arXiv:1011.1701v2 [cs.IT] 9 Nov 2010

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. *, NO. *, JANARY 20** 1

Analytical Solution of Covariance Evolution
for Irregular LDPC Codes

Takayuki Nozaki,Student Member, IEEEKenta KasaiMember, IEEEand Kohichi Sakaniwaylember, IEEE

Abstract

A scaling law developed by Amraoui et al. is a powerful tecluei to estimate the block error probability of finite length
low-density parity-check (LDPC) codes. Solving a systendidfierential equations called covariance evolution is ahod to
obtain the scaling parameter. However, the covarianceuggal has not been analytically solved. In this paper, wesgme the
analytical solution of the covariance evolution for irreguLDPC code ensembles.
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I. INTRODUCTION

Gallager invented low-density parity-check (LDPC) codgk LDPC codes are linear codes defined by sparse bipartite
graphs, calledTanner graphsPeeling algorithm(PA) [3], [7] introduced by Luby et al. is a sequential itévatdecoding
algorithm for the binary erasure channel (BEC). As PA prdseedges and nodes are progressively removed from thealrigi
Tanner graph and the so-callezsidual graphis left at each iteration. The residual graph at each itematonsists of variable
nodes that are still unknown and the check nodes and the edgegcting to those variable nodes. The decoding sucdlgssfu
halts if and only if the residual graph vanishes. It is knowattPA and brief propagation (BP) decoder have the same oherod
result.

The scaling lawdeveloped by Amraoui et al.|[6] is a powerful technique taneate the block and bit error probability of
finite length LDPC codes. Lef; and/; be random variables representing the number of edges cimméz the check nodes of
degree and the variable nodes of degrgaespectively, in the residual graph. Then, sitaling parameters obtained from the
mean and the variance of. The means of; andl; are determined from a system of differential equations Wwiwas derived
and analytically solved by Luby et al.|[3]. The covariancés-pand!/; also satisfy a system of differential equations called
covariance evolutionwhich was derived by Amraoui et al.|[6]. However, the analgtisolution of the covariance evolution
has not been known. Therefore, one had to resort to numearaputation to solve the covariance evolution.

In [B], Amraoui et al. proposed an alternative way to detaerthe variance of,, though only at the decoding threshold.
Thereby they have given the analytic expression for thersgglarameters without using covariance evolution. ThesduBP
decoding instead of PA. This method was applied to irregidpeat-accumulate codes In [9], [10] and to turbo-like soite
[11] and was extended to binary memoryless symmetric cHanmg8].

Denote by¢ the total number of edges in the Tanner graph. kebe the random variable which is 1 if the edgeonveys
an erasure message from a variable node to a check node, dher@ise, in the BP decoding. The methodlih [5] analyzed the
random variable\f := Zle 1; in the BP decoding and derived the analytical expressiothi®ariance of\/. Finally, they
did make an unproved assumption that the random variableE[r;] in PA is proportional to the random variahdé — E[M]
in BP and under this assumption they have given the analgatation for the variance of;.

However, no such assumption is needed if the covarianceutiaolis solved analytically. Moreover, we can obtain the
variance ofry at any channel erasure probability. In this paper, we ptebenanalytical solution of the covariance evolution
for irregular LDPC code ensembles.

Il. PRELIMINARIES

In this section, we recall some basic facts on the finite leragtalysis of LDPC codes under iterative decoding. We also
introduce some notations used throughout this paper.
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A. Ensemble and Channel Model

In this paper, we consider irregular LDPC code ensemlblesAR]irregular LDPC code ensemble is defined by the set
of bipartite graphs with variable nodes and check nodes.A end R be the sets of degrees of variable nodes and check
nodes, respectively. Irregular LDPC code ensembles areactasized with the block length and two polynomialsi(z) =
Yiec At andp(z) = 3, . piz !, where); andp; are the fractions of edges connected to variable nodes autk clodes
of degreei, respectively. The derivatives of(z) andp(z) are X' (z) = >, (i — L)Xz~ 2 andp/(z) = 3,5 (i — 1)psa’ =2,
respectively.

We assume the transmission over the binary erasure chaBBE]) (with channel erasure probability

B. Peeling Algorithm

The peeling algorithm (PA) [3] is a sequential iterative aldiog algorithm for BEC. It is know that PA and brief propagat
(BP) decoder have the same decoding resulegidual graphat each iteration consists of variable nodes that are stilhawn
and the check nodes and the edges connecting to those eaniathés. The decoder proceeds as follows.

a) Initialization: Variable nodes receive the channel outputs. The variabliesiceceiving the known values send their
values to the check nodes connected to them. Then the vaneddes sending their values and edges connecting to those
variable nodes are removed from the graph.

b) Iteration: The decoder uniformly chooses a check node of degree onesiretfidual graph. The chosen check node
sends the value computed from the received values to theadjaariable node. The variable node propagates this vwalue
all adjacent check nodes. The variable node is removedhepeitith its edges.

c) Decision: If the decoder does not find any check nodes of degree one iretiidual graph, then the decoding halts.
If the residual graph is empty, then the decoding succedtsywise it fails.

C. Analysis of Residual Graph
Let ¢t denote the iteration round of PA argdbe the total number of edges in the original graph. We define

T = -, (1)

Define a parametey such thatly/dr = —1/(eX(y)) andy = 1 atT = 0. Letl; ; andr; , denote random variables representing
the number of edges connecting to the variable nodes of dégrad the check nodes of degreeespectively, in the residual
graph at the iteration round Let d. be the maximum degree of check nodes. We deRne= {1,2,...,d. — 1}. We also
define a set of random variables

Dt = {lk,t | k S ;C} U {Tk,t | k S R}

To simplify the notation, we drop the subscriptFor X € DU {ry_}, we defineX(y) by

¢ E[X]
X(y) = ——.
(v) ¢
Foric £ andj € {2,...,d.} as the block length tends to infinity, Luby et all [3] showedttK (y) is given by
l_'( ) = eAiy’,

el
i€ER
r(y) =y — 1+ p(7)),
wherez := e\(y) andi := 1 — z. We defines(X:-Y) (y) by
Cov[X,Y]
e
whereCov[X, Y] is the covariance oX andY. To simplify the notation, we drop. In [4], [6], Amraoui et al. showed that

§(XY) satisfy the following system of differential equations fmegular LDPC code ensembles as the block length tends to
infinity.

5V (y) = (X,Y €D),

dsX:Y) e afX) 8f
== 2L sz) o (X,Z)
dy {Z( 07z ) 5 )

+f<X=Y>} , @)
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and this system of differential equation is referred to asadance evolution. Lef(.; be the indicator function which is 1 if
the condition inside the braces is fulfilled and 0 otherwBefinee(y) == 3>, li = zy, o' := Ca=Y = _””y%
and G;(y) := J(”gﬂ The terms in the covariance evolution are given by the Walig for k,s € £ ,7 € R and
je{1,2,...,d. -2}
afls) Kl k
o, e lu=ty

3f(lk) 0
or; -
af(Tj) B 2a—k—1Gj
8l_k N € Y’
af("j) _a—]_
o JT(I{i:jH} = Iii=jy),
af(Tdc—l) B (d 1)@—1 2a—k—1Gd671
o, e e y
af(rdca) a—1
———= —(d. —1) (14 Ifiza,—1})s
and fork,s € £ andi,j € R
R I, I,
(lkJS): k _k Ie _ =
f 5% ( {kjs} o );
f(lkﬂ“i): (a — ]{)%@7
ey
) Mo ()2
[ CO EYE)

X
/

+ij; [Ty (Fia1 +75) = Ijmjay 7 — Ipjmiiny 7).
Initial conditions of the covariance evolution are alsoegivoy Amraoui et al.[[4],[[6]. Foi,j € R U {d.} andk,s € L,
the initial conditions of the covariance evolution are ded as follows:
5(lk,ls)( ) = I{j— sy kA€E,
ST (1) = —kApeeGi(1),
5T (1) = I jyirs (1) — Vi i (1) 4+ N (1)eeGi (1) G5 (1),

1
1

whereé :=1 — ¢ and

s—1 s—1\ . .. o
L. — i+ ~2s—i—
Vii(y) = E Sps<i_1> <j_1>:c Iz 7,

SER

D. Scaling Law

Let Ps(e,n) be the block error probability under BP decoding for chammasure probability and block length:. Threshold
is defined by

€* :=sup{e € [0,1] | 1Lm Pg(e,n) =0},
and characterized vidensity evolutioras follows:
e =sup{e € [0,1] |y >1—p(1 —eX(y)), Yy € (0,1]}.

The curve of the block error probability for finite length LORcodes is divided two regions which callegterfall region
anderror floor region In the waterfall region, the block error probability dropi steeply as the function of channel erasure
probability. In the error floor region, the block error proildy has a gentle slope. Acaling lawis a technique to estimate
the waterfall region. The scaling law is based on the analgkithe residual graphs.

In [6], the block error probabilityPz(n, €) is given by

Pg(n,e) :Q(T_
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where« is slope scaling parametaetepending on the ensemble and thdunction is defined by

Q(z) = \/%/Z e~ da.
In [6], the slope scaling parameter is derived as
—1
<‘9“ ) ®

wherey* is the non-zero solution of; (y) = 0 at the threshold (i.e. defing" such thaty* =1 — p(1 — ¢*A(y*))) and¢ is the
total number of edges in the original graph.

IIl. M AIN RESULTS

We show, in the following theorem, the analytical solutidrtlee covariance evolution, for irregular LDPC code ensesbl
The proof shall be given in SectignllV.

Theorem 1. Consider transmission over the BEL(Let 7 be the normalized iteration round of PA as defined[ih (1). A
parametel is defined bydy/dr = —1/(eA(y)). For an irregular LDPC code ensembilej € R andk, s € £, in the limit of
the code length, we obtain the following.

ksl_kl_s El_kl_s s
6(lk,ls) — e F+ . [kj(y — 1) + S(yk _ 1)]
H s le(1 = ey®), @
) sl
4sm) = [F22 — d(y* —1 ]( Gy —Ijj=1y)
sly, , F'+z s
?GJ(T —exy®), ®)

xl /

TiT5) €
00 = —F(—Gi — Iii=n)) (TG = Ij=1y)
!

+GiGj (F'% - Z 625/\5y28_2 + x2) —Vij

seL
F'—z
+(I{j=1y Gi + L=y Gj) [x(e — 2) — 5 ]
+I{z‘*j}”i + I{i,j,l}(e —z)?, (6)
whereF := 3", 2[2(y' — 1)2 + e(y' — 1)) and F' = 2£ =23~ &2X\9% 71 — (e — &)z

Using Theoreni]l, we can obtain the following corollary.

Corollary 1. Let ¢* be the threshold of the ensemble under BP decodirgg the block length ané be the total number of
edges in the original graph. For irregular LDPC codes, thpesiscaling parameter is given by

{p(iﬁ*)2 — p(T*?) =32/ (2*?) L 1= 207p(@)

a = p/(i'*)z P'(j*)
* * * * * / * % n 1
+ ' = A2 - 2y N ()] EAy)’ X

wherex* := e*A(y*) andz* := 1 — z*.

- Since 7 _ o
Proof: Since r1|€*;y* =0 and o
we have from[(B),

=0, we see thal —y* = p(z*) andp’(z*)e* N (y*) = 1. Using those equations,
€y

T1,T
gl €y

=*?[p(3")* = 32 (&%) — p(@*?)]
+a*2p (@)1 - 227 p(7")]
+(I*p/(57*))2[£6* _ *2/\’(y*2)y*2 _ E*ZA(yQ*)]'
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From [3), we can obtairi 7). [ |

Remark 1. The result of Corollary]l is the same as the result’in [5] foegular LDPC code ensembles. In particular, for
(dy,d.)-regular LDPC code ensembles we can write

L ldy—1,1 1
IV. LEMMAS AND PROOFS
In this section, we state three lemmas and prove TheblemctioBEV-A] [V-Bland[IV-C give (4), [3) and[(6), respectively

A. Lemma and Proof of4)
In this section, we give a lemma to prové (4) and we prove (4).
1) Lemma to Prove (4):

. (Irils) .— 5k k) . §ssls)
Lemma 1. DefineUltxits) .= T~ T

§Ukols) _ i
Z ks = EEZ 77 (8)
k,seL ieL
§Ukts)  seoli)  §Usls)

Qe — — — —
kslels  (Klp)2  (sly)?

. Fork, s € L, we have the following equations.

k s
ey  —1  ey®—1
= = — ) I ikts}s 9
(o T T ©)
Pl eyt -1
et — _ Y~ -
kly, + sls
2 yF -1 y*—1
— — . 10
+ e ( k s ) (10)
Proof: Define§(lx!=) = 3~ . 5(x!). From the covariance evolution, we have
dol:ts) sl, K, k+s
— s stnis) | Bk sais)  F TS <lws>)
i x(ez 5) 4 =25 —5
— g flmls), (11)
a) Proof of [8): From [11), we have the following equation:
1 dé(lk;ls)
k,seL ks dy
From initial conditions, we have
1 Ai
_ (l 7l5) — ¢ e
Z k86 k _662 o
k,seLl €L
This leads to[(8).
b) Proof of [9): Obviously we can gef{9) fok = s. From [11), we have
4Oy 1 s ks
dy * kslyly kslply, dy kslilsy
f(lkvls) §Ukyls) 5(15-,12))
= — _ _ - . 12
I( Folnls | Klpe? T sle? (12)

From those equations, we have
d 25(11@-,15) SUisli)  §sls)
d_y( kslils,  (klp)? (51‘5)2)
If(llmls) :Cf(lk;lk) If(ls;ls)
= —2 — — =
kslyl k207 52[2

1 1
(ﬁJrz)v

1
Y
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for j # k. This differential equation can be solve as follow:

§Ukils) §ksli) §ssle) 1 1
2——— — — - — =—— - —+C,
kslls (klx)? (sls)? klp, sl

with a constantC' which can be determined from initial conditions. From @littonditions, we get

1 1
C=— .
k/\k+8)\5

Thus we have fok # s
§Urils)  §k,li) §sile) eyk -1 ey—1
22— — — - — = —.
kslels  (Klg)?  (sls)? kly sls

This leads to[(9).
c) Proof of [20): From [9), we have for alk,s € £

ls ki,
§mete) = [%(Eyk 1)+ Tk(fys = )] Ihrsy
Si kik
S sWeoli) 4 R s(sils)
* 2kl + 2sls
The sum of this equation for € £ is written as follows

Kl 7
600 = 2 eyt — 1)+ D (ey" = 1) — kluley® = 1)

2
seL
(Is,ls)
A€ sl 4 1, 0%
o0 Tk ; 2sl,
Combining [I2) with this equation, we have
d (5(zk,zk)) 7 . §sls)
- _ = KWele) _ = Z(Eys -1)-= _
2 2
dy \ (kly)? e? =~ e = sl
a §(e:tr)
y (klg)?’
where
f(llmlk) a

K esli) . — _ e
YK Ky

From this equation, we have

lisls
du i) =K Ule) _ prlsids) _ EU(ZMZS)_
dy Y

/ Edy = log zy.
Y

Since [IB) is a first order differential equation, it can bl/ed as follows:

Note that

U Uwils) _1 /e(K(l’“lk) — K(l57ls))dy+ écj

e

with a constant” which is determined from initial conditions. Note that

/eK(l"’l’“)dy

_/[_:v’y—i—x n 2y —(k—1)x
N kA Kl

1
+ 2eyF 7 — —}dy
Y

e

I 2€
e T+ 25 o
T T2 g, Ak Ty sy
€L

(13)
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We get
P11
i) —_ Y _
ki + sl
+l(2eyk—1 _2eys—1+C)
e k S '
From initial conditions, we have/(s!+) (1) = £(5= — 5-) andC = 132 — 122 Therefore we have
U nils) — 1 __eyk 1 __eys 2 (yk -1 _y- 1)
kly, slg e k s '
This leads[(T0). [ |
2) Proof of [3): By definition of U(!*), we have
_ SUrle)
[potlts) = (sl — LUkt
k (s ) ( k21, k )
The sum of this equation fot € £ is written as follows
_ 5(lk ly)
edU=ts) = (sl,)? — — [ Uits) 14
(sl) ,;; o~ kUt) (14)
From [9), we see that for akt,s € £
1 1 1 I
8 §Ukili) 4 — K 5(sls)
2 k21, + 2 521
T o 1- eyt —1 — ey’ —1
:Ed(h )_glsTI{kis}_glk Iipssy-
The sum over this equation fdr, s € £ is written as follows:
§Uksli) 5(lk ls) y _ 1
> Ta — 2 Tl 15)
€L k k,s€L keL
Combining [I5) with[(B), we have
siole) e Ak Iy —eeyt —1
T ek T ' e
keL keL keL
From [10), we have
_ s_q
S Ul = j_ (ey® — 1) — 2¢-
keL Sts 5
-1 2 l -1
_ Z Ey € Z k(y ) (17)
keL keL
. i
— 1)+ sls(1 — ey®).

Combining [I#) with [(I6) and_(17), we obtain
6(ls,ls) (Sl ) 20 B 49 l (
6

From this equation and](9), we can obtdih (4) fos € L

B. Lemma and Proof of {5)
In this section, we introduce a lemma to prokk (5) and we pBye
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1) Lemma to Prove(5):
Lemma 2. Define A=) .=y 15(ori), A”Wz) =Y, A (mry), §llieirs) = Lgltirs) — 1 L5 (erry) | Glislsirs) .=
djer Slilsiri) and Gy, := YierGi = d mc . ForjeR andk s € L, we have the foIIowmg equauons.

o /
At = €3 2y 1)(Gs D 1) e, (18)
€L ¢ z
(Is,r5) - )\i i x' ~
A=) = ey~ — W = DG — — Ij=ny) — &Gy, (19)
€L
/ k S
Uelsirs) — _ (o oy =Ll vy -1
S (G =1)(5 —)
—I—EGz( k—1 ys—l), (20)

k _ s —
§Ukilsirs) = —¢(G; —_I{7 1})(y71_y :

4 eGj( . ys—l). (22)
We use[(IB) and{20) to prove the basis of the mathematicakctiah in proof of [I9) and{21), respectively.
Proof: First, we will derive differential equations. We defia€>s) := 37, _ . 50wra), glirs) .= 37 o 5(ers) and
§Urrac) .= §ll=) _ §(km=) | respectively. From the covariance evolutigh (2), we caitewor j € R andk € £
1 375 T,
dstrs) — pUrri) _ %5(127?“1') + Eé(le)
dy ey Y
A
jx_((g(lwﬁl) — oeri)y, (22)
xr

where
DUksrs) .— Q%ng(lkylz) _ J Z

€L
— g fllemi)
\];Ve %efineA(lz-ﬂ =Y pep 00T, Aller=) = S0 A=) and DUsr=) = 370 DUETS), From [22), we have for
€

dAUs75) D) '
T = T (A —At), (23)
kel

The sum over this equation fgre R is written as the follows:

dA(lE rs) Dksrs) 2 1
_ Z _ 1)_ Z _5(lk7l2)
kel z kel k
+ dC—A(ZE=TE>. (24)
T
From [22), we see that
d (5(““”’)) ~ DUer) §50srs)
dy \ ki B Kl ey
/6(lk’7‘"+1) _ 5(lk,r~)
_ jx— i - ey (25)
k
Def”’]eS(lk;l TJ) 6(%;‘]) _ ¥, S(lk;ls?li) = 6(;:[,: 2 6(1 i) andS lk,ls,l):) 6(%::) _ % From @)’ we have
dS(lk-,ls:,Tj) D(lkvrj) D(lS'rT])
dy  kly sl
/
_ ]% (S(lkvls?rj+1) _ S(lkvlst))’ (26)

for k,s € £ andj € R. The sum over this equation fgre R is written as the follows:
dstolars) _ DUers)  DUers) (d, — 1)$_Is(lk,zs;zz)
dy kly, sl T
/
+ d%sﬂkvlsm. 27)
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a) Proof of [IB): Since [2#) is a first order differential equation, it can bveas followd:

Als,rs)
1 DUk:rs) ! SUksls)

J— dC

—ate [ Y T - - 0T Y Ty

kel kel
+ Cxde

C S Mk 1) (e - 1) + ey + Ot
_ee];?(y - 1)( B~ ) + éxy + Cx

with a constantC' which is determined initial conditions. From initial cotidins, we see that
Al=r2) (1) =e€(1 — depa,et).

From this equation, we can determite= —d.p4 €. Thus, we get
A ' .
All=rs) — eekezﬁ f(yk — 1)(Gg; —1) — éGy.

Hence, we havd (18).
b) Proof of [I9): Since [2B) is a first order differential equation, it can bvsas follows:

oo [ 12

+ Cig 2, (28)

with a constanty,, ., which can be determined from initial conditions.
We solve [2B) by mathematical induction fpre {2,3,...,d. — 1}. From [I18), we have

lk ’I"])

/A(lEvTj+1))dy

i, o /
A(lZ;T‘dC) _ Egz _.(yz o 1)$_Gdc _ ngdc
1 X

icL

whereG,, = — deTae . Using the same method in the induction step, we can showAHat <—1) fulfill (IL9).
We show that |fA(ZE ri+1) fulfill (L9), then alsoAU=73) fulfill (I9). Using the induction hypothesis, we have

DUkr3)
D

kel

-(‘Tl)z ~ Ai i . ~
=i eez T(y —1)Gj41 + j2'Gj11€
€L

—j x_A(lzﬂ“jﬂ)
x

:17” (x/)Q

A,
+a'Gie+ Giee U N Cp:

€L

).

x2

Using integration by parts, we have

1
/ —G, 66 ( 1)x—dy
x
zeﬁ

= €€

.7
I+l
€L

- eé/(xizl Z %(yZ - 1))/x’dy. (29)
ieL

Note thatG’; = —j%/GJurl +(j— 1)%6']» for j € {2,...,d. — 1}. From [29), we have

/ (Ei-] {—Egj(z—/ijH Z %(yl -1+ Z

€L

Disrs)
. }dy

I

= e€G; Z $J+1 (30)

€L

1in a way similar to Sectiof TV-B1b, we perform this calcubati
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We get

1 -
[ siGssay = -6 (31)
From the sum ovef(30) anf(31), we have
l ,Tj
/i ) A(lEvTj+1))dy
X

2
T

y—lG——er

Thus, we have

z
AlUsrs) — egz i (y — 1)G —éGjx + Clg,rj
ieL

From initial conditions, we havel">71)(1) = —eéG;(1) andCy,,,, = 0. Hence we obtain

Xi x!
Alsiri) — g 2t G
eez : (y' —1)Gj - €Gjx
€L
This leads to[(19) foy € {2,3,...,d. —1}.
Note thatA(=m) = Asrs) — 52de t AG=m) We have
~ Aq i ! ~
All=m) = EEZ 7(y - 1)(G1; —1) — &Gy

€L

Hence we obtain (19).

c) Proof of [20): Since [27) is a first order differential equation, it can blvesas follows:

li,r le,r
S(lkJs;T):) _ Idc/ 1 D( ksTS) D( )

,Tdc kl_k Sl_s

—(de— 1= s“kvlsvlw}dy + Cre

Note that
D(lk_””z) B D(ls_’f“z) do— 1)$_/S(lk,ls;lg)
klk Sls ¢ €T
— K(lk,rz) _ K(ls,rz),
where
K(lkﬂ“z)
. x’ k k—2 2(17/)2 —2'r yk 1
=eGy[-2=y + (k= 1)y" 7 + — —]
! y+zyt -1
d. —1)=e(y* — : '
* ) x e(y x k )
Note that
de Uhrs) g a’ Yt —1 1
T o CK d —e(Gg— — 1) - + eGxy
Thus we have
1 y®—1

HES) v yk -
Glislsirs) — e(Gz; = 1)( Lk )

S
+ er(ykfl _ ysfl) + CIdC

From the initial covariance, we haw':!si"=)(1) = 0 andC = 0. This leads to[{20).
d) Proof of [21): In a way similar to Sectioh TV-B1b, we can obtaln{21). [ |
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2) Proof of [5): From definitions ofS(+1+3) and A!=73), we see that

sty — Sls (Auz,rj) = zksak,zs;rj))
¢ kel
/

Lo
= [FZ = duly” = D] (Z6; ~ L)
l, F'+ .
- %Gj( T exy®).

Thus, we obtain[{5).

C. Lemma and Proof of [6)
In this section, we introduce a lemma to prolk (6) and we p(6ye
1) Lemma to Prove (6):

Lemma 3. We defines"s">) := 7, 5 605m) and (=) .= 3. 5 §(mm=). For j € R, we have the following equations.

, /
§lrssrs) — F(%GE — 1)2 + F/Gg(%GE - 1)

— G} Ny T+ A2 — Vi, a,, (32)
€L

- x’ x’
o) = — F(=Go =1)(ZG; = =)

/
+ FIGj (%GZ - 1) - GEG]' Z 62i)\iy2i_2
icL
/

F —
+dcra,xGj + Vja, + Tx (Gj - I{jzl}GZ)

+ I{j=1ydcTa (e — ). (33)
We use [(3R) to prove of the basis for the mathematical indodt proof of [38). Similarly, we usd (83) to prove of the
basis for the mathematical induction in proof bf (6).
Proof: First, we derive differential equations. We defig =) := 37 5 §(rors), glr=r=) .= 37 2 5(er=) and
§(rac:mi) .= §l=ri) — §(r=75) | From covariance evolutiof](2), we get

Ti,Tj /
dé(d ) - _r [i&(TiJrlvTj) +j§(7'j+lxri) — (i _,_j)(g(mm)}
Y T
+ Drirs), (34)
where
2a — k —1

prirs) .— PGS e U R ep

Skl )

— g flrimi),

Define D(-r=) .= 7. . D7) and Dr=r=) .= 37, Dre=), For §(rm=), we have
(i)

[igrirrr=) — (d +4)5(re=)]

ZC/
dy T
x

_ _(dc _ 1)6(l>:77“1:) + p(rirs)
X

~

The sum over this equation farc R is written as follows:
d(s(Tz;,T‘E) 7/
—— = —2—[(d. — 1)§"=m=) — g §(r=re)

+ Dlr=r=), (35)
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a) Proof of [32): Since [3b) is a first order differential equation, it can blveas follows:

T T 1 T T :CI T
§lrsurs) — x2dc/ > [D( s,rs) _ 2(dc _ 1)2502, E)}dy

z2de
+ :172‘160,02_,TE
/ /
= —F(ZGy -1’ +Gu(5Gy —1)F
X X
- GQE Z ieQ/\ini*Q + Crz,rzxzdcv
el
with a constanC,., .,, which can be determined from initial conditions. From m@littonditions, we have
6r=r=) (1) = N (1)eé(depa, et —1)% + ec
— 2€édepa, e’ + depa, et — depa, e

andC,,, ,, = d2p3 — dcpq.. Thus we have

! /
§lr=rs) = F(%Gz -1’ + Gg(%Gg —1)F

-G, Z PNy % 4+ dzr?lc - Vi, .d.-

icL
This leads to[(32).
b) Proof of [33): In a way similar to Sectioh TV-B1b, we can obtaln{33). [ |
2) Proof of [6): (34) can be solve as follows:
§(risrs)
_ xi-i-j/ _1 _ (D(Tiﬂ‘j) _ :C_'M(”H”) _ x_ljg(”ﬂﬂ))dy
xitd T T
+ Cpy ™. (36)
This equation can be solved by mathematical inductiori fore {2,3,...,d. — 1}. Note that from[(3B)
§(rirac)
'\ 2 x' o
=G;Ga [-F(Z) +F'— - D Ay 427

seLl
- ‘/jvdc7

for j € {2,3,...,d. — 1}. Using the same method in the induction step, we seedthiat-1-"4.-1) fulfill (E).
We show that if{§("7) | 4,5 € {2,3,...,d.—1},i+7 = k+1} fulfill (B), then {673 | 4,5 € {2,3,...,d.—1},i+j =k}
fulfill (€). Using the induction hypothesis, we can solie)(36

§(risrs)
x’ x' _
= 8;8; [—F(;)Q +F = 4o =Yl - Vi
- =\ s AW i
+I{i_j}zZps<j_1>[:1::1: - (Si Z>:c (—x)']
+ C”,zj”j.

From the initial condition, we get

) s—1\[(s—1 i
Crir; = I{i—j}lzps(z‘— 1) ( i )(_1) '

Thus, we have[{6) fof,j € {2,...,d. —1}.
Note thats(ri-r1) — §(rirs) _ E‘f;;l 5(rimi)  We show that("+") fulfill (6) for i € R. Hence we obtair{{6).

V. CONCLUSION

In this paper, we have analytically solved the covariancdution for irregular LDPC code ensembles. We have alsoinbta
the slope scaling parameter.
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