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THE PEANO-BAKER SERIES

MICHAEL BAAKE AND ULRIKE SCHLÄGEL

Abstract. This note reviews the Peano-Baker series and its use to solve the general linear

system of ODEs. The account is elementary and self-contained, and is meant as a pedagogic

introduction to this approach, which is well known but usually treated as a folklore result

or as a purely formal tool. Here, a simple convergence result is given, and two examples

illustrate that the series can be used explicitly as well.

1. Introduction

Consider the inhomogeneous linear initial value (or Cauchy) problem

(1) ẋ = Ax+ b, with x(t0) = x0 ,

on some interval I ⊂ R that contains t0, with time-dependent quantities x, A and b. Here,

A(t) denotes a family of matrices and b(t) a vector-valued function, both of dimension d over

R (or over C). For simplicity, we assume A and b to be continuous on I. When [A(t), A(s)] = 0

for all t, s ∈ I (where we use the notation [A,B] = AB −BA), the unique solution of (1) is

(2) x(t) = exp
(

∫ t

t
0

A(τ) dτ
)

(

x0 +

∫ t

t
0

exp
(

−

∫ τ

t
0

A(σ) dσ
)

b(τ) dτ

)

,

which simplifies to x(t) = exp
(∫ t

t
0

A(τ) dτ
)

x0 for the homogeneous case; see [14, Cor. 2.41].

Also, when A(t) = A is constant, one has exp
(∫ t

t
0

A(τ) dτ
)

= e(t−t
0
)A as usual; we refer to [2,

Secs. 11 and 12] for a general exposition.

The solution of (1) is still unique when [A(t), A(s)] 6= 0 for t 6= s, but the solution is then

given by the Peano-Baker series (PBS); see [12, Sec. 16.5], [7, Sec. 7.5] or [4, Sec. 1.3] for

background. This approach goes back to Peano (1888; see [15]), and was further developed

by Baker (1905; see [3]). Baker’s paper also contains a more detailed account of the history

of this approach. The PBS is well-known in principle, but not widely known, and appears

mainly in engineering textbooks; compare [4, 13, 8] for examples. Quite frequently, it is used

in a purely formal manner (without convergence considerations), and it is also sometimes

claimed [17] that it is of little practical use for the solution. However, as one can learn from

the biographical sketches of Delone in [6], one should neither discard analytical tools nor

believe repeated claims without evidence. In fact, when new problems surface, many (old)

tools turn out to be more useful than expected.

It is thus the purpose of this short note to summarise the elementary properties of the

Peano-Baker series and to give a simple and self-contained account. In particular, we do

not restrict ourselves to the abstract fundamental system (or matrix solution), but discuss

its explicit series expansion with convergence. The need for it came up in the context of a
1
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problem in mathematical population genetics; see [18] for details. We add two little examples

to demonstrate that it can be used explicitly as well.

2. Homogeneous case: Volterra equation and convergence

Let ΦA(t; t0) denote the fundamental system of the homogeneous part of (1), which is also

the flow of the linear system. It satisfies the Volterra integral equation

(3) ΦA(t; t0) = 1+

∫ t

t
0

A(τ)ΦA(τ ; t0) dτ , with ΦA(t0; t0) = 1.
By means of a formal Picard iteration, this leads to

(4) ΦA(t; t0) = 1+

∫ t

t
0

A(τ) dτ +

∫ t

t
0

A(τ1)

∫ τ1

t
0

A(τ2) dτ2 dτ1 + . . . = 1+

∞
∑

n=1

In(t),

where

In(t) :=

∫ t

t
0

A(τ1)

∫ τ
1

t
0

A(τ2) · · ·

∫ τ
n−1

t
0

A(τn) dτn · · · dτ2 dτ1.

For convenience, we set I0(t) = 1. By construction, we then have the recursion

(5) In+1(t) =

∫ t

t
0

A(τ)In(τ) dτ

for n ∈ N0. Clearly, In(t0) = δn,01, in line with ΦA(t0; t0) = 1. Eq. (4) is known as the

Peano-Baker series (PBS) in control theory [8, p. 598], see also [9, Sec. IV.5], or as the

series expansion in the context of the time-ordered exponential in physics [11]. The PBS was

recently also extended to the setting of time scales [5].

Let us consider the individual terms of the PBS more closely.

Lemma 1. When A is continuous on I, the matrix functions In are differentiable and satisfy

İn(t) = A(t)In−1(t), for all t ∈ I and n ∈ N.

Proof. Fix n ∈ N, let h be a small number, and consider the difference

In(t+ h) − In(t) =

∫ t+h

t
A(τ)In−1(τ) dτ .

The matrix-valued integrand M := AIn−1 is (component-wise) continuous by assumption.

Consequently, we may employ the mean value theorem for integrals, independently for each

component, which results in 1
h

(

In(t + h) − In(t)
)

=
(

Mi,j(t + ξ
(h)
i,j )
)

1≤i,j≤d
, where all ξ

(h)
i,j ∈

[0, h], though they need not be equal. Still, this implies

lim
h→0

In(t+ h)− In(t)

h
= A(t)In−1(t),

and our claim follows. �

Let us show next (in modern terminology) that the PBS is nicely convergent in our finite-

dimensional setting; compare [12, Sec. 16.5] or [7, Sec. 2.11] for a slighlty different account,

[16] for further results in this direction, and [10, Ch. 4.3] for background on matrix Taylor
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series. We begin by establishing a link to the usual exponential series. In the one-dimensional

case, this is [4, Cor. 1.3.1].

Lemma 2. If A is continuous on the interval I, with [A(t), A(s)] = 0 for all t, s ∈ I, one has

In(t) =
1

n!

(

∫ t

t
0

A(τ) dτ
)n

for all t ∈ I and n ∈ N0. In particular, this applies when A is one-dimensional.

Proof. The claim is obviously true for n = 0 and n = 1. We can now employ induction via

the recursion (5), assuming the validity for some n ∈ N. This gives

In+1(t) =

∫ t

t
0

A(τ1)In(τ1) dτ1 =

∫ t

t
0

A(τ1)
1

n!

(

∫ τ
1

t
0

A(τ) dτ
)n

dτ1 ,

where the integrand on the right hand side can be rewritten as

1

n!
A(τ1)

(

∫ τ
1

t
0

A(τ) dτ
)n

=
1

(n+ 1)!

d

dτ1

(

∫ τ
1

t
0

A(τ) dτ
)(n+1)

.

This step employs the general chain rule, where the assumed commutativity is used. Inserting

this expression into the previous formula completes the induction step by an application of

the fundamental theorem of calculus. �

Remark 1. When [A(t), A(s)] = 0 on I, the PBS (4) reduces to the well-known formula

ΦA(t; t0) =

∞
∑

n=0

1

n!

(

∫ t

t
0

A(τ) dτ
)n

= exp
(

∫ t

t
0

A(τ) dτ
)

as a consequence of Lemma 2; see [14, Sec. 2.3] for a detailed exposition of this case. This

reduction is also mentioned in most of the sources cited so far; compare [4, Cor. 1.3.2].

Remark 2. A closer look at the proof of Lemma 2 shows that the condition [A(t), A(s)] = 0

may be replaced by the slightly weaker assumption that, for all t ∈ I, the matrix A(t)

commutes with the integral
∫ t
t
0

A(τ) dτ .

Also, it should be mentioned that Lemma 2 can alternatively be proved by direct calcula-

tions based on permutations of the integration variables followed by a suitable rearrangement

to cover the integration region [t0, t]
n. When combined with an induction argument, it suffices

to consider the permutations (12 . . . n), (1)(23 . . . n), . . . , (1)(2) . . . (n−1, n). This approach is

slightly more general. As it is also less transparent, we skip further details.

Let now ‖.‖ denote any norm on R
d (or on C

d), and define the compatible matrix norm

as usual by ‖A‖ := sup‖x‖=1 ‖Ax‖. This implies the relations ‖Ax‖ ≤ ‖A‖ · ‖x‖ and, more

importantly, ‖AB‖ ≤ ‖A‖ · ‖B‖.

Theorem 1. If ‖A(t)‖ is locally integrable on the interval I, the series representation (4) of

ΦA(t; t0) is compactly convergent on I in the chosen matrix norm.
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Proof. Let J ⊂ I be compact, with t0 ∈ J . We show that the sequence of partial sums is

Cauchy on J . So, let m,n ∈ N with n > m and consider

∥

∥

∥

n
∑

k=0

Ik(t) −

m
∑

k=0

Ik(t)
∥

∥

∥
=
∥

∥

∥

n
∑

k=m+1

Ik(t)
∥

∥

∥
≤

n
∑

k=m+1

∥

∥Ik
∥

∥

≤

n
∑

k=m+1

∫ t

t
0

∫ τ
1

t
0

· · ·

∫ τ
k−1

t
0

∥

∥A(τ1) · · ·A(τk)
∥

∥ dτk · · · dτ2 dτ1 .

Observing
∥

∥A(τ1) · · ·A(τk)
∥

∥ ≤
∥

∥A(τ1)
∥

∥ · · ·
∥

∥A(τk)
∥

∥, where all
∥

∥A(τi)
∥

∥ are non-negative real

numbers, Lemma 2 implies that the last sum is majorised as

≤

n
∑

k=m+1

1

k!

(

∫ t

t
0

∥

∥A(τ)
∥

∥ dτ
)k

,

which is the corresponding Cauchy estimate for the Taylor series of the ordinary exponential

function on R, evaluated at
∫ t
t
0

∥

∥A(τ)
∥

∥ dτ , which exists for all t ∈ J by assumption. Since this

series converges compactly, our claim follows. �

3. Solution of the inhomogeneous problem

It is now obvious that ΦA(t; t0) solves the homogeneous initial value problem (3). This

follows from a term-wise application of Lemma 1 to the PBS, which is fully justified by

Theorem 1. The determinant of ΦA, which is a Wronskian and thus satisfies Liouville’s

theorem, reads

(6) det
(

ΦA(t; t0)
)

= det
(

ΦA(t0; t0)
)

· exp
(

∫ t

t
0

tr
(

A(τ)
)

dτ
)

= exp
(

∫ t

t
0

tr
(

A(τ)
)

dτ
)

,

which never vanishes; see [2, Prop. 11.4] or [14, Thm. 2.23] for details. This means that ΦA
has full rank and thus indeed constitutes a fundamental system of the homogeneous linear

system.

Since ΦA(t; t0) is the unique solution of (3), the flow property implies the relation

(7) ΦA(t; s)ΦA(s; t0) = ΦA(t; t0),

which, due to ΦA(t; t) = 1, also implies
(

ΦA(t; s)
)−1

= ΦA(s; t). With the usual ‘variation

of constants’ calculation, compare [2, Thm. 11.13], one can now easily derive the following

result.

Theorem 2. Let I be an interval, with t0 ∈ I, A a continuous matrix function on I, and b

also continuous on I. Then, the Cauchy problem (1) has the unique solution

x(t) = ΦA(t; t0)
(

x0 +

∫ t

t
0

ΦA(t0; τ) b(τ) dτ
)

with ΦA given by the PBS (4). When [A(t), A(s)] = 0 for all t, s ∈ I, the formula simplifies

to the explicit expression (2) with ordinary exponentials. �
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4. Examples

Let us demonstrate the explicit applicability of the PBS with two simple examples. Both

can also be solved by other means, but are perhaps still instructive.

Consider the matrix family A(t) = ( 1 t
0 a ) with t ∈ I, t0 = 0, and fixed parameter a. The

matrices commute for a = 1, but not otherwise. One finds

In(t) =

(

tn

n!
tn+1

(n+1)! αn

0 (at)n

n!

)

with αn =

n
∑

ℓ=1

ℓaℓ−1,

so that the PBS gives

ΦA(t; 0) =

(

et f(t)

0 eat

)

with f(t) =
et − eat − (1− a)teat

(1− a)2
.

Note that f(t) simplifies to 1
2t

2et for a = 1, in line with the then simpler ODE system. For

general t0, one finds ΦA(t; t0) = ΦA(t−t0; 0). The PBS differs both from the matrix exponential

and from the Mathias formula for upper triangular matrices; compare [10, Thm. 3.6].

As a second example, consider the ODE system

(

ẋ

ẏ

)

=

(

0 t

a 0

)(

x

y

)

,

which leads to the Airy function via the 2nd order ODE ÿ = at y; see [1, Ch. 10.4] for details.

With α := a1/3, the PBS leads to the formula

ΦA(t; 0) =

(

ġ(αt) 1
α2 ḟ(αt)

α2g(αt) f(αt)

)

with

f(z) =

∞
∑

k=0

3k(13)k
z3k

(3k)!
and g(z) =

∞
∑

k=0

3k(23)k
z3k+1

(3k + 1)!

from [1, Eq. 10.4.3]. Here, (13 )k = 1
3(

1
3 + 1) · · · (13 + k − 1) as usual; see [1, Eq. 6.1.22]. Note

that

ΦA(t; 0)
a→0
−−−→

(

1 t2

2

0 1

)

,

in line with the trivially solvable system for a = 0.
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