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Abstract

A scaling law developed by Amraoui et al. is a powerful technique to estimate the block error probability of finite length
low-density parity-check (LDPC) codes. Solving a system ofdifferential equations called covariance evolution is a method to
obtain the scaling parameter. However, the covariance evolution has not been analytically solved. In this paper, we present the
analytical solution of the covariance evolution for irregular LDPC code ensembles.
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I. I NTRODUCTION

Gallager invented low-density parity-check (LDPC) codes [1]. LDPC codes are linear codes defined by sparse bipartite
graphs, calledTanner graphs. Peeling algorithm(PA) [3], [7] introduced by Luby et al. is a sequential iterative decoding
algorithm for the binary erasure channel (BEC). As PA proceeds, edges and nodes are progressively removed from the original
Tanner graph and the so-calledresidual graphis left at each iteration. The residual graph at each iteration consists of variable
nodes that are still unknown and the check nodes and the edgesconnecting to those variable nodes. The decoding successfully
halts if and only if the residual graph vanishes. It is known that PA and brief propagation (BP) decoder have the same decoding
result.

The scaling lawdeveloped by Amraoui et al. [6] is a powerful technique to estimate the block and bit error probability of
finite length LDPC codes. Letri andlj be random variables representing the number of edges connecting to the check nodes of
degreei and the variable nodes of degreej, respectively, in the residual graph. Then, thescaling parameteris obtained from the
mean and the variance ofr1. The means ofri andlj are determined from a system of differential equations which was derived
and analytically solved by Luby et al. [3]. The covariances of ri and lj also satisfy a system of differential equations called
covariance evolutionwhich was derived by Amraoui et al. [6]. However, the analytical solution of the covariance evolution
has not been known. Therefore, one had to resort to numericalcomputation to solve the covariance evolution.

In [5], Amraoui et al. proposed an alternative way to determine the variance ofr1, though only at the decoding threshold.
Thereby they have given the analytic expression for the scaling parameters without using covariance evolution. They used BP
decoding instead of PA. This method was applied to irregularrepeat-accumulate codes in [9], [10] and to turbo-like codes in
[11] and was extended to binary memoryless symmetric channels in [8].

Denote byξ the total number of edges in the Tanner graph. Letµi be the random variable which is 1 if the edgei conveys
an erasure message from a variable node to a check node, and 0 otherwise, in the BP decoding. The method in [5] analyzed the
random variableM :=

∑ξ
i=1 µi in the BP decoding and derived the analytical expression forthe variance ofM . Finally, they

did make an unproved assumption that the random variabler1−E[r1] in PA is proportional to the random variableM −E[M ]
in BP and under this assumption they have given the analytical solution for the variance ofr1.

However, no such assumption is needed if the covariance evolution is solved analytically. Moreover, we can obtain the
variance ofr1 at any channel erasure probability. In this paper, we present the analytical solution of the covariance evolution
for irregular LDPC code ensembles.

II. PRELIMINARIES

In this section, we recall some basic facts on the finite length analysis of LDPC codes under iterative decoding. We also
introduce some notations used throughout this paper.
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A. Ensemble and Channel Model

In this paper, we consider irregular LDPC code ensembles [2]. An irregular LDPC code ensemble is defined by the set
of bipartite graphs with variable nodes and check nodes. LetL andR be the sets of degrees of variable nodes and check
nodes, respectively. Irregular LDPC code ensembles are characterized with the block lengthn and two polynomials,λ(x) =
∑

i∈L λix
i−1 andρ(x) =

∑

i∈R ρix
i−1, whereλi andρi are the fractions of edges connected to variable nodes and check nodes

of degreei, respectively. The derivatives ofλ(x) andρ(x) areλ′(x) =
∑

i∈L(i− 1)λix
i−2 andρ′(x) =

∑

i∈R(i− 1)ρix
i−2,

respectively.
We assume the transmission over the binary erasure channel (BEC) with channel erasure probabilityǫ.

B. Peeling Algorithm

The peeling algorithm (PA) [3] is a sequential iterative decoding algorithm for BEC. It is know that PA and brief propagation
(BP) decoder have the same decoding result. Aresidual graphat each iteration consists of variable nodes that are still unknown
and the check nodes and the edges connecting to those variable nodes. The decoder proceeds as follows.

a) Initialization: Variable nodes receive the channel outputs. The variable nodes receiving the known values send their
values to the check nodes connected to them. Then the variable nodes sending their values and edges connecting to those
variable nodes are removed from the graph.

b) Iteration: The decoder uniformly chooses a check node of degree one in the residual graph. The chosen check node
sends the value computed from the received values to the adjacent variable node. The variable node propagates this valueto
all adjacent check nodes. The variable node is removed together with its edges.

c) Decision: If the decoder does not find any check nodes of degree one in theresidual graph, then the decoding halts.
If the residual graph is empty, then the decoding succeeds, otherwise it fails.

C. Analysis of Residual Graph

Let t denote the iteration round of PA andξ be the total number of edges in the original graph. We define

τ :=
t

ξ
. (1)

Define a parametery such thatdy/dτ = −1/(ǫλ(y)) andy = 1 at τ = 0. Let lk,t andri,t denote random variables representing
the number of edges connecting to the variable nodes of degree k and the check nodes of degreei, respectively, in the residual
graph at the iteration roundt. Let dc be the maximum degree of check nodes. We defineR̄ := {1, 2, . . . , dc − 1}. We also
define a set of random variables

Dt := {lk,t | k ∈ L} ∪ {rk,t | k ∈ R̄}.
To simplify the notation, we drop the subscriptt. For X ∈ D ∪ {rdc

}, we defineX̄(y) by

X̄(y) :=
E[X ]

ξ
.

For i ∈ L andj ∈ {2, . . . , dc} as the block length tends to infinity, Luby et al. [3] showed that X̄(y) is given by

l̄i(y) = ǫλiy
i,

r̄j(y) =
∑

i∈R

ρi

(

i− 1

j − 1

)

xj x̃i−j ,

r̄1(y) = x(y − 1 + ρ(x̃)),

wherex := ǫλ(y) and x̃ := 1− x. We defineδ(X,Y )(y) by

δ(X,Y )(y) :=
Cov[X,Y ]

ξ
, (X,Y ∈ D),

whereCov[X,Y ] is the covariance ofX andY . To simplify the notation, we dropy. In [4], [6], Amraoui et al. showed that
δ(X,Y ) satisfy the following system of differential equations forirregular LDPC code ensembles as the block length tends to
infinity.

dδ(X,Y )

dy
= − e

y

[

∑

Z∈D

(∂f̂ (X)

∂Z̄
δ(Y,Z) +

∂f̂ (Y )

∂Z̄
δ(X,Z)

)

+f̂ (X,Y )

]

, (2)
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and this system of differential equation is referred to as covariance evolution. LetI{·} be the indicator function which is 1 if
the condition inside the braces is fulfilled and 0 otherwise.Definee(y) :=

∑

i∈L l̄i = xy, x′ := dx
dy

, a :=
∑

i∈L
il̄i
e

= x′y+x
x

and Gj(y) :=
j(r̄j+1−r̄j)

x
. The terms in the covariance evolution are given by the following for k, s ∈ L , i ∈ R̄ and

j ∈ {1, 2, . . . , dc − 2}

∂f̂ (lk)

∂l̄s
=

kl̄k
e2

− I{k=s}
k

e
,

∂f̂ (lk)

∂r̄i
= 0,

∂f̂ (rj)

∂l̄k
= −2a− k − 1

e

Gj

y
,

∂f̂ (rj)

∂r̄i
= j

a− 1

e
(I{i=j+1} − I{i=j}),

∂f̂ (rdc−1)

∂l̄k
= (dc − 1)

a− 1

e
− 2a− k − 1

e

Gdc−1

y
,

∂f̂ (rdc−1)

∂r̄i
= −(dc − 1)

a− 1

e
(1 + I{i=dc−1}),

and fork, s ∈ L and i, j ∈ R̄

f̂ (lk,ls)= ks
l̄k
e
(I{k=s} −

l̄s
e
),

f̂ (lk,ri)= (a− k)
kl̄k
e

Gi

y
,

f̂ (ri,rj)=
x′′x− (x′)2

x2
GiGj

+ij
x′

x2

[

I{i=j}(r̄j+1 + r̄j)− I{i=j+1} r̄i − I{j=i+1} r̄j
]

.

Initial conditions of the covariance evolution are also given by Amraoui et al. [4], [6]. Fori, j ∈ R̄ ∪ {dc} andk, s ∈ L,
the initial conditions of the covariance evolution are derived as follows:

δ(lk,ls)(1) = I{k=s}kλkǫǫ̃,

δ(lk,ri)(1) = −kλkǫǫ̃Gi(1),

δ(ri,rj)(1) = I{i=j}ir̄i(1)− Vi,j(1) + λ′(1)ǫǫ̃Gi(1)Gj(1),

whereǫ̃ := 1− ǫ and

Vi,j(y) :=
∑

s∈R

sρs

(

s− 1

i − 1

)(

s− 1

j − 1

)

xi+j x̃2s−i−j .

D. Scaling Law

Let PB(ǫ, n) be the block error probability under BP decoding for channelerasure probabilityǫ and block lengthn. Threshold
is defined by

ǫ∗ := sup{ǫ ∈ [0, 1] | lim
n→∞

PB(ǫ, n) = 0},

and characterized viadensity evolutionas follows:

ǫ∗ = sup{ǫ ∈ [0, 1] | y > 1− ρ(1− ǫλ(y)), ∀y ∈ (0, 1]}.

The curve of the block error probability for finite length LDPC codes is divided two regions which calledwaterfall region
anderror floor region. In the waterfall region, the block error probability dropsoff steeply as the function of channel erasure
probability. In the error floor region, the block error probability has a gentle slope. Ascaling law is a technique to estimate
the waterfall region. The scaling law is based on the analysis of the residual graphs.

In [6], the block error probabilityPB(n, ǫ) is given by

PB(n, ǫ) = Q
(

√
n(ǫ∗ − ǫ)

α

)

+ o(1),
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whereα is slope scaling parameterdepending on the ensemble and theQ-function is defined by

Q(z) :=
1√
2π

∫ ∞

z

e−
x2

2 dx.

In [6], the slope scaling parameter is derived as

α = −
√

n

ξ

√

δ(r1,r1)
∣

∣

ǫ∗;y∗

(

∂r̄1
∂ǫ

∣

∣

∣

∣

ǫ∗;y∗

)−1

(3)

wherey∗ is the non-zero solution of̄r1(y) = 0 at the threshold (i.e. definey∗ such thaty∗ = 1− ρ(1− ǫ∗λ(y∗))) andξ is the
total number of edges in the original graph.

III. M AIN RESULTS

We show, in the following theorem, the analytical solution of the covariance evolution, for irregular LDPC code ensembles.
The proof shall be given in Section IV.

Theorem 1. Consider transmission over the BEC(ǫ). Let τ be the normalized iteration round of PA as defined in (1). A
parametery is defined bydy/dτ = −1/(ǫλ(y)). For an irregular LDPC code ensemble,i, j ∈ R̄ andk, s ∈ L, in the limit of
the code length, we obtain the following.

δ(lk,ls) = −ksl̄k l̄s
e2

F +
ǫl̄k l̄s
e

[

k(ys − 1) + s(yk − 1)
]

+I{k=s}kl̄k(1− ǫyk), (4)

δ(ls,rj) =
[

F
sl̄s
e

− ǫl̄s(y
s − 1)

](x′

x
Gj − I{j=1}

)

−sl̄s
e
Gj(

F ′ + x

2
− ǫxys), (5)

δ(ri,rj) = −F
(x′

x
Gi − I{i=1}

)(x′

x
Gj − I{j=1}

)

+GiGj

(

F ′x
′

x
−
∑

s∈L

ǫ2sλsy
2s−2 + x2

)

− Vi,j

+
(

I{j=1}Gi + I{i=1}Gj

)[

x(e − x)− F ′ − x

2

]

+I{i=j}ir̄i + I{i=j=1}(e − x)2, (6)

whereF :=
∑

i
λi

i
[ǫ2(yi − 1)2 + ǫ(yi − 1)] andF ′ = dF

dy
= 2

∑

i ǫ
2λiy

2i−1 − (ǫ− ǫ̃)x.

Using Theorem 1, we can obtain the following corollary.

Corollary 1. Let ǫ∗ be the threshold of the ensemble under BP decoding,n be the block length andξ be the total number of
edges in the original graph. For irregular LDPC codes, the slope scaling parameterα is given by

α =
[ρ(x̃∗)2 − ρ(x̃∗2)− x̃∗2ρ′(x̃∗2)

ρ′(x̃∗)2
+

1− 2x∗ρ(x̃∗)

ρ′(x̃∗)

+ x∗2 − ǫ∗2λ(y∗2)− ǫ∗2y∗2λ′(y∗2)
]

1
2

√

n

ξ

1

λ(y∗)
, (7)

wherex∗ := ǫ∗λ(y∗) and x̃∗ := 1− x∗.

Proof: Since r̄1|ǫ∗;y∗ = 0 and ∂r̄1
∂y

∣

∣

∣

ǫ∗;y∗

= 0, we see that1− y∗ = ρ(x̃∗) andρ′(x̃∗)ǫ∗λ′(y∗) = 1. Using those equations,

we have from (6),

δ(r1,r1)
∣

∣

∣ǫ∗;y∗

=x∗2[ρ(x̃∗)2 − x̃∗2ρ′(x̃∗2)− ρ(x̃∗2)]

+x∗2ρ′(x̃∗)[1− 2x∗ρ(x̃∗)]

+(x∗ρ′(x̃∗))2[x∗2 − ǫ∗2λ′(y∗2)y∗2 − ǫ∗2λ(y2∗)].

Recall thatr̄1 = x(y − 1 + ρ(x̃)). We see that

∂r̄1
∂ǫ

∣

∣

∣

∣

ǫ∗;y∗

= −λ(y∗)x∗ρ′(x̃∗).
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From (3), we can obtain (7).

Remark 1. The result of Corollary 1 is the same as the result in [5] for irregular LDPC code ensembles. In particular, for
(dv, dc)-regular LDPC code ensembles we can write

α = ǫ∗

√

dv − 1

dv
(
1

x∗
− 1

y∗
).

IV. L EMMAS AND PROOFS

In this section, we state three lemmas and prove Theorem 1. Section IV-A, IV-B and IV-C give (4), (5) and (6), respectively.

A. Lemma and Proof of (4)

In this section, we give a lemma to prove (4) and we prove (4).
1) Lemma to Prove (4):

Lemma 1. DefineU (lk;ls) := δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2
. For k, s ∈ L, we have the following equations.

∑

k,s∈L

δ(lk,ls)

ks
= ǫǫ̃

∑

i∈L

λi

i
, (8)

2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2

=
(ǫyk − 1

kl̄k
+

ǫys − 1

sl̄s

)

I{k 6=s}, (9)

U (lk;ls) = − ǫyk − 1

kl̄k
+

ǫys − 1

sl̄s

+
2ǫ

e

(yk − 1

k
− ys − 1

s

)

. (10)

Proof: Defineδ(lk,lΣ) =
∑

s∈L δ(lk,ls). From the covariance evolution, we have

dδ(lk,ls)

dy
= −x

(sl̄s
e2

δ(lk,lΣ) +
kl̄k
e2

δ(ls,lΣ) − k + s

e
δ(lk,ls)

)

− xf̂ (lk,ls). (11)

a) Proof of (8): From (11), we have the following equation:

∑

k,s∈L

1

ks

dδ(lk,ls)

dy
= 0.

From initial conditions, we have
∑

k,s∈L

1

ks
δ(lk,ls) = ǫǫ̃

∑

i∈L

λi

i
.

This leads to (8).
b) Proof of (9): Obviously we can get (9) fork = s. From (11), we have

d

dy

(δ(lk,ls)

ksl̄k l̄s

)

=
1

ksl̄k l̄s

dδ(lk,ls)

dy
− k + s

ksl̄k l̄sy
δ(lk,ls)

= −x
( f̂ (lk,ls)

ksl̄k l̄s
+

δ(lk,lΣ)

kl̄ke2
+

δ(ls,lΣ)

sl̄se2

)

. (12)

From those equations, we have

d

dy

(

2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2

)

= −2
xf̂ (lk,ls)

ksl̄k l̄s
+

xf̂ (lk,lk)

k2 l̄2k
+

xf̂ (ls,ls)

s2 l̄2s

=
1

y

( 1

l̄k
+

1

l̄s

)

,
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for j 6= k. This differential equation can be solve as follow:

2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2
= − 1

kl̄k
− 1

sl̄s
+ C,

with a constantC which can be determined from initial conditions. From initial conditions, we get

C =
1

kλk

+
1

sλs

.

Thus we have fork 6= s

2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2
=
ǫyk − 1

kl̄k
+

ǫys − 1

sl̄s
.

This leads to (9).
c) Proof of (10): From (9), we have for allk, s ∈ L

δ(lk,ls) =
[sl̄s
2
(ǫyk − 1) +

kl̄k
2

(ǫys − 1)
]

I{k 6=s}

+
sl̄s

2kl̄k
δ(lk,lk) +

kl̄k

2sl̄s
δ(ls,ls).

The sum of this equation fors ∈ L is written as follows

δ(lk,lΣ) =
ae

2
(ǫyk − 1) +

kl̄k
2

∑

s∈L

(ǫys − 1)− kl̄k(ǫy
k − 1)

+
ae

2kl̄k
δ(lk,lk) + kl̄k

∑

s∈L

δ(ls,ls)

2sl̄s
.

Combining (12) with this equation, we have

d

dy

(δ(lk,lk)

(kl̄k)2

)

= K(lk,lk) − x

e2

∑

s∈L

(ǫys − 1)− x

e2

∑

s∈L

δ(ls,ls)

sl̄s

− a

y

δ(lk,lk)

(kl̄k)2
,

where

K(lk,lk) := −x
f̂ (lk,lk)

(kl̄k)2
− a

kl̄ky
(ǫyk − 1) +

2

ey
(ǫyk − 1).

From this equation, we have

dU (lk;ls)

dy
=K(lk,lk) −K(ls,ls) − a

y
U (lk;ls). (13)

Note that
∫

a

y
dy = log xy.

Since (13) is a first order differential equation, it can be solved as follows:

U (lk;ls) =
1

e

∫

e
(

K(lk,lk) −K(ls,ls)
)

dy +
1

e
C,

with a constantC which is determined from initial conditions. Note that
∫

eK(lk,lk)dy

=

∫

[

−x′y + x

kλk

+
x′y − (k − 1)x

kl̄k
+ 2ǫyk−1 − 1

y

]

dy

= − e

kλk

+
∑

i∈L

l̄i

kl̄k
I{i6=k} +

2ǫ

k
yk − log y.
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We get

U (lk;ls) =− ǫyk − 1

kl̄k
+

ǫys − 1

sl̄s

+
1

e

(2ǫyk − 1

k
− 2ǫys − 1

s
+ C

)

.

From initial conditions, we haveU (lk;ls)(1) = ǫ̃
ǫ

(

1
kλk

− 1
sλs

)

andC = 1−2ǫ
k

− 1−2ǫ
s

. Therefore we have

U (lk;ls) =
1− ǫyk

kl̄k
− 1− ǫys

sl̄s
+

2ǫ

e

(yk − 1

k
− ys − 1

s

)

.

This leads (10).
2) Proof of (4): By definition ofU (lk;ls), we have

l̄kδ
(ls,ls) = (sl̄s)

2
(δ(lk,lk)

k2 l̄k
− l̄kU

(lk;ls)
)

.

The sum of this equation fork ∈ L is written as follows:

eδ(ls,ls) = (sl̄s)
2
∑

k∈L

(δ(lk,lk)

k2 l̄k
− l̄kU

(lk;ls)
)

. (14)

From (9), we see that for allk, s ∈ L
1

2

l̄s

k2 l̄k
δ(lk,lk) +

1

2

l̄k

s2 l̄s
δ(ls,ls)

=
1

ks
δ(lk,ls) − 1

2
l̄s
ǫyk − 1

k
I{k 6=s} −

1

2
l̄k
ǫys − 1

s
I{k 6=s}.

The sum over this equation fork, s ∈ L is written as follows:

e
∑

k∈L

δ(lk,lk)

k2 l̄k
=
∑

k,s∈L

δ(lk,ls)

ks
+
∑

k∈L

(l̄k − e)
ǫyk − 1

k
. (15)

Combining (15) with (8), we have

∑

k∈L

δ(lk,lk)

k2 l̄k
=

ǫǫ̃

e

∑

k∈L

λk

k
+
∑

k∈L

l̄k − e

e

ǫyk − 1

k
. (16)

From (10), we have
∑

k∈L

l̄kU
(lk,ls) =

e

sl̄s
(ǫys − 1)− 2ǫ

ys − 1

s

−
∑

k∈L

ǫyk − 1

k
+

2ǫ

e

∑

k∈L

l̄k(y
k − 1)

k
. (17)

Combining (14) with (16) and (17), we obtain

δ(ls,ls) = − (sl̄s)
2

e2
F + 2ǫ

sl̄2s
e
(ys − 1) + sl̄s(1− ǫys).

From this equation and (9), we can obtain (4) fork, s ∈ L.

B. Lemma and Proof of (5)

In this section, we introduce a lemma to prove (5) and we prove(5).
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1) Lemma to Prove (5):

Lemma 2. DefineA(lΣ,rj) :=
∑

i∈L
1
i
δ(li,rj), A(lΣ,rΣ) :=

∑

j∈R̄ A(lΣ,rj), S(li,ls;rj) := 1
il̄i
δ(li,rj) − 1

sl̄s
δ(ls,rj), S(li,ls;rΣ) :=

∑

j∈R̄ S(li,ls;rj) andGΣ :=
∑

j∈R̄ Gj =
dcr̄dc−e

x
. For j ∈ R̄ andk, s ∈ L, we have the following equations.

A(lΣ,rΣ) = ǫǫ̃
∑

i∈L

λi

i
(yi − 1)(GΣ

x′

x
− 1)− ǫ̃xGΣ, (18)

A(lΣ,rj) = ǫǫ̃
∑

i∈L

λi

i
(yi − 1)(Gj

x′

x
− I{j=1})− ǫ̃xGj , (19)

S(lk,ls;rΣ) = −ǫ
(

GΣ
x′

x
− 1
)(yk − 1

k
− ys − 1

s

)

+ ǫGΣ(y
k−1 − ys−1), (20)

S(lk,ls;rj) = −ǫ
(

Gj

x′

x
− I{j=1}

)(yk − 1

k
− ys − 1

s

)

+ ǫGj(y
k−1 − ys−1). (21)

We use (18) and (20) to prove the basis of the mathematical induction in proof of (19) and (21), respectively.
Proof: First, we will derive differential equations. We defineδ(lΣ,rj) :=

∑

k∈L δ(lk,rj), δ(lk,rΣ) :=
∑

j∈R̄ δ(lk,rj) and
δ(lk,rdc ) := δ(lk,lΣ) − δ(lk,rΣ), respectively. From the covariance evolution (2), we can write for j ∈ R̄ andk ∈ L

dδ(lk,rj)

dy
= D(lk,rj) − kl̄k

ey
δ(lΣ,rj) +

k

y
δ(lk,rj)

− j
x′

x
(δ(lk,rj+1) − δ(lk,rj)), (22)

where

D(lk,rj) := 2
x′

e
Gjδ

(lk,lΣ) − Gj

y2

∑

i∈L

(i − 1)δ(lk,li)

− xf̂ (lk,rj).

We defineA(lΣ,rj) :=
∑

k∈L
1
k
δ(lk,rj), A(lΣ,rΣ) :=

∑

j∈R̄ A(lΣ,rj) andD(lk,rΣ) :=
∑

j∈R̄ D(lk,rj). From (22), we have for
k ∈ R̄

dA(lΣ,rj)

dy
=
∑

k∈L

D(lk,rj)

k
− j

x′

x

(

A(lΣ,rj+1) −A(lΣ,rj)
)

. (23)

The sum over this equation forj ∈ R̄ is written as the follows:

dA(lΣ,rΣ)

dy
=
∑

k∈L

D(lk,rΣ)

k
− (dc − 1)

x′

x

∑

k∈L

1

k
δ(lk,lΣ)

+ dc
x′

x
A(lΣ,rΣ). (24)

From (22), we see that

d

dy

(δ(lk,rj)

kl̄k

)

=
D(lk,rj)

kl̄k
− 1

ey
δ(lΣ,rj)

− j
x′

x

δ(lk,rj+1) − δ(lk,rj)

kl̄k
. (25)

DefineS(lk,ls;rj) := δ
(lk,rj)

kl̄k
− δ

(ls,rj)

sl̄s
, S(lk,ls;li) := δ(lk,li)

kl̄k
− δ(ls,li)

sl̄s
andS(lk,ls;lΣ) := δ(lk,lΣ)

kl̄k
− δ(ls,lΣ)

sl̄s
. From (25), we have

dS(lk,ls;rj)

dy
=

D(lk,rj)

kl̄k
− D(ls,rj)

sl̄s

− j
x′

x

(

S(lk,ls;rj+1) − S(lk,ls;rj)
)

, (26)

for k, s ∈ L andj ∈ R̄. The sum over this equation forj ∈ R̄ is written as the follows:

dS(lk,ls;rΣ)

dy
=

D(lk,rΣ)

kl̄k
− D(ls,rΣ)

sl̄s
− (dc − 1)

x′

x
S(lk,ls;lΣ)

+ dc
x′

x
S(lk,ls;rΣ). (27)
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a) Proof of (18): Since (24) is a first order differential equation, it can be solve as follows1:

A(lΣ,rΣ)

= xdc

∫

1

xdc

[

∑

k∈L

D(lk,rΣ)

k
− (dc − 1)

x′

x

∑

k∈L

δ(lk,lΣ)

k

]

dy

+ Cxdc

= ǫǫ̃
∑

k∈L

λk

k
(yk − 1)

(

GΣ
x′

x
− 1
)

+ ǫ̃xy + Cxdc ,

with a constantC which is determined initial conditions. From initial conditions, we see that

A(lΣ,rΣ)(1) =ǫǫ̃(1− dcρdc
ǫdc−1).

From this equation, we can determineC = −dcρdc
ǫ̃. Thus, we get

A(lΣ,rΣ) = ǫǫ̃
∑

k∈L

λk

k
(yk − 1)

(

GΣ
x′

x
− 1
)

− ǫ̃xGΣ.

Hence, we have (18).
b) Proof of (19): Since (23) is a first order differential equation, it can be solve as follows:

A(lΣ,rj) = xj

∫

1

xj

(

∑

k∈L

D(lk,rj)

k
− j

x′

x
A(lΣ,rj+1)

)

dy

+ ClΣ,rjx
j , (28)

with a constantClΣ,rj which can be determined from initial conditions.
We solve (28) by mathematical induction forj ∈ {2, 3, . . . , dc − 1}. From (18), we have

A(lΣ,rdc ) = ǫǫ̃
∑

i∈L

λi

i
(yi − 1)

x′

x
Gdc

− ǫ̃xGdc

whereGdc
= − dcr̄dc

x
. Using the same method in the induction step, we can show thatA(lΣ,rdc−1) fulfill (19).

We show that ifA(lΣ,rj+1) fulfill (19), then alsoA(lΣ,rj) fulfill (19). Using the induction hypothesis, we have

∑

k∈L

D(lk,rj)

k
− j

x′

x
A(lΣ,rj+1)

= −j
(x′)2

x2
ǫǫ̃
∑

i∈L

λi

i
(yi − 1)Gj+1 + jx′Gj+1 ǫ̃

+ x′Gj ǫ̃ +Gjǫǫ̃
∑

i∈L

λi

i
(yi − 1)(

x′′

x
− 2

(x′)2

x2
).

Using integration by parts, we have
∫

1

xj
Gjǫǫ̃

∑

i∈L

λi

i
(yi − 1)

x′′

x
dy

= ǫǫ̃
Gj

xj+1

∑

i∈L

λi

i
(yi − 1)x′

− ǫǫ̃

∫

( Gj

xj+1

∑

i∈L

λi

i
(yi − 1)

)′

x′dy. (29)

Note thatG′
j = −j x′

x
Gj+1 + (j − 1)x

′

x
Gj for j ∈ {2, . . . , dc − 1}. From (29), we have

∫

1

xj

[

−ǫǫ̃j
(x′)2

x2
Gj+1

∑

i∈L

λi

i
(yi − 1) +

∑

i∈L

D(li,rj)

i

]

dy

= ǫǫ̃Gj

∑

i∈L

λi

i
(yi − 1)

x′

xj+1
. (30)

1In a way similar to Section IV-B1b, we perform this calculation.
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We get
∫

1

xj
jGj+1x

′ǫ̃dy = − ǫ̃

xj−1
Gj . (31)

From the sum over (30) and (31), we have

xj

∫

1

xj

(

∑

i∈L

D(li,rj)

i
− j

x′

x
A(lΣ,rj+1)

)

dy

= ǫǫ̃
∑

i∈L

λi

i
(yi − 1)Gj

x′

x
− ǫ̃Gjx.

Thus, we have

A(lΣ,rj) = ǫǫ̃
∑

i∈L

λi

i
(yi − 1)Gj

x′

x
− ǫ̃Gjx+ ClΣ,rjx

j .

From initial conditions, we haveA(lΣ,rj)(1) = −ǫǫ̃Gj(1) andClΣ,rj = 0. Hence we obtain

A(lΣ,rj) = ǫǫ̃
∑

i∈L

λi

i
(yi − 1)Gj

x′

x
− ǫ̃Gjx.

This leads to (19) forj ∈ {2, 3, . . . , dc − 1}.
Note thatA(lΣ,r1) = A(lΣ,rΣ) −

∑dc−1
j=2 A(lΣ,rj). We have

A(lΣ,r1) = ǫǫ̃
∑

i∈L

λi

i
(yi − 1)

(

G1
x′

x
− 1
)

− ǫ̃G1x.

Hence we obtain (19).
c) Proof of (20): Since (27) is a first order differential equation, it can be solve as follows:

S(lk,ls;rΣ) = xdc

∫

1

xdc

[D(lk,rΣ)

kl̄k
− D(ls,rΣ)

sl̄s

− (dc − 1)
x′

x
S(lk,ls;lΣ)

]

dy + Cxdc .

Note that

D(lk,rΣ)

kl̄k
− D(ls,rΣ)

sl̄s
− (dc − 1)

x′

x
S(lk,ls;lΣ)

= K(lk,rΣ) −K(ls,rΣ),

where

K(lk,rΣ)

:= ǫGΣ

[

−2
x′

e
yk + (k − 1)yk−2 +

2(x′)2 − x′′x

x2

yk − 1

k

]

+ (dc − 1)
x′

x
ǫ
(

yk − x′y + x

x

yk − 1

k

)

.

Note that

xdc

∫

1

xdc
K(lk,rΣ)dy = −ǫ

(

GΣ
x′

x
− 1
)yk − 1

k
+ ǫGΣy

k−1.

Thus we have

S(lk,ls;rΣ) = − ǫ
(

GΣ
x′

x
− 1
)(yk − 1

k
− ys − 1

s

)

+ ǫGΣ(y
k−1 − ys−1) + Cxdc .

From the initial covariance, we haveS(li,ls;rΣ)(1) = 0 andC = 0. This leads to (20).
d) Proof of (21): In a way similar to Section IV-B1b, we can obtain (21).
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2) Proof of (5): From definitions ofS(lk,ls;rj) andA(lΣ,rj), we see that

δ(ls,rj) =
sl̄s
e

(

A(lΣ,rj) −
∑

k∈L

l̄kS
(lk,ls;rj)

)

=
[

F
sl̄s
e

− ǫl̄s(y
s − 1)

](x′

x
Gj − I{j=1}

)

− sl̄s
e
Gj(

F ′ + x

2
− ǫxys).

Thus, we obtain (5).

C. Lemma and Proof of (6)

In this section, we introduce a lemma to prove (6) and we prove(6).
1) Lemma to Prove (6):

Lemma 3. We defineδ(rj ,rΣ) :=
∑

k∈R̄ δ(rj,rk) andδ(rΣ,rΣ) :=
∑

j∈R̄ δ(rj ,rΣ). For j ∈ R̄, we have the following equations.

δ(rΣ,rΣ) = − F
(x′

x
GΣ − 1

)2
+ F ′GΣ

(x′

x
GΣ − 1

)

−G2
Σ

∑

i∈L

iǫ2λiy
2i−2 + d2c r̄

2
dc

− Vdc,dc
, (32)

δ(rj ,rΣ) = − F
(x′

x
GΣ − 1

)(x′

x
Gj − I{j=1}

)

+ F ′Gj

(x′

x
GΣ − 1

)

−GΣGj

∑

i∈L

ǫ2iλiy
2i−2

+ dcr̄dc
xGj + Vj,dc

+
F ′ − x

2

(

Gj − I{j=1}GΣ

)

+ I{j=1}dcr̄dc
(e− x). (33)

We use (32) to prove of the basis for the mathematical induction in proof of (33). Similarly, we use (33) to prove of the
basis for the mathematical induction in proof of (6).

Proof: First, we derive differential equations. We defineδ(ri,rΣ) :=
∑

j∈R̄ δ(ri,rj), δ(rΣ,rΣ) :=
∑

i∈R̄ δ(ri,rΣ) and
δ(rdc ,rj) := δ(lΣ,rj) − δ(rΣ,rj) . From covariance evolution (2), we get

dδ(ri,rj)

dy
= − x′

x

[

iδ(ri+1,rj) + jδ(rj+1,ri) − (i+ j)δ(rj ,ri)
]

+D(ri,rj), (34)

where

D(ri,rj) :=
∑

k∈L

2a− k − 1

y2
(

δ(lk,rj)Gi + δ(lk,ri)Gj

)

− xf̂ (ri,rj).

DefineD(ri,rΣ) :=
∑

j∈L D(ri,rj) andD(rΣ,rΣ) :=
∑

i∈L D(ri,rΣ). For δ(ri,rΣ), we have

dδ(ri,rΣ)

dy
= − x′

x

[

iδ(ri+1,rΣ) − (dc + i)δ(ri,rΣ)
]

− x′

x
(dc − 1)δ(lΣ,ri) +D(ri,rΣ).

The sum over this equation fori ∈ R̄ is written as follows:

dδ(rΣ,rΣ)

dy
= − 2

x′

x

[

(dc − 1)δ(lΣ,rΣ) − dcδ
(rΣ,rΣ)

]

+D(rΣ,rΣ). (35)
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a) Proof of (32): Since (35) is a first order differential equation, it can be solve as follows:

δ(rΣ,rΣ) = x2dc

∫

1

x2dc

[

D(rΣ,rΣ) − 2(dc − 1)
x′

x
δ(lΣ,rΣ)

]

dy

+ x2dcCrΣ,rΣ

= − F
(x′

x
GΣ − 1

)2
+GΣ

(x′

x
GΣ − 1

)

F ′

−G2
Σ

∑

i∈L

iǫ2λiy
2i−2 + CrΣ,rΣx

2dc ,

with a constantCrΣ,rΣ which can be determined from initial conditions. From initial conditions, we have

δ(rΣ,rΣ)(1) = λ′(1)ǫǫ̃(dcρdc
ǫdc−1 − 1)2 + ǫǫ̃

− 2ǫǫ̃dcρdc
ǫdc−1 + dcρdc

ǫdc − dcρdc
ǫ2dc

andCrΣ,rΣ = d2cρ
2
dc

− dcρdc
. Thus we have

δ(rΣ,rΣ) = − F
(x′

x
GΣ − 1

)2
+GΣ

(x′

x
GΣ − 1

)

F ′

−G2
Σ

∑

i∈L

iǫ2λiy
2i−2 + d2cr

2
dc

− Vdc,dc
.

This leads to (32).
b) Proof of (33): In a way similar to Section IV-B1b, we can obtain (33).

2) Proof of (6): (34) can be solve as follows:

δ(ri,rj)

= xi+j

∫

1

xi+j

(

D(ri,rj) − x′

x
iδ(ri+1,rj) − x′

x
jδ(ri,rj+1)

)

dy

+ Cri,rjx
i+j . (36)

This equation can be solved by mathematical induction fori, j ∈ {2, 3, . . . , dc − 1}. Note that from (33)

δ(rj ,rdc)

= GjGdc

[

−F
(x′

x

)2
+ F ′x

′

x
−
∑

s∈L

ǫ2sλsy
2s−2 + x2

]

− Vj,dc
,

for j ∈ {2, 3, . . . , dc − 1}. Using the same method in the induction step, we see thatδ(rdc−1,rdc−1) fulfill (6).
We show that if{δ(ri,rj) | i, j ∈ {2, 3, . . . , dc−1}, i+j = k+1} fulfill (6), then {δ(ri,rj) | i, j ∈ {2, 3, . . . , dc−1}, i+j = k}

fulfill (6). Using the induction hypothesis, we can solve (36)

δ(ri,rj)

= SiSj

[

−F
(x′

x

)2
+ F ′ x

′

x
+ x2 −

∑

s

ǫ2sλsy
2s−2

]

− Vi,j

+ I{i=j}i
∑

s

ρs

(

s− 1

i− 1

)

[

xix̃s−i −
(

s− i

i

)

xi(−x)i
]

+ Cri,rjx
i+j .

From the initial condition, we get

Cri,rj = I{i=j}i
∑

s

ρs

(

s− 1

i− 1

)(

s− i

i

)

(−1)i.

Thus, we have (6) fori, j ∈ {2, . . . , dc − 1}.
Note thatδ(ri,r1) = δ(ri,rΣ) −∑dc−1

j=2 δ(ri,rj). We show thatδ(ri,r1) fulfill (6) for i ∈ R̄. Hence we obtain (6).

V. CONCLUSION

In this paper, we have analytically solved the covariance evolution for irregular LDPC code ensembles. We have also obtained
the slope scaling parameter.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. *, NO. *, JANUARY 20** 13

REFERENCES

[1] R. G. Gallager,Low-density parity-check codes, MIT Press, 1963.
[2] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Improved low-density parity-check codes using irregular graphs,”IEEE Trans. Inform.

Theory, vol. 47, no. 2, pp. 585–598, Feb. 2001.
[3] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann. “Practical loss-resilient codes,” inProc. the 29th annual ACM Symposium

on Theory of Computing,1997, pp. 150-159.
[4] A. Amraoui, A. Montanari, and R. Urbanke, “Finite-length scaling of irregular LDPC code ensembles,” inProc. IEEE Inform. Theory Workshop,Rotorua,

New-Zealand, Aug./Sep. 2005.
[5] A. Amraoui, A. Montanari, and R. Urbanke, “How to find goodfinite-length codes: From art towards science,”Europ. Trans. Telecomm. ,vol. 18,

pp. 491–508, Aug. 2007.
[6] A. Amraoui, A. Montanari, T. Richardson, and R. Urbanke,“Finite-length scaling for iteratively decoded LDPC ensembles,” IEEE Trans. Inform. Theory,

vol. 55, no. 2, pp. 473–498, Feb. 2009.
[7] T. Richardson and R. Urbanke,Modern Coding Theory, Cambridge University Press, 2008.
[8] J. Ezri, A. Montanari, S. Oh, and R. Urbanke, “The Slope Scaling Parameter for General Channels, Decoders, and Ensembles,” in Proc. IEEE Int. Symp.

on Inform. Theory,Toronto, Canada, pp. 1443–1447, Jul. 2008.
[9] H. D. Pfister, “Finite-length analysis of a capacity-achieving ensemble for the binary erasure channel,” inProc. IEEE Inform. Theory Workshop,Rotorua,

New Zealand, pp. 166–170, Sep. 2005.
[10] I. Andriyanova, “Finite-length scaling of repeat-accumulate codes on the BEC,” inProc. 2008 IEEE Int. Zurich Seminar on Communications,Zurich,

Switzerland, pp. 64–67, Mar. 2008.
[11] I. Andriyanova, “Finite-length scaling of turbo-likecode ensembles on the binary erasure channel,”IEEE Journal on Selected Areas in Communications,

vol. 27, no. 6, pp. 918–927, Aug. 2009.


	I Introduction
	II Preliminaries
	II-A Ensemble and Channel Model
	II-B Peeling Algorithm
	II-C Analysis of Residual Graph
	II-D Scaling Law

	III Main Results
	IV Lemmas and Proofs
	IV-A Lemma and Proof of (??)
	IV-A1 Lemma to Prove (??)
	IV-A2 Proof of (??)

	IV-B Lemma and Proof of (??)
	IV-B1 Lemma to Prove (??)
	IV-B2 Proof of (??)

	IV-C Lemma and Proof of (??)
	IV-C1 Lemma to Prove (??)
	IV-C2 Proof of (??)


	V Conclusion
	References

