point p with the tangent direction
ξ. Since P and Γ are in general position, we have that L and Σ intersect
transversally, and since dim(L) = 1, dim(Σ) = 2 and dim(M) = 3, we have
that dim(L t Σ) = 0. So the number of points in L t Σ is finite. Both L
and Σ are oriented as is M , hence the intersection number I(L,Σ;M) is well
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S

Σ

pσ

Figure 13. A compactification Σ of Σ.

defined and we have

I(L,Σ;M) =
∑

(p,ξ)∈LtΣ

I(p,ξ)(L,Σ;M),

where I(p,ξ)(L,Σ;M) is the local intersection number.

Proposition 3.3. For every (p, ξ) ∈ L t Σ we have

I(p,ξ)(L,Σ;M) = εC(p,ξ),

where εC is the sign of the cubic C, see Subsection 2.2.

Proof. The orientation of T(p,ξ)Σ is defined by the Welschinger’s sign wC(p,ξ).

The curve L intersects Σ in the direction of the oriented fiber F iff τC(p,ξ) =
+1, see Figure 14.

Σ

S1 L

Γ
ξ

C

ξ Σ

S1 L

Γ

ξ

C

ξ

τ=+1 τ=−1

p p

Figure 14. Intersection of L with Σ.
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Hence the orientation of T(p,ξ)Σ⊕T(p,ξ)L differs from the orientation oST ∗R2

∣∣
M

of M by the sign εC(p,ξ) = wC(p,ξ) · τC(p,ξ). So we get I(p,ξ)(L,Σ) = εC(p,ξ). �

Corollary 3.4. We have

N =
∑
C∈M

εC = I(L,Σ;M)

The intersection number I(L,Σ;M) via a homological theory. Let us
take k ·T, k = ind(Γ) as in Subsection 2.4 which is regularly homotopic to Γ
in D2, and h : S1 × [0, 1]→ D2 be a homotopy between k · T and Γ. Denote
Γt := h(S1×{t}), t ∈ [0, 1], so Γ0 = k ·T and Γ1 = Γ. Denote by Lt a lift of Γt
to M . Then L′ = L0, L = L1 and a 2-chain K := {Lt|t ∈ [0, 1]} ∈ C2(M ;Z)
realizes a homotopy between L′ and L. We choose an orientation of K such
that ∂K = [L]− [L′]. Because of the homotopy invariance of the intersection
number, we may choose a special homotopy h as follows. For all p ∈ S pick
an open neighborhood Up of D(p, δ) and a direction θp so that

(P) if p ∈ P , θp is transversal to any nodal cubic from D(P) having a
node at p.

(CP) if p ∈ CP , θp is the tangent direction of the corresponding cuspidal
cubic at its cusp p.

(RP) if p ∈ RP , θp is the direction of the line component of the correspond-
ing reducible cubic.

See Figure 15a. Now, choose the homotopy h so that for all t ∈ [0, 1] with
Γt∩Up 6= ∅, the fragment Γt∩Up is close to a straight interval in the direction
θp. For such a homotopy the part K ∩ (Up × S1) of K over Up is almost flat,
i.e., lies in a thin cylinder

K ∩ (Up × S1) ⊆ Up × (θp − ε, θp + ε),

for some small 0 < ε << 1. See Figure 15b.
By the additivity of the intersection number and according to the calcula-

tions in the Subsection 2.4 we have

I(L,Σ;M) = I(L′,Σ;M) + I(∂K,Σ;M) =

= 16 · ind(k · T ) + I(∂K,Σ;M) = 16 · ind(Γ) + I(∂K,Σ;M)

It remains to compute I(∂K,Σ;M).

Lemma 3.5. For Σ,K, σp and L as before we have

I(∂K,Σ;M) =
∑
p∈S

I(K, σp;M).
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θp

p

θp

p

θp

p

pθ

Γt

L t

pθ  + ε

pθ  − ε

p

a b

Figure 15. Flat homotopy of Γ.

Proof. Recall that I(∂K,Σ;M) = I(K, ∂Σ;M). Now, as a 1-chain in M ,

∂Σ = ∂Σ ∩ (∂D2 × S1)) +
∑
p∈S

σp.

Since K ∩ (∂D2 × S1) = ∅, we get I(K, ∂Σ;M) =
∑
p∈S

I(K, σp;M). �

The following proposition completes the proof of the main theorem.

Proposition 3.6. For every p ∈ S we have

I(K, σp;M) = 2 · ιp · indp(Γ).

Proof. Firstly, recall that ST ∗D2 → PT ∗D2 is a 2-fold covering, so for ev-
ery component of the lift of ∂D(p, δ) to PT ∗D2 there are two components
in ST ∗D2, which explains the coefficient 2 in the RHS. Secondly, note that
I(K, σp;M) = I(Kp, σp;M) for every p ∈ S, where Kp := K ∩ (Up × S1).
In order to compute I(Kp, σp;M) we study the homology class [σip] ∈ H1(M ;Z)

of each component σip of σp. Since H1(M ;Z) = Z〈F 〉, where F is the

class of the fiber, we conclude that [σip] = kip · F for some kip ∈ Z. We

can compute the number kip as the degree of the corresponding Gauss map

Gi
p : S1 → S1 defined by Gi

p(t) = ξ, where (ϕ(t), ξ) ∈ σip for a parametriza-

tion ϕ : S1 → ∂D(p, δ) of degree −1. The degree of Gi
p equals to the rotation

number of the field ξ of tangent directions of cubics along ∂D(p, δ) (with the
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clockwise orientation) corresponding to σip. The behavior of the field ξ on
∂D(p, δ) is determined by the standard bifurcation diagrams of the singularity
theory.

Fix a point q ∈ ∂D(p, δ), such that q ∪ P are in general position. Then
there are 8, 10 or 12 nodal cubics passing through q∪P . Consider separately
the following three cases.

(p ∈ P) By applying a small deformation to a nodal cubic from D(P) having
a node at p, we get two nodal cubics passing through q∪P , see Figure
10b and 16. They intersect transversally and hence form four different

p

p

p

Figure 16. Deforming a cubic with a node at p ∈ P .

components σ1
p, σ

2
p, σ

3
p, σ

4
p of σp. The corresponding four fields have

the rotation number 0. See Figures 16 and 17. Each of the remaining

.

p

Figure 17. A constant field for p ∈ S of the rotation number
0.

8− 2np, or 10− 2np, or 12− 2np nodal cubics passing through q ∪ P
intersects the boundary ∂D(p, δ) in exactly two points. They intersect
transversally, and hence, form (2·(8−2np), 2·(10−2np) or 2·(12−2np))
different components of σp. The corresponding fields look as shown
in Figure 18. As we follow the circle ∂D(p, δ) clockwise, this field
of tangent directions rotates once clockwise, and thus has a rotation
number −1. By the construction of the orientation of Σ and by the
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.

p

Figure 18. The radial field for p ∈ P of the rotation number
−1.

choice of the homotopy h,

I(Kp, σp;M) =
∑
i 6=1,...4

I(Kp, σip;M) = −2(8− 2np) · I(Kp, {p} × S1;M).

(p ∈ CP) By applying a small deformation to the cuspidal cubic from D(P)
having a cusp at p, we get a nodal cubic passing through q ∪ P ,
see Figure 10c. It forms two corresponding components σ1

p, σ
2
p of σp.

The corresponding tangent fields look as shown in Figure 19. In this

.
p

Figure 19. The cuspidal field for p ∈ CP of the rotation num-
ber −1.

case, as we follow the circle ∂D(p, δ) clockwise, the field of tangent
directions rotates once clockwise, and thus has the rotation number
−1. It follows that [σ1

p] = [σ2
p] = −F.

The remaining 9 or 11 nodal cubics passing through q ∪ P intersect
transversally, and hence, form 18 or 22 different components of σp.
The corresponding fields look as shown in Figure 17 and have rotation
numbers 0. By the choice of the homotopy h,

I(Kp, σp;M) = I(Kp, σ1
p ∪ σ2

p;M) = −2 · I(Kp, {p} × S1;M).
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(p ∈ RP) By applying a small deformation to the connected reducible cubic
from D(P) that passes through p, we get a nodal cubic passing
through q ∪ P , see Figure 10a. It forms two corresponding compo-
nents σ1

p, σ
2
p of σp. The corresponding tangent fields look as shown in

Figure 20. In this case, as we follow the circle ∂D(p, δ) clockwise, the

.
p

Figure 20. The reducible field for p ∈ RP of the rotation
number +1.

field of tangent directions rotates once counterclockwise, and thus,
has rotation number +1. It follows that [σ1

p] = [σ2
p] = F.

The remaining 7, or 9, or 11 nodal cubics passing through q ∪ P
intersect transversally and hence form 14, or 18, or 22 different com-
ponents of σp. The corresponding fields look as shown in Figure 17
and have the rotation number 0. By the choice of the homotopy h,

I(Kp, σp;M) = I(Kp, σ1
p ∪ σ2

p;M) = 2 · I(Kp, {p} × S1;M).

We finish the proof by observing that

I(Kp, {p} × S1;M) = I(h(S1 × [0, 1]), [p];R2) =

= I(h(S1 × [0, 1]), [p]− [∞];R2) = −I(∂h(S1 × [0, 1]), [p,∞];R2) =

= indp(Γ).

�

4. Finite type invariants.

Finite type invariants generalize polynomial functions. This notion is based
on the following classical theorem:

Theorem 4.1 (Frechet 1912). Given x0, x
±
1 , . . . , x

±
n ∈ R and an n-tuple

ε = (ε1, . . . , εn) ∈ {−1, 1}n, let xε = x0 + xε11 + · · · + xεnn and |ε| =
∏n

i=1 εi.
Then C0-function f : R→ R is a polynomial of degree less than n, iff∑

ε∈{−1,1}n
(−1)|ε|f(xε) = 0
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for any choice of x0 and x±1 , . . . , x
±
n .

Finite type invariants are topological analogues of this definition. Corre-
sponding theories are developed for a variety of objects: knots, 3-manifolds,
plane curves, graphs, etc. (see [11] for a general theory of finite type invari-
ants of cubic complexes). Let us briefly recall the main notions in the case of
immersed curves in a punctured plane. Let S ⊂ R2 be a finite set of marked
points and Γsing be an immersed plane curve with n non-generic fragments,
contained in n small disks Di. Fix an arbitrary pair of resolutions for each
Di and call one of them positive and the other negative (again, arbitrarily).
Here by a resolution of Γsing in a disk Di we mean a homotopy of Γsing in-
side Di, fixed on the boundary ∂Di, so that the resulting curve is a generic
immersion inside Di and does not pass through S ∩ Di. See Figure 21.

−

++

−

Figure 21. A non-generic curve with a pair of resolutions in
each disk.

For an n-tuple ε ∈ {−1, 1}n, resolve all singularities of Γsing choosing the
corresponding εi resolution in each disk Di. Denote by Γε the resulting curve.
In this way, as ε runs over {−1, 1}n, we obtain 2n generically immersed curves
Γε. See Figure 22.

Denote |ε| =
∏n

i=1 εi. A locally-constant function f on the space of gener-
ically immersed curves is called an invariant of degree less than n, if∑

ε∈{−1,1}n
(−1)|ε|f(Γε) = 0,

for any choice of the curve Γsing and its resolutions.
When S = ∅, the only invariant of degree 0 (i.e., a constant function

on the space of immersed curves) is the rotation number ind(Γ). Various
interesting invariants of degree one for S = ∅ were extensively studied by
V. Arnold, see [1]. When S consists of one point, we get an additional simple
invariant of degree 1, namely indp(Γ).
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Figure 22. Resolved generic curves.

Finite type invariants naturally appear in real enumerative geometry. One
of the simplest examples was considered in Section 1.2. Note that in the
formula (1), an algebraic number of lines passing through a point p and
tangent to a generic immersed curve Γ ⊂ R2r{p} is expressed via invariants
ind(Γ), indp(Γ) of degrees 0 and 1. This fact is easy to explain. Let us show,
that if a certain algebraic number of lines satisfying some passage/tangency
conditions is a locally constant function f on the space of generic immersed
curves, then it is an invariant of degree less than or equal to 2. Indeed,
let Γsing be an immersed curve with three non-generic fragments contained
in three discs Di, i = 1, 2, 3. WLOG we may assume that Di’s are small
enough so that they do not lie on one line, i.e., no line passes through all
three of them. Suppose that some line l is counted for one of the resolutions
Γε of Γsing. Then l does not pass through at least one of the disks, say, D1.
But then l is counted twice – with opposite signs – for both resolutions of
Γsing inside D1, hence its contribution to f sums up to 0, and we readily get
f(Γsing) = 0.

By the same argument (noticing that no rational curves of degree d pass
through 3d generic points), we immediately obtain the following

Theorem 4.2. Suppose that a certain algebraic number of real rational alge-
braic plane curves of degree d, satisfying some passage/tangency conditions,
is a locally constant function on the space of generic immersed curves. Then
it is an invariant of degree less than or equal to 3d− 1.

Moreover, if a curve is required to pass through k fixed points (in general
position), then an algebraic number of such curves is an invariant of degree
less than or equal to 3d − k − 1. In particular, for d = 3 and k = 7 we get
the upper bound 1 on the degree of an invariant. This explains the structure
of formula (2) of Theorem 2.2.
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