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GROTHENDIECK INEQUALITIES FOR SEMIDEFINITE

PROGRAMS WITH RANK CONSTRAINT

JOP BRIËT, FERNANDO MÁRIO DE OLIVEIRA FILHO, AND FRANK VALLENTIN

Abstract. Grothendieck inequalities are fundamental inequalities which are
frequently used in many areas of mathematics and computer science. They
can be interpreted as upper bounds for the integrality gap between two op-
timization problems: A difficult semidefinite program with rank-1 constraint
and its easy semidefinite relaxation where the rank constrained is dropped.
For instance, the integrality gap of the Goemans-Williamson approximation
algorithm for MAX CUT can be seen as a Grothendieck inequality. In this
paper we consider Grothendieck inequalities for ranks greater than 1 and we
give one application in statistical mechanics: Approximating ground states in
the n-vector model.

1. Introduction

Let G = (V,E) be a graph with finite vertex set V and edge set E ⊆
(

V
2

)

. Let
A : V ×V → R be a symmetric matrix whose rows and columns are indexed by the
vertex set of G. Let r be a positive integer. The graphical Grothendieck problem

with rank-r constraint is the following optimization problem:

SDPr(G,A) = max

{

∑

{u,v}∈E

A(u, v)f(u) · f(v) : f : V → Sr−1

}

,

where Sr−1 = { x ∈ R
r : x · x = 1 } is the (r − 1)-dimensional unit sphere. The

rank-r Grothendieck constant of the graph G is the smallest constant K(r,G) so
that for all matrices A : V × V → R the following inequality holds:

(1) SDP∞(G,A) ≤ K(r,G) SDPr(G,A).

Here S∞ denotes the unit sphere of the Hilbert space l2(R) of square summable
sequences, which contains Rn as the subspace of the first n components. It is easy
to see that K(r,G) ≥ 1. In this paper, we prove new upper bounds for K(r,G).

1.1. Some history. Inequality (1) is called a Grothendieck inequality because it
first appeared in the work [17] of Grothendieck on the metric theory of tensor
products. More precisely, Grothendieck considered the case r = 1 for 2-chromatic
(bipartite) graphs, although in quite a different language. (A k-chromatic graph is
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a graph whose chromatic number is k, i.e., one can color its vertices with k colors
so that adjacent vertices get different colors, but k−1 colors do not suffice for this.)
Grothendieck proved that in this case K(1, G) is upper bounded by a constant that
is independent of the size of G.

Later, Lindenstrauss and Pe lczyński [28] reformulated Grothendieck’s inequality
for bipartite graphs in a way that is very close to the formulation we gave above. The
graphical Grothendieck problem with rank-1 constraint was introduced by Alon,
Makarychev, Makarychev, and Naor [1]. Haagerup [18] considered the complex
case of Grothendieck’s inequality which amounts to the case r = 2. The higher
rank case for bipartite graphs was introduced by Briët, Buhrman, and Toner [7].

1.2. Computational perspective. There has been a recent surge of interest
in Grothendieck inequalities by the computer science community. The problem
SDPr(G,A) is a semidefinite maximization problem with rank-r constraint:

SDPr(G,A) = max

{

∑

{u,v}∈E

A(u, v)X(u, v) : X ∈ R
V ×V
�0 ,

X(u, u) = 1 for all u ∈ V ,

rankX ≤ r

}

,

where R
V×V
�0 is the set of matrices A : V × V → R that are positive semidefinite.

On the one hand, SDPr(G,A) is generally a difficult computational problem. For
instance, if r = 1 and G is the complete bipartite graph Kn,n on 2n nodes, and if A
is the Laplacian matrix of a graph G′ on n nodes, then computing SDP1(Kn,n, A)
is equivalent to computing the weight of a maximum cut of G′. The maximum cut
problem (MAX CUT) is one of Karp’s 21 NP-complete problems. On the other
hand, if we relax the rank-r constraint, then we deal with SDP∞(G,A), which is an
easy computational problem: Obviously, one has SDP∞(G,A) = SDP|V |(G,A) and
computing SDP|V |(G,A) amounts to solving a semidefinite programming problem
(see e.g. Vandenberghe, Boyd [42]). Therefore one may approximate it to any
fixed precision in polynomial time by using the ellipsoid method or interior point
algorithms.

When r = 1, inequality (1) measures the integrality gap between the two prob-
lems SDPr and SDP∞. For r > 1, we refer to this gap as the dimensional-

ity gap. In many cases the optimal constant K(r,G) is not known and so one
is interested in finding upper bounds of for K(r,G). Usually, proving an upper
bound amounts to giving a randomized polynomial-time approximation algorithm
for SDPr(G,A). In the case of the MAX CUT problem, Goemans and Williamson
[16] pioneered an approach based on randomized rounding: One rounds an opti-
mal solution of SDP∞(G,A) to a feasible solution of SDPr(G,A). The expected
value of the rounded solution is then related to the one of the original solution,
and this gives an upper bound for K(r,G). Using this basic idea, Goemans and
Williamson [16] showed that for all symmetric matrices A : V ×V → R which have
the properties A(u, v) ≤ 0 for u distinct from v and

∑

u∈V A(u, v) = 0 for all v ∈ V ,
we have the inequality

SDP1(Kn,n, A) ≤ (0.878 . . . )−1 SDP∞(Kn,n, A).
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1.3. Applications and references. Grothendieck’s inequality is a fundamental
inequality in the theory of Banach spaces. Many books on the geometry of Banach
spaces contain a substantial treatment of the result. We refer for instance to the
books by Pisier [35], Jameson [19], and Garling [15].

During the last years, especially after Alon and Naor [2] pointed out the con-
nection between the inequality and approximation algorithms using semidefinite
programs, Grothendieck’s inequality has also become a unifying and fundamental
tool outside of functional analysis.

It has applications in optimization (Nesterov [34], Nemirovski, Roos, Terlaky
[33], Megretski [30]), extremal combinatorics (Alon, Naor [2]), system theory (Ben-
Tal, Nemirovski [6]), machine learning (Charikar, Wirth [10], Khot, Naor [20, 21]),
communication complexity (Linial, Shraibman [27]), quantum information the-
ory (Tsirel’son [41], Regev, Toner [38]), and computational complexity (Khot,
O’Donnell [23], Arora, Berger, Kindler, Safra, Hazan [4], Khot and Naor [22],
Raghavendra, Steurer [36]).

The references above mainly deal with the combinatorial rank r = 1 case, when
S0 = {−1,+1}. For applications in quantum information (Briët, Buhrman, Toner
[7]) and in statistical mechanics (mentioned in Alon, Makarychev, Makarychev,
Naor [1], Kindler, Naor, Schechtman [24]) the more geometrical case when r > 1 is
of interest. This case is the subject of this paper.

Before we present our results we consider the application to statistical mechanics:
The n-vector model, introduced by Stanley [40], describes the interaction of particles
in a spin glass with ferromagnetic and antiferromagnetic interactions. The case
n = 1 corresponds to the Ising model, the case n = 2 to the XY model, the
case n = 3 to the Heisenberg model, and the case n = ∞ to the Berlin-Kac
spherical model.

Let G = (V,E) be the interaction graph where the vertices are particles and
where edges indicate which particles interact. The potential function A : V ×V → R

is 0 if u and v are not adjacent, it is positive if there is ferromagnetic interaction
between u and v, and it is negative if there is antiferromagnetic interaction. The
particles possess a vector-valued spin f : V → Sn−1. In the absence of an external
field, the total energy of the system is given by the Hamiltonian

H = −
∑

{u,v}∈E

A(u, v)f(u) · f(v),

The ground state of this model is a configuration of spins f : V → Sn−1 which mini-
mizes the total energy. Finding the ground state is the same as solving SDPn(G,A).
Typically, the interaction graph has small chromatic number, e.g. the most common
case is when G is a finite subgraph of the integer lattice Zn where the vertices are
the lattice points and where two vertices are connected if their Euclidean distance
is one. These graphs are bipartite since they can be partitioned into even and odd
vertices, corresponding to the parity of the sum of the coordinates.

We briefly mention the relation to quantum information theory. In quantum
information theory, XOR games, first considered by Clauser, Horne, Shimony, and
Holt [11], constitute the simplest model in which the predictions of quantum me-
chanics can be contrasted with those of classical mechanics, both theoretically and
experimentally. In an XOR game, two players, Alice and Bob, receive questions u
and v respectively, picked by a referee according to some probability distribution
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π(u, v) which is known to everybody in advance. Without communicating with
each other, they answer the referee with bits a, b ∈ {0, 1}. Alice and Bob win the
game if the exclusive-OR (XOR) of their answers a⊕b equals the value of a Boolean
function g(u, v) also known in advance, otherwise they lose.

In a quantum-mechanical setting, the players may use entangled strategies: The

players “share” a positive semidefinite operator ρ ∈ C
d2×d2

�0 which represents the
state of a pair of d-dimensional entangled quantum systems, and for each question
u ∈ V , Alice has a pair of d-by-d positive semidefinite matrices {A0

u, A
1
u} that

satisfy A0
u + A1

u = I, where I is the d-by-d identity matrix, and for each question
v ∈ V , Bob has a similar pair of matrices {B0

v , B
1
v}. To determine her answer to

question u, Alice performs a measurement corresponding to the matrices associated
to her question. The probability that she measures a ∈ {0, 1} equals trace(ρAa

u⊗I).
Similarly, the probability that Bob measures b equals trace(ρI ⊗Bb

v).
Tsirel’son [41] proved that for G = (VA, VB ;E) the complete bipartite graph

with Alice and Bob’s questions on opposite sides of the partition, and A(u, v) =
1
2π(u, v)·(−1)g(u,v) for all {u, v} ∈ VA×VB and A(u, v) = 0 otherwise, the difference
between the probability of winning and the probability of losing when the players
use optimal strategies for fixed dimension d, is bounded from above by SDPr(G,A)
with r = 2d and bounded from below by SDPr(G,A) with r = ⌊log d⌋.
1.4. Our results and methods. The purpose of this paper is to prove explicit
upper bounds for K(r,G). We are especially interested in the case of small r
and graphs with small chromatic number although our methods are not restricted
to this. The proof of the following theorem gives a randomized polynomial-time
approximation algorithm for approximating ground states in the Heisenberg model
in the lattice Z3 with approximation ratio 0.78 . . . = (1.28 . . .)−1. This result can
be regarded as the principal contribution of this paper.

Theorem 1.1. For r = 1, . . . , 10 and in the case of a bipartite or a tripartite graph

G the rank-r Grothendieck constant is at most:

r bipartite G tripartite G

1 1.782213 . . . 3.264251 . . .
2 1.404909 . . . 2.621596 . . .
3 1.280812 . . . 2.412700 . . .
4 1.216786 . . . 2.309224 . . .
5 1.177179 . . . 2.247399 . . .
6 1.150060 . . . 2.206258 . . .
7 1.130249 . . . 2.176891 . . .
8 1.115110 . . . 2.154868 . . .
9 1.103150 . . . 2.137736 . . .
10 1.093456 . . . 2.124024 . . .

The bound for the original Grothendieck constant K(1, G) is due to Krivine [26].
Currently, it is the best known upper bound, the best known lower bound is
1.676956 . . . due to Davie [12] and Reeds [37] (see also Khot and O’Donnell [23]).
The bound for K(2, G) is due to Haagerup [18].

When the graph G has large chromatic number, then the result of Alon, Maka-
rychev, Makarychev, and Naor [1] gives the best known bounds for K(1, G): They
prove a logarithmic dependence on the chromatic number of the graph (actually on
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the theta number of the complement of G, cf. Section 4) whereas our method only
gives a linear dependence.

For the proof of Theorem 1.1 we use the framework of Krivine and Haagerup
which we explain below. Our main technical contributions are a matrix version of
Grothendieck’s identity given in Lemma 2.1. Furthermore in Lemma 4.1 we provide
a method to construct new unit vectors linearizing an expectation which can also
deal with nonbipartite graphs.

The strategy of Haagerup and Krivine is based on the following embedding
lemma:

Lemma 1.2. Let G = (V,E) be a graph and choose Z = (Zij) ∈ Rr×|V | at random

so that each entry is distributed independently according to the normal distribution

with mean 0 and variance 1, that is, Zij ∼ N(0, 1).

Given f : V → S|V |−1, there is a function g : V → S|V |−1 such that whenever u
and v are adjacent in G, then

E

[

Zg(u)

‖Zg(u)‖ · Zg(v)

‖Zg(v)‖

]

= β(r,G)f(u) · f(v)

for some constant β(r,G) depending only on r and G.

In the statement above we are vague regarding the constant β(r,G). We will
give the precise statement of the lemma in Section 4 (cf. Lemma 4.1 there), right
now this precise statement is not relevant to our discussion.

Now, the strategy of Haagerup and Krivine amounts to analyzing the follow-
ing four-step procedure that yields a randomized polynomial-time approximation
algorithm for SDPr(G,A):

Algorithm A. Takes as input a finite graph G = (V,E) with at least one edge
and a matrix A : V × V → R, and returns a feasible solution h : V → Sr−1

of SDPr(G,A).

(1) Solve SDP∞(G,A), obtaining an optimal solution f : V → S|V |−1.
(2) Use f to construct g : V → S|V |−1 according to Lemma 1.2.
(3) Choose Z = (Zij) ∈ Rr×|V | at random so that every matrix entry Zij is

distributed independently according to the standard normal distribution
with mean 0 and variance 1, that is, Zij ∼ N(0, 1).

(4) Define h : V → Sr−1 by setting h(u) = Zg(u)/‖Zg(u)‖.

To analyze this procedure, we compute the expected value of the feasible solu-
tion h. Using Lemma 1.2 we obtain

SDPr(G,A) ≥ E

[

∑

{u,v}∈E

A(u, v)h(u) · h(v)

]

=
∑

{u,v}∈E

A(u, v)E[h(u) · h(v)]

= β(r,G)
∑

{u,v}∈E

A(u, v)f(u) · f(v)

= β(r,G) SDP∞(G,A),

(2)

and so we have K(r,G) ≤ β(r,G)−1.
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If we were to skip step (2) and apply step (4) to f directly, then the expecta-
tion E[h(u) · h(v)] would be a non-linear function of f(u) · f(v), which would make
it difficult to assess the quality of the feasible solution h. The purpose of step (2)
is to “linearize this expectation”, which allows us to estimate the quality of h in
terms of a linear function of SDPr(G,A).

The constant β(r,G) in Lemma 1.2 is defined in terms of the Taylor expansion
of the inverse of the function Er : [−1, 1] → [−1, 1] given by

Er(x · y) = E

[

Zx

‖Zx‖ · Zy

‖Zy‖

]

,

where x, y ∈ S∞ and Z = (Zij) ∈ Rr×∞ is chosen so that its entries are indepen-
dently distributed according to the normal distribution with mean 0 and variance 1.
The function Er is well-defined since the expectation above is invariant under or-
thogonal transformations.

The Taylor expansion of Er is computed in Section 2. The Taylor expansion
of E−1

r is treated in Section 3, where we basically follow Haagerup [18]. A precise
version of Lemma 1.2 is stated and proved in Section 4, following Krivine [26].

Finally, in Section 5 we show that one can refine this analysis and can (strictly)
improve the upper bound if one takes the dimension of the matrix A : V × V → R

into account. In particular, we compare the problems SDPq and SDPr for q ≥
r. Earlier, Avidor and Zwick [5] considered the problem of bounding the ratio
SDPr(G,A)/ SDP1(G,A) for r = 2, 3 and A the Laplacian matrix of a graph.

2. A matrix version of Grothendieck’s identity

In the analysis of many approximation algorithms that use semidefinite pro-
gramming the following identity plays a central role: Let u, v be unit (column)
vectors in Rn and let Z ∈ R1×n be a random (row) vector whose entries are dis-
tributed independently according to the standard normal distribution with mean 0
and variance 1. Then,

E[sign(Zu) sign(Zv)] = E

[

Zu

‖Zu‖ · Zv

‖Zv‖

]

=
2

π
arcsin(u · v).

For instance, the celebrated algorithm of Goemans and Williamson [16] for
approximating the MAX CUT problem is based on this. The identity is called
Grothendieck’s identity since it appeared for the first time in Grothendieck’s work
on the metric theory of tensor products [17, Proposition 4, p. 63] (see also Diestel,
Fourie, and Swart [13]).

In this section we extend Grothendieck’s identity from vectors to matrices by
replacing the arcsine function by a hypergeometric function.

Lemma 2.1. Let u, v be unit vectors in Rn and let Z ∈ Rr×n be a random ma-

trix whose entries are distributed independently according to the standard normal

distribution with mean 0 and variance 1. Then,

E

[

Zu

‖Zu‖ · Zv

‖Zv‖

]

=
2

r

(

Γ((r + 1)/2)

Γ(r/2)

)2

(u · v) 2F1

(

1/2, 1/2
r/2 + 1

; (u · v)2
)

.
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Here,

(u · v) 2F1

(

1/2, 1/2
r/2 + 1

; (u · v)2
)

=

∞
∑

k=0

(1 · 3 · · · (2k − 1))2

(2 · 4 · · · 2k)((r + 2) · (r + 4) · · · (r + 2k))
(u · v)2k+1.

Before proving the lemma we review special cases known in the literature. If
r = 1, then we get the original Grothendieck’s identity:

E[sign(Zu) sign(Zv)] =
2

π
arcsin(u · v)

=
2

π

(

u · v +

(

1

2

)

(u · v)3

3
+

(

1 · 3

2 · 4

)

(u · v)5

5
+ · · ·

)

.

The case r = 2 is due to Haagerup [18]:

E

[

Zu

‖Zu‖ · Zv

‖Zv‖

]

=
1

u · v
(

E(u · v) − (1 − (u · v)2)K(u · v)
)

=
π

4

(

u · v +

(

1

2

)2
(u · v)3

2
+

(

1 · 3

2 · 4

)2
(u · v)5

3
+ · · ·

)

,

where K and E are the complete elliptic integrals of the first and second kind.
Note that on page 201 of Haagerup [18] π/2 has to be π/4. Briët, Oliveira, and
Vallentin [8] computed the first coefficient 2/r(Γ((r + 1)/2)/Γ(r/2))2 of the Taylor
series of the expectation for every r.

The following elegant proof of Grothendieck’s identity has become a classic: We
have sign(Zu) sign(Zv) = 1 if and only if the vectors u and v lie on the same
side of the hyperplane orthogonal to the vector Z ∈ R1×n. Now we project this n-
dimensional situation to the plane spanned by u and v. Then the projected random
hyperplane becomes a random line. This random line is distributed according to the
uniform probability measure on the unit circle because Z is normally distributed.
Now one obtains the final result by measuring regions on the unit circle: The
probability that u and v lie on the same side of the line is 1 − arccos(u · v)/π.

However, we do not have such a picture proof for our matrix version. Our proof
is based on the rotational invariance of the normal distribution and integration with
respect to spherical coordinates together with some identities for hypergeometric
functions. A similar calculation was done by König and Tomczak-Jaegermann [25].
It would be interesting to find a more geometrical proof of the lemma.

For computing the first coefficient of the Taylor series in [8] we took a slightly
different route: We integrated using the Wishart distribution of 2 × 2-matrices.

Proof of Lemma 2.1. Let Zi ∈ Rn be the i-th row of the matrix Z, with i = 1, . . . r.
We define vectors

x =











Z1 · u
Z2 · u

...
Zr · u











and y =











Z1 · v
Z2 · v

...
Zr · v











so that we have x·y = (Zu)·(Zv). Since the probability distribution of the vectors Zi

is invariant under orthogonal transformations we may assume that u = (1, 0, . . . , 0)
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and v = (t,
√

1 − t2, 0, . . . , 0) and so the pair (x, y) ∈ Rr×Rr is distributed according
to the probability density function (see e.g. Muirhead [32, p. 10, eq. (7)])

(2π
√

1 − t2)−r exp

(

−x · x− 2tx · y + y · y
2(1 − t2)

)

.

Hence,

E

[

x

‖x‖ · y

‖y‖

]

= (2π
√

1 − t2)−r

∫

Rr

∫

Rr

x

‖x‖ · y

‖y‖ exp

(

−x · x− 2tx · y + y · y
2(1 − t2)

)

dxdy.

By using spherical coordinates x = αξ, y = βη, where α, β ∈ [0,∞) and ξ, η ∈ Sr−1,
we rewrite the above integral as
∫ ∞

0

∫ ∞

0

(αβ)r−1 exp

(

− α2 + β2

2(1 − t2)

)∫

Sr−1

∫

Sr−1

ξ · η exp

(

αβtξ · η
1 − t2

)

dω(ξ)dω(η)dαdβ.

If r = 1, we get for the inner double integral
∫

S0

∫

S0

ξ · η exp

(

αβtξ · η
1 − t2

)

dω(ξ)dω(η)

= 4 sinh

(

αβt

1 − t2

)

= 4
αβt

1 − t2
0F1

(

3/2
;

(

αβt

2(1 − t2)

)2
)

.

Now we consider the case when r ≥ 2. Since the inner double integral over the
spheres only depends on the inner product p = ξ · η it can be rewritten as

ω(Sr−2)ω(Sr−1)

∫ 1

−1

p exp

(

αβtp

1 − t2

)

(1 − p2)(r−3)/2 dp,

where

ω(Sr−2)ω(Sr−1) =
4πr−1/2

Γ(r/2)Γ((r − 1)/2)
.

Integration by parts yields
∫ 1

−1

p(1 − p2)(r−3)/2 exp

(

αβtp

1 − t2

)

dp

=
αβt

(r − 1)(1 − t2)

∫ 1

−1

(1 − p2)(r−1)/2 exp

(

αβtp

1 − t2

)

dp.

The last integral can be rewritten using the modified Bessel function of the first
kind (cf. Andrews, Askey, Roy [3, p. 235, Exercise 9])

∫ 1

−1

(1 − p2)(r−1)/2 exp

(

αβtp

1 − t2

)

dp

= Γ((r + 1)/2)
√
π

(

2(1 − t2)

αβt

)r/2

Ir/2

(

αβt

1 − t2

)

.
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One can write Ir/2 as a hypergeometric function (cf. Andrews, Askey, and Roy [3,
(4.12.2)])

Ir/2(x) = (x/2)r/2
∞
∑

k=0

(x/2)2k

k!Γ(r/2 + k + 1)
=

(x/2)r/2

Γ((r + 2)/2)
0F1

(

(r + 2)/2
;
(x

2

)2
)

.

Putting things together, we get

ω(Sr−2)ω(Sr−1)

∫ 1

−1

p exp

(

αβtp

1 − t2

)

(1 − p2)(r−3)/2 dp

=
4πr

Γ(r/2)2r

αβt

1 − t2
0F1

(

(r + 2)/2
;

(

αβt

2(1 − t2)

)2
)

.

Notice that the last formula also holds for r = 1. So we can continue without case
distinction.

Now we evaluate the outer double integral

∫ ∞

0

∫ ∞

0

(αβ)r exp

(

− α2 + β2

2(1 − t2)

)

0F1

(

(r + 2)/2
;

(

αβt

2(1 − t2)

)2
)

dαdβ.

Here the inner integral equals

∫ ∞

0

αr exp

(

− α2

2(1 − t2)

)

0F1

(

(r + 2)/2
;

(

αβt

2(1 − t2)

)2
)

dα,

and doing the substitution γ = α2/(2(1 − t2)) gives

2(r−1)/2(1 − t2)(r+1)/2

∫ ∞

0

γ(r−1)/2 exp(−γ) 0F1

(

(r + 2)/2
;

γ(βt)2

2(1 − t2)

)

dγ,

which is by the Bateman Manuscript Project [14, p. 337 (11)] equal to

2(r−1)/2(1 − t2)(r+1)/2Γ((r + 1)/2)1F1

(

(r + 1)/2
(r + 2)/2

;
(βt)2

2(1 − t2)

)

.

Now we treat the remaining outer integral in a similar way, using [14, p. 219 (17)],
and get that

∫ ∞

0

βr exp

(

− β2

2(1 − t2)

)

1F1

(

(r + 1)/2
(r + 2)/2

;
(βt)2

2(1 − t2)

)

dβ

= 2(r−1)/2(1 − t2)(r+1)/2Γ((r + 1)/2)2F1

(

(r + 1)/2, (r + 1)/2
(r + 2)/2

; t2
)

.

By applying Euler’s transformation (cf. Andrews, Askey, and Roy [3, (2.2.7)])

2F1

(

(r + 1)/2, (r + 1)/2
(r + 2)/2

; t2
)

= (1 − t2)−r/2
2F1

(

1/2, 1/2
(r + 2)/2

; t2
)

and after collecting the remaining factors we arrive at the result. �
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3. Convergence radius

To construct the new vectors in the third step of the algorithm that are used
to linearize the expectation we will make use of the Taylor series expansion of the
inverse of Er. Locally around zero we can expand the function E−1

r as

E−1
r (t) =

∞
∑

k=0

b2k+1t
2k+1,

but in the proof of Lemma 4.1 it will be essential that this expansion be valid for
all t ∈ [−1, 1].

In the case r = 1 we have E−1
1 (t) = sin(π/2t) and here the convergence radius

is even infinity. The case r = 2 was treated by Haagerup and it requires quite
some technical work which we sketch very briefly now. He shows that |bk| ≤ C/k2

for some constant C, independent of k, using tools from complex analysis. Using
Cauchy’s integral formula and after doing some simplifications [18, p. 208] one can
express bk as

bk =
2

πk

∫ α

1

ℑ(E2(z)−k) dz +
2

πk
ℑ
(

∫

C′

α

E2(z)−k dz

)

,

where C′
α is the quarter circle {αeiθ : θ ∈ [0, π/2] }.

For an appropriate choice of α the first integral is in absolute value bounded
above by C/k and the second integral is in absolute value exponentially small in k.
We refer to the original paper for the details. One key point in the arguments is
the following integral representation of E2 giving an analytic continuation of E2 on
the complex plane slit along the half line (1,∞):

E2(z) =

∫ π/2

0

sin θ arcsin(z sin θ) dθ.

Here, the term arcsin(z sin θ) gives the main contribution in the estimates.
Now we derive a similar representation of Er and using it in Haagerup’s analysis

with obvious changes shows that also for r > 2 we have bk ≤ C/k2 for some constant
C, independent of k.

Lemma 3.1. For r ≥ 2 we have

Er(z) =
2(r − 1)Γ((r + 1)/2)

Γ(1/2)Γ(r/2)

∫ π/2

0

cosr−2 θ sin θ arcsin(z sin θ) dθ.

Proof. Using Euler’s integral representation of the hypergeometric function (cf. An-
drews, Askey, and Roy [3, Theorem 2.2.1]) we can rewrite Er as

Er(z) =
Γ((r + 1)/2)

Γ(1/2)Γ(r/2)

∫ 1

0

(1 − t)(r−1)/2z
√

t(1 − z2t)
dt,

which is valid in the complex plane slit along the half line (1,∞). Using the sub-
stitution t = sin2 θ we get

Er(z) = 2
Γ((r + 1)/2)

Γ(1/2)Γ(r/2)

∫ π/2

0

cosr θz
√

1 − z2 sin2 θ
dθ.
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Now integration by parts and the identity

d

dθ
arcsin(z sin θ) =

z cos θ
√

1 − z2 sin2 θ

gives the result. �

4. Constructing new vectors

In this section we use the Taylor expansion of the inverse of the function Er to
give a precise statement and proof of Lemma 1.2; this is done in Lemma 4.1. For
this we follow Krivine [26], who proved the statement of the lemma in the case of
bipartite graphs. We comment on how his ideas are related to our construction,
which can also deal with nonbipartite graphs, after we prove the lemma.

For the nonbipartite case we need to use the theta number, which is a graph
parameter introduced by Lovász [29]. Let G = (V,E) be a graph. The theta

number of the complement of G, denoted by ϑ(G), is the optimal value of the
following semidefinite program:

ϑ(G) = min
{

λ : Z ∈ R
V ×V
�0 ,

Z(u, u) = λ− 1 for u ∈ V ,

Z(u, v) = −1 for {u, v} ∈ E
}

.

(3)

It is known that the theta number of the complement of G provides a lower bound
for the chromatic number of G. This can be easily seen as follows. Any proper
k-coloring of G defines a mapping of V to the vertices of a (k − 1)-dimensional
regular simplex whose vertices lie in a sphere of radius

√
k − 1: Vertices in the

graph having the same color are sent to the same vertex in the regular simplex and
vertices of different colors are sent to different vertices in the regular simplex. The
Gram matrix of these vectors gives a feasible solution of (3).

Lemma 4.1. Let G = (V,E) be a graph with at least one edge. Given f : V →
S|V |−1, there is a function g : V → S|V |−1 such that whenever u and v are adjacent,

then

Er(g(u) · g(v)) = β(r,G)f(u) · f(v).

The constant β(r,G) is defined as the solution of the equation

∞
∑

k=0

|b2k+1|β(r,G)2k+1 =
1

ϑ(G) − 1
,

where

E−1
r (t) =

∞
∑

k=0

b2k+1t
2k+1.

With this lemma, we can give a proof of Theorem 1.1.

Proof of Theorem 1.1. We combine Lemma 4.1 with the analysis of Algorithm A
from Section 1.4. To compute the table in the theorem, we use the formula

bk =
1

k!ak1

[

dk−1

dtk−1

(

1 +
a2
a1

t + · · · +
ak
a1

tk−1

)−k
]

t=0

,

where ai are the Taylor coefficients of Er (cf. Morse and Feshbach [31, (4.5.13)]). �
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Now we give a proof of the lemma.

Proof of Lemma 4.1. We construct the vectors g(u) ∈ S|V |−1 by constructing vec-
tors R(u) in an infinite-dimensional Hilbert space whose inner product matrix co-
incides with the one of the g(u). We do this in three steps.

In the first step, set H = R|V | and consider the Hilbert space

H =

∞
⊕

k=0

H⊗(2k+1).

For a unit vector x ∈ H , consider the vectors S(x), T (x) ∈ H given componentwise
by

S(x)k =
√

|b2k+1|β(r,G)2k+1x⊗(2k+1)

and

T (x)k = sign(b2k+1)
√

|b2k+1|β(r,G)2k+1x⊗(2k+1).

Then for vectors x, y ∈ S|V |−1 we have

S(x) · T (y) = E−1
r (β(r,G)x · y)

and moreover

S(x) · S(x) = T (x) · T (x) =

∞
∑

k=0

|b2k+1|β(r,G)2k+1 =
1

ϑ(G) − 1
.

In the second step, let λ = ϑ(G), and Z be an optimal solution of (3). We
have λ ≥ 2 since G has at least one edge. Set

A =
(λ− 1)(J + Z)

2λ
and B =

(λ− 1)J − Z

2λ
,

and consider the matrix

U =

(

A B
B A

)

.

By applying a Hadamard transformation

1√
2

(

I I
I −I

)

U
1√
2

(

I I
I −I

)

=

(

A + B 0
0 A−B

)

one sees that U is positive semidefinite, since both A + B and A − B are positive
semidefinite. Define s : V → R2|V | and t : V → R2|V | so that

s(u) · s(v) = t(u) · t(v) = A(u, v) and s(u) · t(v) = B(u, v).

The matrix U is the Gram matrix of the vectors
(

s(u)
)

u∈V
and

(

t(v)
)

v∈V
. It

follows that these maps have the following properties:

(1) s(u) · t(u) = 0 for all u ∈ V ,
(2) s(u) · s(u) = t(u) · t(u) = (ϑ(G) − 1)/2 for all u ∈ V ,
(3) s(u) · s(v) = t(u) · t(v) = 0 whenever {u, v} ∈ E,
(4) s(u) · t(v) = s(v) · t(u) = 1/2 whenever {u, v} ∈ E.

In the third step we combine the previous two. We define the vectors

R(u) = s(u) ⊗ S(f(u)) + t(u) ⊗ T (f(u)).

For adjacent vertices u, v ∈ V we have

R(u) ·R(v) = E−1
r (β(r,G)f(u) · f(v)),
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and moreover the R(u) are unit vectors. Hence, one can use the Cholesky decom-

position of (R(u) ·R(v)) ∈ R
V×V
�0 to define the desired function g : V → S|V |−1. �

We conclude this section with a few remarks on the lemma and its proof:

(1) Krivine proved the statement of the lemma in the case r = 1 and for
bipartite graphs G. Then, ϑ(G) = 2 holds. In this case one has various
simplifications: One only needs the first step of the proof. Also, β(1, G)
can be computed analytically. We have E−1

1 (t) = sin(π/2t) and

∞
∑

k=0

∣

∣

∣

∣

(−1)2k+1 (π/2)2k+1

(2k + 1)!

∣

∣

∣

∣

t2k+1 = sinh(π/2t).

Hence, β(1, G) = 2 arcsinh(1)/π = 2 ln(1 +
√

2)/π.
(2) In the second step one can also work with any feasible solution of the

semidefinite program (3). For instance one can replace ϑ(G) in the lemma
by the chromatic number χ(G) albeit getting a potentially weaker bound.

(3) Alon, Makarychev, Makarychev, and Naor [1] also provide an upper bound
for K(1, G) using the theta number of the complement of G. They show
that

K(1, G) ≤ O(log ϑ(G))

which is much better than our result in the case of large ϑ(G). However,
our bound is favourable when ϑ(G) is small.

(4) Finally, notice that in the first step it was essential that the Taylor expan-
sion of E−1

r has convergence radius of at least one.

5. A refined, dimension-dependent analysis

So far we only compared the two problems SDP∞ and SDPr. One can perform a
refined, dimension-dependent analysis by comparing SDPq and SDPr when q ≥ r.
This is of interest because for instance SDP∞(G,A) = SDP|V |(G,A).

Let K(q 7→ r,G), where q ≥ r, be the least number such that

SDPq(G,A) ≤ K(q 7→ r,G) SDPr(G,A)

for all matrices A : V × V → R. In this section we give an upper bound for K(q 7→
r,G) that depends on q and r. For fixed r, this upper bound will become smaller as q
comes closer to r. Krivine [26] gave such a refined, dimension-dependent analysis
in the bipartite case. Our contribution is that we show that the upper bound for
K(q 7→ r,G) is strictly smaller than the upper bound for K(q + 1 7→ r,G). If

K(∞ → 1, G) = π/(2 ln(1 +
√

2)) in the case of bipartite G, then our result would
imply a conjecture of Brunner, Pironio, Acin, Gisin, Méthot, and Scarani [9]: Two-
outcome measurements are sufficient to test the dimension of any bipartite quantum
system.

Our upper bound comes from the following lemma:

Lemma 5.1. Let G = (V,E) be a graph with at least one edge. Given f : V → Sq−1,

there is a function g : V → S|V |−1 such that whenever u and v are adjacent, then

Er(g(u) · g(v)) = β(q 7→ r,G)f(u) · f(v),

where 0 < β(q 7→ r,G) ≤ 1 is such that β(q 7→ r,G) > β(q + 1 7→ r,G) and β(q 7→
r,G) > β(r,G) for all q ≥ 2.
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So we have the theorem:

Theorem 5.2. Let G = (V,E) be a graph with at least one edge and let q ≥ r ≥ 1
be integers. Then K(q 7→ r,G) ≤ β(q 7→ r,G)−1.

Proof. Combine Lemma 5.1 with Algorithm A from Section 1.4. �

The proof of the lemma uses some basic facts from harmonic analysis, which we
now summarize. For measurable functions f , g : [−1, 1] → R we consider the inner
product

(4) 〈f, g〉n =

∫ 1

−1

f(t)g(t)(1 − t2)(n−3)/2 dt.

We say that a continuous function f : [−1, 1] → R is of positive type for Sn−1 if for

any choice x1, . . . , xN of points in Sn−1 we have that the matrix
(

f(xi ·xj)
)N

i,j=1
is

positive semidefinite. If two continuous functions f , g : [−1, 1] → R are of positive
type for Sn−1, then 〈f, g〉n ≥ 0.

Schoenberg [39] characterized the continuous functions of positive type in terms
of Gegenbauer polynomials. We denote by Pn

k the Gegenbauer polynomial of de-
gree k and parameter (n−2)/2 which is normalized so that Pn

k (1) = 1. Notice that
this normalization is not the one commonly found in the literature.

The Gegenbauer polynomials Pn
0 , Pn

1 , Pn
2 , . . . are pairwise orthogonal with

respect to the inner product (4), and they form a complete orthogonal system for
the space L2([−1, 1]), equipped with the inner product (4).

Schoenberg’s characterization of the functions of positive type is as follows: A
function f : [−1, 1] → R is continuous and of positive type for Sn−1 if and only if

(5) f(t) =

∞
∑

k=0

akP
n
k (t)

for some nonnegative numbers a0, a1, a2, . . . such that
∑∞

k=0 ak converges, in which
case the series in (5) converges absolutely and uniformly in [−1, 1].

A continuous function f : [−1, 1] → R can also be of positive type for spheres of
every dimension. Schoenberg [39] also characterized these functions. They are the
ones that can be decomposed as

f(t) =
∞
∑

k=0

akt
k

for some nonnegative numbers a0, a1, a2, . . . such that
∑∞

k=0 ak converges.
A polynomial in R[x1, . . . , xn] is harmonic if it is homogeneous and vanishes

under the Laplace operator ∆ = ∂2/∂x2
1 + · · · + ∂2/∂x2

n. Harmonic polynomials
are related to Gegenbauer polynomials by the addition formula (see e.g. Andrews,
Askey, and Roy [3, Theorem 9.6.3]): Let Hk be the space of degree k harmonic
polynomials on n variables. Any orthonormal basis of Hk can be scaled so as
to give a basis ek,1, . . . , ek,hk

of Hk for which the following holds: For every u,
v ∈ Sn−1 we have that

Pn
k (u · v) =

hk
∑

i=1

ek,i(u)ek,i(v).
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With this we have all that we need to prove the lemma. We only consider
the bipartite case in the proof in order to simplify the notation and to make the
argument more transparent. One can handle the nonbipartite case exactly in the
same way as in the proof of Lemma 4.1.

Proof of Lemma 5.1. Fix 0 < β ≤ 1 and consider the expansion

E−1
r (βt) =

∞
∑

k=0

gqk(β)P q
k (t),

which converges in the L2 sense. We claim that
∑∞

k=0 |g
q
k(β)| converges for ev-

ery 0 < β ≤ 1, and hence the above expansion converges absolutely and uniformly
for t ∈ [−1, 1].

To see the claim, consider the expansion E−1
r (t) =

∑∞
k=0 bkt

k and recall that
∑∞

k=0 |bk| converges. We may define the function E
−1

r (t) =
∑∞

k=0 |bk|tk, which is
then of positive type for every sphere. So by Schoenberg’s theorem we can write

E
−1

r (t) =

∞
∑

k=0

gqkP
q
k (t)

for nonnegative numbers gqk such that
∑∞

k=0 g
q
k converges. Now notice that

gqk(β) = ‖P q
k ‖−2

q 〈E−1
r (βt), P q

k 〉q = ‖P q
k ‖−2

q

∞
∑

l=0

blβ
l〈tl, P q

k 〉q,

where ‖P q
k ‖q = 〈P q

k , P
q
k 〉

1/2
q . Above, since tl is a function of positive type for every

sphere, we have that 〈tl, P q
k 〉q ≥ 0. But we also have that

gqk = ‖P q
k ‖−2

q 〈E−1

r , P q
k 〉q = ‖P q

k ‖−2
q

∞
∑

l=0

|bl|〈tl, P q
k 〉q,

and we see that |gqk(β)| ≤ gqk for all k ≥ 0 and 0 < β ≤ 1. This finishes the proof of
the claim.

From the claim, it also follows that the function

(6)

∞
∑

k=0

|gqk(β)|

is a continuous function of β.
Now, let β(q 7→ r,G) be the maximum number in (0, 1] that is such that

∞
∑

k=0

|gqk(β(q 7→ r,G))| = 1.

Such a number exists because (6) is continuous as a function of β, being equal to 0
when β = 0 and at least E−1

r (1) = 1 when β = 1.
Consider the Hilbert space

H =

∞
⊕

k=0

R
hk ,

equipped with the Euclidean inner product and where hk is the dimension of Hk,
the space of harmonic polynomials of degree k on q variables. For a vector x ∈ Sq−1,
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consider the vectors S(x) and T (x) ∈ H given componentwise by

S(x)k =
√

|gqk(β(q 7→ r,G))|(ek,1(x), . . . , ek,hk
(x)) and

T (x)k = sign(gqk(β(q 7→ r,G)))
√

|gqk(β(q 7→ r,G))|(ek,1(x), . . . , ek,hk
(x)).

By the addition formula we have that

S(f(u)) · T (f(v)) = E−1
r (β(q 7→ r,G)f(u) · f(v)).

Moreover, we also have that

‖S(f(u))‖2 = ‖T (f(v))‖2 =

∞
∑

k=0

|gqk(β(q 7→ r,G))| = 1,

and so from the Gram matrix of the vectors S(f(u)) and T (f(v)) we may obtain
the function g : V → S|V |−1 as we wanted.

Now we show that β(q 7→ r,G) > β(q + 1 7→ r,G) for all q ≥ 2. To this end,
consider the function

F (β, t) =

∞
∑

k=0

|gq+1
k (β)|P q+1

k (t).

Since
∑∞

k=0 |g
q+1
k (β)| converges, from Schoenberg’s theorem we see that F is a

continuous function of positive type for the sphere Sq. Notice moreover that, by
definition, β(q + 1 7→ r,G) is the maximum number in (0, 1] such that F (β(q + 1 7→
r,G), 1) = 1.

Since F is of positive type for Sq, it is also of positive type for Sq−1, and then
we may write

F (β, t) =
∞
∑

k=0

ak(β)P q
k (t),

and we have that
∑∞

k=0 ak(β(q + 1 7→ r,G)) = 1. We also have the expression

(7) ak(β) = ‖P q
k ‖−2

q 〈F (β, t), P q
k 〉q = ‖P q

k ‖−2
q

∞
∑

l=0

|gq+1
l (β)|〈P q+1

l , P q
k 〉q.

Notice that, since both P q+1
l and P q

k are of positive type for Sq−1, we have that

〈P q+1
l , P q

k 〉q ≥ 0 for all l and k.
Now, from the expansion

E−1
r (βt) =

∞
∑

k=0

gq+1
k (β)P q+1

k (t)

we see that

(8) gqk(β) = ‖P q
k ‖−2

q 〈E−1
r (βt), P q

k 〉q = ‖P q
k ‖−2

q

∞
∑

l=0

gq+1
l (β)〈P q+1

l , P q
k 〉q.

It is not hard to show that E−1
r is not of positive type, and so some of the gq+1

l (β)
must be negative. This, together with (7) and (8), implies that |gqk(β)| < ak(β) for
all 0 < β ≤ 1. So we must have that

∞
∑

k=0

|gqk(β(q + 1 7→ r,G))| <
∞
∑

k=0

ak(β(q + 1 7→ r,G)) = 1,
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and we see that β(q 7→ r,G) > β(q + 1 7→ r,G). In a similar way, one may show
that β(q 7→ r,G) > β(r,G). �
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