The maximal regularity operator on tent spaces

Pascal Auscher, Sylvie Monniaux, Pierre Portal
En l'honneur des 60 ans de Michel Pierre

Abstract

Recently, Auscher and Axelsson gave a new approach to non-smooth boundary value problems with L^{2} data, that relies on some appropriate weighted maximal regularity estimates. As part of the development of the corresponding L^{p} theory, we prove here the relevant weighted maximal estimates in tent spaces $T^{p, 2}$ for p in a certain open range. We also study the case $p=\infty$.

1 Introduction

Let $-L$ be a densely defined closed linear operator acting on $L^{2}\left(\mathbb{R}^{n}\right)$ and generating a bounded analytic semigroup $\left(e^{-t L}\right)_{t \geq 0}$. We consider the maximal regularity operator defined by

$$
\mathcal{M}_{L} f(t, x)=\int_{0}^{t} L e^{-(t-s) L} f(s, .)(x) d s
$$

for functions $f \in C_{c}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$. The boundedness of this operator on $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$ was established by de Simon in [15]. The $L^{p}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$ case, for $1<p<\infty$, turned out, however, to be much more difficult. In [10], Kalton and Lancien proved that \mathcal{M}_{L} could fail to be bounded on L^{p} as soon as $p \neq 2$. The necessary and sufficient assumption for L^{p} boundedness was then found by Weis [16] to be a vector-valued strengthening of analyticity, called R-analyticity. As many differential operators L turn out to generate R -analytic semigroups, the L^{p} boundedness of \mathcal{M}_{L} has subsequently been successfully used in a variety of PDE situations (see [13] for a survey).

Recently, maximal regularity was used as an important tool in [2], where a new approach to boundary value problems with L^{2} data for divergence form elliptic systems on Lipschitz domains, is developed. More precisely, in [2], the authors establish and use the boundedness of \mathcal{M}_{L} on weighted spaces $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} ; t^{\beta} d t d x\right)$, for certain values of $\beta \in \mathbb{R}$. The use of these spaces is common in the study of boundary value problems, where they are seen as variants of the tent space $T^{2,2}$, introduced by Coifman, Meyer and Stein in 6. For $p \neq 2$, the corresponding spaces are weighted versions of the tent spaces $T^{p, 2}$, which are defined, for parameters $\beta \in \mathbb{R}$ and $m \in \mathbb{N}$, as the completion of $C_{c}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$ with respect to

$$
\|g\|_{T^{p, 2, m}\left(t^{\beta} d t d y\right)}=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{\mathbb{R}^{n}}^{1} \frac{B\left(x, t^{\frac{1}{m}}\right)}{}(y)|g(t, y)|^{2} t^{\beta} d y d t\right)^{\frac{p}{m}} d x\right)^{\frac{1}{p}}
$$

the classical case corresponding to $\beta=-1, m=1$, and being denoted simply by $T^{p, 2}$. The parameter m is used to allow various homogeneities, and thus to make these spaces relevant in the study of differential operators L of order m. To develop an analogue of [2] for L^{p} data, we need boundedness results for the maximal operator \mathcal{M}_{L} on these tent spaces. This is the purpose of this note. It will be used in the study of such boundary value problems, as well as in the context of well-posedness of non-autonomous Cauchy problems, in subsequent papers. The proof is based on recent results and methods developed in [9], building on ideas from [5] and 8. In Section 2) we recall the relevant definitions and result from [9]. In Section 3 we then state and prove the adequate boundedness results.

2 Tools

When dealing with tent spaces, the key estimate needed is a change of aperture formula, i.e., a comparison between the $T^{p, 2}$ norm and the norm

$$
\|g\|_{T_{\alpha}^{p, 2}}:=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \frac{1_{B(x, \alpha t)}(y)}{t^{n}}|g(t, y)|^{2} \frac{d y d t}{t}\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}}
$$

for some parameter $\alpha>0$. Such a result was first established in [6], building on similar estimates in [7], and analogues have since been developed in various contexts. Here we use the following version given in [9, Theorem 4.3].

Theorem 2.1. Let $1<p<\infty$ and $\alpha \geq 1$. There exists a constant $C>0$ such that, for all $f \in T^{p, 2}$,

$$
\|f\|_{T^{p, 2}} \leq\|f\|_{T_{\alpha}^{p, 2}} \leq C(1+\log \alpha) \alpha^{n / \tau}\|f\|_{T^{p, 2}}
$$

where $\tau=\min (p, 2)$.
Theorem 2.1 is actually a special case of the Banach space valued result obtained in 9 corresponding to the scalar valued situation. Note, however, that it improves the power of α appearing in the inequality from the n given in [6] to $\frac{n}{\tau}$. This is crucial in what follows, and has been shown to be optimal in 9].

Applying this to $(t, y) \mapsto t \frac{m(\beta+1)}{2} f\left(t^{m}, y\right)$ instead of f, we also have the weighted result, where

$$
\|g\|_{T_{\alpha}^{p, 2, m}\left(t^{\beta} d t d y\right)}=\left(\int_{\mathbb{R}^{n}}\left(\int_{0}^{\infty} \int_{\mathbb{R}^{n}}^{1} \frac{B\left(x, \alpha \alpha^{\frac{1}{m}}\right)}{}(y)|g(t, y)|^{2} t^{\beta} d y d t\right)^{\frac{n}{m}} d x\right)^{\frac{1}{p}}
$$

Corollary 2.2. Let $1<p<\infty, m \in \mathbb{N}, \alpha \geq 1$, and $\beta \in \mathbb{R}$. There exists a constant $C>0$ such that, for all $f \in T^{p, 2, m}\left(t^{\beta} d t d y\right)$,

$$
\|f\|_{T^{p, 2, m}\left(t^{\beta} d t d y\right)} \leq\|f\|_{T_{\alpha}^{p, 2, m}\left(t^{\beta} d t d y\right)} \leq C(1+\log \alpha) \alpha^{n / \tau}\|f\|_{T^{p, 2, m}\left(t^{\beta} d t d y\right)},
$$

where $\tau=\min (p, 2)$.
To take advantage of this result, one needs to deal with families of operators, that behave nicely with respect to tent norms. As pointed out in [9], this does not mean considering R-bounded families (which means R -analytic semigroups when one considers $\left.\left(t L e^{-t L}\right)_{t \geq 0}\right)$ as in the $L^{p}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$ case, but tent bounded ones, i.e. families of operators with the following L^{2} off-diagonal decay, also known as Gaffney-Davies estimates.
Definition 2.3. A family of bounded linear operators $\left(T_{t}\right)_{t \geq 0} \subset B\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ is said to satisfy offdiagonal estimates of order M, with homogeneity m, if, for all Borel sets $E, F \subset \mathbb{R}^{n}$, all $t>0$, and all $f \in L^{2}\left(\mathbb{R}^{n}\right)$:

$$
\left\|1_{E} T_{t} 1_{F} f\right\|_{2} \lesssim\left(1+\frac{\operatorname{dist}(E, F)^{m}}{t}\right)^{-M}\left\|1_{F} f\right\|_{2}
$$

In what follows $\|\cdot\|_{2}$ denotes the norm in $L^{2}\left(\mathbb{R}^{n}\right)$.
As proven, for instance, in [4, many differential operators of order m, such as (for $m=2$) divergence form elliptic operators with bounded measurable complex coefficients, are such that $\left(t L e^{-t L}\right)_{t \geq 0}$ satisfies off-diagonal estimates of any order, with homogeneity m. This condition can, in fact, be seen as a replacement for the classical gaussian kernel estimates satisfied in the case of more regular coefficients.

3 Results

Theorem 3.1. Let $m \in \mathbb{N}, \beta \in(-\infty, 1)$, $p \in\left(\frac{2 n}{n+m(1-\beta)}, \infty\right) \cap(1, \infty)$, and $\tau=\min (p, 2)$. If $\left(t L e^{-t L}\right)_{t \geq 0}$ satisfies off-diagonal estimates of order $M>\frac{n}{m \tau}$, with homogeneity m, then \mathcal{M}_{L} extends to a bounded operator on $T^{p, 2, m}\left(t^{\beta} d t d y\right)$.

Proof. The proof is very much inspired by similar estimates in [5] and [9. Let $f \in \mathscr{C}_{c}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$. Given $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}^{n}$, and $j \in \mathbb{Z}_{+}$, we consider

$$
C_{j}(x, t)=\left\{\begin{array}{l}
B(x, t) \text { if } j=0 \\
B\left(x, 2^{j} t\right) \backslash B\left(x, 2^{j-1} t\right) \text { otherwise }
\end{array}\right.
$$

We write $\left\|\mathcal{M}_{L} f\right\|_{T^{p, 2}} \leq \sum_{k=1}^{\infty} \sum_{j=0}^{\infty} I_{k, j}+\sum_{j=0}^{\infty} J_{j}$ where

$$
\begin{aligned}
I_{k, j} & =\left(\int_{\mathbb{R}^{n}}\left(\left.\left.\int_{0}^{\infty} \int_{\mathbb{R}^{n}}^{1} \frac{1\left(x, t^{\left.\frac{1}{m}\right)}\right.}{t^{\frac{n}{m}}}(y)\right|_{2^{-k-1} t} ^{2^{-k} t} L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 t^{\frac{1}{m}}\right)} f(s, .)\right)(y) d s\right|^{2} t^{\beta} d y d t\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}}, \\
J_{j} & =\left(\int_{\mathbb{R}^{n}}\left(\left.\left.\int_{0}^{\infty} \int_{\mathbb{R}^{n}}^{1} \frac{1_{B\left(x, t^{\left.\frac{1}{m}\right)}\right.}(y)}{t^{\frac{m}{m}}}\right|_{\frac{t}{2}} ^{t} L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 s^{\left.\frac{1}{m}\right)}\right.} f(s, .)\right)(y) d s\right|^{2} t^{\beta} d y d t\right)^{\frac{p}{2}} d x\right)^{\frac{1}{p}}
\end{aligned}
$$

Fixing $j \geq 0, k \geq 1$ we first estimate $I_{k, j}$ as follows. For fixed $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{B\left(x, t^{\frac{1}{m}}\right)}\left|\int_{2^{-k-1} t}^{2^{-k} t} L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 t^{\frac{1}{m}}\right)} f(s, \cdot)\right)(y) d s\right|^{2} t^{\beta-\frac{n}{m}} d y d t \\
\leq & \int_{0}^{\infty} \int_{B\left(x, t^{\frac{1}{m}}\right)}\left(\int_{2^{-k-1} t}^{2^{-k} t}\left|(t-s) L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 t^{\frac{1}{m}}\right)} f(s, \cdot)\right)(y)\right| \frac{d s}{t-s}\right)^{2} t^{\beta-\frac{n}{m}} d y d t \\
\lesssim & \int_{0}^{\infty} \int_{2^{-k-1} t}^{2^{-k} t} 2^{-k} t\left(\int_{B\left(x, t^{\frac{1}{m}}\right)}\left|(t-s) L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 t^{\left.\frac{1}{m}\right)}\right.} f(s, \cdot)\right)(y)\right|^{2} d y\right) t^{\beta-\frac{n}{m}-2} d s d t \\
\lesssim & \int_{0}^{\infty} \int_{2^{-k-1} t}^{2^{-k} t} 2^{-k}\left(1+\frac{2^{j m} t}{t-s}\right)^{-2 M}\left\|1_{B\left(x, 2^{j+2} t^{\left.\frac{1}{m}\right)}\right.} f(s, \cdot)\right\|_{2}^{2} t^{\beta-\frac{n}{m}-1} d s d t \\
\lesssim & 2^{-k} 2^{-2 j m M} \int_{0}^{\infty}\left(\int_{2^{k} s}^{2^{k+1} s} t^{\beta-\frac{n}{m}-1} d t\right)\left\|1_{B\left(x, 2^{j+\frac{k}{m}+3} s^{\left.\frac{1}{m}\right)}\right.} f(s, \cdot)\right\|_{2}^{2} d s \\
\lesssim & 2^{-k\left(\frac{n}{m}+1-\beta\right)} 2^{-2 j m M} \int_{0}^{\infty}\left\|1_{B\left(x, 2^{j+\frac{k}{m}+3} s^{\left.\frac{1}{m}\right)}\right.} f(s, \cdot)\right\|_{2}^{2} s^{\beta-\frac{n}{m}} d s .
\end{aligned}
$$

In the second inequality, we use Cauchy-Schwarz inequality for the integral with respect to t, the fact that $t-s \sim t$ for $s \in \cup_{k \geq 1}\left[2^{-k-1} t, 2^{-k} t\right] \subset\left[0, \frac{t}{2}\right]$ and Fubini's theorem to exchange the integral in t and the integral in y. The next inequality follows from the off-diagonal estimate verified by $(t-s) L e^{-(t-s) L}$ and again the fact that $t-s \sim t$. By Corollary 2.2 this gives

$$
I_{k, j} \lesssim(j+k) 2^{-k\left(\frac{1}{2}\left(\frac{n}{m}+1-\beta\right)-\frac{n}{m \tau}\right)} 2^{-j\left(m M-\frac{n}{\tau}\right)}\|f\|_{T^{p, 2, m}\left(t^{\beta} d t d y\right)}
$$

where $\tau=\min (p, 2)$. It follows that $\sum_{k=1}^{\infty} \sum_{j=0}^{\infty} I_{k, j} \lesssim\|f\|_{T^{p, 2, m}\left(t^{\beta} d t d y\right)}$ since $M>\frac{n}{m \tau}$ and $\frac{n}{m}+1-\beta>$ $\frac{2 n}{m \tau}$ (Note that for $p \geq 2$, this requires $\beta<1$).

We now turn to J_{0} and remark that $J_{0} \leq\left(\int_{\mathbb{R}^{n}} J_{0}(x)^{\frac{p}{2}} d x\right)^{\frac{1}{p}}$, where

$$
J_{0}(x)=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \left\lvert\, \int_{\frac{t}{2}}^{t} L e^{-(t-s) L}\left(\left.g(s, \cdot)(y) d s\right|^{2} t^{\beta-\frac{n}{m}} d y d t\right.\right.
$$

with $g(s, y)=1_{B\left(x, 4 s^{\frac{1}{m}}\right)}(y) f(s, y)$. The inside integral can be rewritten as

$$
\mathcal{M}_{L} g(t, \cdot)-e^{-\frac{t}{2} L} \mathcal{M}_{L} g\left(\frac{t}{2}, \cdot\right)
$$

As \mathcal{M}_{L} is bounded on $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n} ; t^{\beta-\frac{n}{m}} d y d t\right)$ by [3, Theorem 3.1] and $\left(e^{-t L}\right)_{t \geq 0}$ is uniformly bounded on $L^{2}\left(\mathbb{R}^{n}\right)$, we get

$$
J_{0}(x) \lesssim \int_{0}^{\infty}\left\|1_{B\left(x, 4 s^{\frac{1}{m}}\right)} f(s, \cdot)\right\|_{2}^{2} s^{\beta-\frac{n}{m}} d s
$$

We finally turn to J_{j}, for $j \geq 1$. For fixed $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\mathbb{R}^{n}} 1_{B\left(x, t^{\frac{1}{m}}\right)}(y)\left|\int_{\frac{t}{2}}^{t} L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 s^{\frac{1}{m}}\right)} f(s, .)\right)(y) d s\right|^{2} t^{\beta-\frac{n}{m}} d y d t \\
\leq & \int_{0}^{\infty} \int_{\mathbb{R}^{n}} 1_{B\left(x, t^{\left.\frac{1}{m}\right)}\right.}(y)\left(\int_{\frac{t}{2}}^{t}\left|(t-s) L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 s^{\frac{1}{m}}\right)} f(s, .)\right)(y)\right| \frac{d s}{t-s}\right)^{2} t^{\beta-\frac{n}{m}} d y d t \\
\lesssim & \int_{0}^{\infty} \int_{\mathbb{R}^{n}} 1_{B\left(x, t^{\frac{1}{m}}\right)}(y) \int_{\frac{t}{2}}^{t}\left|(t-s) L e^{-(t-s) L}\left(1_{C_{j}\left(x, 4 s^{\frac{1}{m}}\right)} f(s, .)\right)(y)\right|^{2} \frac{d s}{(t-s)^{2}} t^{\beta-\frac{n}{m}+1} d y d t \\
\lesssim & \int_{0}^{\infty} \int_{\frac{t}{2}}^{t}(t-s)^{-2}\left(1+\frac{2^{j m} t}{t-s}\right)^{-2 M}\left\|1_{B\left(x, 2^{j+2} s \frac{1}{m}\right)} f(s, .)\right\|_{2}^{2} s^{\beta-\frac{n}{m}+1} d s d t \\
\lesssim & 2^{-j m(2 M-2)} \int_{0}^{\infty}\left(\int_{s}^{2 s} s(t-s)^{-2}\left(1+\frac{2^{j m} t}{t-s}\right)^{-2} d t\right)\left\|1_{B\left(x, 2^{j+2} s \frac{1}{m}\right)} f(s, .)\right\|_{2}^{2} s^{\beta-\frac{n}{m}} d s \\
\lesssim & 2^{-2 j m M} \int_{0}^{\infty}\left\|1_{B\left(x, 2^{j+2} s^{\left.\frac{1}{m}\right)}\right.} f(s, .)\right\|_{2}^{2} s^{\beta-\frac{n}{m}} d s,
\end{aligned}
$$

where we have used Cauchy-Schwarz inequality in the second inequality, the off-diagonal estimates and the fact that $s \leq t$ in the third, Fubini's theorem and the fact that $s \geq \frac{t}{2}$ in the fourth, and the change of variable $\sigma=\frac{t}{t-s}$ in the last. An application of Corollary 2.2, then gives

$$
J_{j} \lesssim 2^{-j m M} j 2^{j \frac{n}{\tau}}\|f\|_{T^{p, 2, m}\left(t^{\beta} d t d y\right)}=j 2^{-j\left(m M-\frac{n}{\tau}\right)}\|f\|_{T^{p, 2, m}\left(t^{\beta} d t d y\right)}
$$

and the proof is concluded by summing the estimates.
An end-point result holds for $p=\infty$. In this context the appropriate tent space consists of functions such that $|g(t, x)|^{2} \frac{d x d t}{t}$ is a Carleson measure, and is defined as the completion of the space $\mathscr{C}_{c}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$ with respect to

$$
\|g\|_{T^{\infty, 2}}^{2}=\sup _{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}_{+}} r^{-n} \int_{B(x, r)} \int_{0}^{r}|g(t, x)|^{2} \frac{d x d t}{t}
$$

We also consider the weighted version defined by

$$
\|g\|_{T^{\infty, 2, m}\left(t^{\beta} d t d y\right)}^{2}:=\sup _{(x, r) \in \mathbb{R}^{n} \times \mathbb{R}_{+}} r^{-\frac{n}{m}} \int_{B\left(x, r^{\frac{1}{m}}\right)} \int_{0}^{r}|g(t, x)|^{2} t^{\beta} d x d t
$$

Theorem 3.2. Let $m \in \mathbb{N}$, and $\beta \in(-\infty, 1)$. If $\left(t L e^{-t L}\right)_{t \geq 0}$ satisfies off-diagonal estimates of order $M>\frac{n}{2 m}$, with homogeneity m, then \mathcal{M}_{L} extends to a bounded operator on $T^{\infty, 2, m}\left(t^{\beta} d t d y\right)$.
Proof. Pick a ball $B\left(z, r^{\frac{1}{m}}\right)$. Let

$$
I^{2}=\int_{B\left(z, r^{\frac{1}{m}}\right)} \int_{0}^{r}\left|\left(\mathcal{M}_{L} f\right)(t, x)\right|^{2} t^{\beta} d x d t
$$

We want to show that $I^{2} \lesssim r^{\frac{n}{m}}\|f\|_{T^{\infty, 2}\left(t^{\beta} d t d y\right)}^{2}$. We set

$$
I_{j}^{2}=\int_{B\left(x, r^{\frac{1}{m}}\right)} \int_{0}^{r}\left|\left(\mathcal{M}_{L} f_{j}\right)(t, x)\right|^{2} t^{\beta} d x d t
$$

where $f_{j}(s, x)=f(s, x) 1_{C_{j}\left(z, 4 r^{\left.\frac{1}{m}\right)}\right.}(x) 1_{(0, r)}(s)$ for $j \geq 0$. Thus by Minkowsky inequality, $I \leq \sum I_{j}$. For I_{0} we use again [3, Theorem 1.3] which implies that \mathcal{M}_{L} is bounded on $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}, t^{\beta} d x d t\right)$. Thus

$$
I_{0}^{2} \lesssim \int_{B\left(z, 4 r^{\frac{1}{m}}\right)} \int_{0}^{r}|f(t, x)|^{2} t^{\beta} d x d t \lesssim r^{\frac{n}{m}}\|f\|_{T^{\infty, 2, m}\left(t^{\beta} d t d y\right)}^{2}
$$

Next, for $j \neq 0$, we proceed as in the proof of Theorem 3.1 to obtain

$$
\begin{aligned}
I_{j}^{2} \lesssim & \sum_{k=1}^{\infty} \int_{0}^{r} \int_{2^{-k-1} t}^{2^{-k} t} 2^{-k} t\left(1+\frac{2^{j m} r}{t-s}\right)^{-2 M}\left\|f_{j}(s, .)\right\|_{L^{2}}^{2} t^{\beta-2} d s d t \\
& +\int_{0}^{r} \int_{\frac{t}{2}}^{t} t(t-s)^{-2}\left(1+\frac{2^{j m} r}{t-s}\right)^{-2 M}\left\|f_{j}(s, .)\right\|_{L^{2}}^{2} t^{\beta} d s d t
\end{aligned}
$$

Exchanging the order of integration, and using the fact that $t \sim t-s$ in the first part and that $t \sim s$ in the second, we have the following.

$$
\begin{aligned}
I_{j}^{2} \lesssim & \sum_{k=1}^{\infty} 2^{-k} 2^{-2 j m M} r^{-2 M} \int_{0}^{2^{-k} r} \int_{2^{k} s}^{2^{k+1} s} t^{\beta+2 M-1}\left\|f_{j}(s, .)\right\|_{L^{2}}^{2} d t d s \\
& +\int_{0}^{r} \int_{s}^{2 s} r(t-s)^{-2}\left(1+\frac{2^{j m} r}{t-s}\right)^{-2 M}\left\|f_{j}(s, .)\right\|_{L^{2}}^{2} s^{\beta} d t d s \\
\lesssim & \sum_{k=1}^{\infty} 2^{-k} 2^{-2 j m M} \int_{0}^{2^{-k} r}\left(2^{k} s\right)^{\beta}\left\|f_{j}(s, .)\right\|_{L^{2}}^{2} d s+\int_{0}^{r} \int_{1}^{\infty}\left(1+2^{j m} \sigma\right)^{-2 M}\left\|f_{j}(s, .)\right\|_{L^{2}}^{2} s^{\beta} d \sigma d s \\
\lesssim & 2^{-2 j m M} \int_{0}^{r}\left\|f_{j}(s, .)\right\|_{L^{2}}^{2} s^{\beta} d s,
\end{aligned}
$$

where we used $\beta<1$. We thus have

$$
I_{j}^{2} \lesssim 2^{-2 j m M}\left(2^{j} r^{\frac{1}{m}}\right)^{n}\|f\|_{T^{\infty, 2, m}\left(t^{\beta} d t d y\right)}^{2}
$$

and the condition $M>\frac{n}{2 m}$ allows us to sum these estimates.
Remark 3.3. Assuming off-diagonal estimates, instead of kernel estimates, allows to deal with differential operators L with rough coefficients. The harmonic analytic objects associated with L then fall outside the Calderón-Zygmund class, and it is common (see for instance [1]) for their boundedness range to be a proper subset of $(1, \infty)$. Here, our range $\left(\frac{2 n}{n+m(1-\beta)}, \infty\right]$ includes $[2, \infty]$ as $\beta<1$, which is consistent with 2 . In the case of classical tent spaces, i.e., $m=1$ and $\beta=-1$, it is the range $\left(2_{*}, \infty\right]$, where 2_{*} denotes the Sobolev exponent $\frac{2 n}{n+2}$. We do not know, however, if this range is optimal.
Remark 3.4. Theorem 3.2 is a maximal regularity result for parabolic Carleson measures norms. This is quite natural from the point of view of non-linear parabolic PDE (where maximal regularity is often used), and such norm have, actually, already been used in the context of Navier-Stokes equations in [11, and, subsequently, for some geometric non-linear PDE in [12. Theorem 3.1]is also reminiscent of Krylov's Littlewood-Paley estimates, and of their recent far-reaching generalization in [14]. In fact, the methods and results from [9], on which this paper relies, use the same circle of ideas (R-boundedness, Kalton-Weis γ multiplier theorem...) as 14. The combination of these ideas into a "conical square function" approach to stochastic maximal regularity will be the subject of another forthcoming paper.

References

[1] P. Auscher, On necessary and sufficient conditions for L^{p} estimates of Riesz transforms associated to elliptic operators on \mathbb{R}^{n} and related estimates. Mem. Amer. Math. Soc. 871 (2007).
[2] P. Auscher, A. Axelsson, Weighted maximal regularity estimates and solvability of elliptic systems I. To appear in Inventiones Math., arXiv:0911.4344.
[3] P. Auscher, A. Axelsson, Remarks on maximal regularity estimates To appear in Parabolic Problems : Herbert Amann Festschrift, Birkhäuser. arXiv:0912.4482.
[4] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, P. Tchamitchian, The solution of the Kato square root problem for second order elliptic operators on \mathbb{R}^{n}. Ann. of Math. 156(2) (2002) 633-654.
[5] P. Auscher, A. McIntosh, E. Russ, Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds. J. Geom. Anal. 18 (2008) 192-248.
[6] R. Coifman, Y. Meyer, E.M. Stein, Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62 (1985) 304-335.
[7] C. Fefferman; E.M. Stein, H^{p} spaces of several variables. Acta Math. 129 (1972) 137-193.
[8] T. Hytönen, A. McIntosh, P. Portal, Kato's square root problem in Banach spaces. J. Funct. Anal. 254 (2008) no. 3, 675-726.
[9] T. Hytönen, J. van Neerven, P. Portal, Conical square function estimates in UMD Banach spaces and applications to H^{∞}-functional calculi. J. Analyse Math. 106 (2008) 317-351.
[10] N. Kalton, G. Lancien, A solution to the problem of L_{p} maximal-regularity. Math. Z. 235 (2000), 559-568.
[11] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations. Adv. Math. 157 (2001), 22-35.
[12] H. Koch, T. Lamm, Geometric flows with rough initial data. preprint, arXiv:0902.1488v1.
[13] P.C. Kunstmann, L. Weis, Maximal L^{p} regularity for parabolic problems, Fourier multiplier theorems and H^{∞}-functional calculus, in Functional Analytic Methods for Evolution Equations (Editors: M. Iannelli, R. Nagel, S. Piazzera). Lect. Notes in Math. 1855, Springer-Verlag (2004).
[14] J. van Neerven, M. Veraar, L. Weis, Stochastic maximal L^{p} regularity. submitted, arXiv:1004.1309v2.
[15] L. de Simon. Un'applicazione della theoria degli integrali singolari allo studio delle equazioni differenziali lineare astratte del primo ordine. Rend. Sem. Mat., Univ. Padova (1964) 205-223.
[16] L.Weis, Operator-valued Fourier multiplier theorems and maximal L_{p}-regularity. Math.Ann. 319 (2001), 735-758.

Pascal Auscher
Univ. Paris-Sud, laboratoire de Mathématiques, UMR 8628, F-91405 Orsay; CNRS, F-91405 OrSAY.
pascal.auscher@math.u-psud.fr

Sylvie Monniaux
LATP-UMR 6632, FST Saint-Jérôme - Case Cour A, Univ. Paul Cézanne, F-13397 Marseille Cédex 20.
sylvie.monniaux@univ-cezanne.fr

Pierre Portal

Permanent Address:
Université Lille 1, Laboratoire Paul Painlevé, F-59655 Villeneuve D'Ascq.
Current Address:
Australian National University, Mathematical Sciences Institute, John Dedman Building, Acton ACT 0200, Australia.
pierre.portal@math.univ-lille1.fr

