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Abstract: Quasi-periodic cocycles with a diophantine frequency and with values in
SL(2,R) are shown to be almost reducible as long as they are close enough to a constant, in
the topology of k times differentiable functions, with k great enough. Almost reducibility
is obtained by analytic approximation after a loss of differentiability which only depends
on the frequency and on the constant part. As in the analytic case, if their fibered rotation
number is diophantine or rational with respect to the frequency, such cocycles are in fact
reducible. This extends Eliasson’s theorem on Schrédinger cocycles to the differentiable
case.

1 Introduction

This work is focused on SL(2,R)-valued quasi-periodic cocycles. We mean by quasi-
periodic cocycle the fundamental solution of a linear system with quasi-periodic coeffi-
cients:

V(t,0) € R x T, %Xt(e) — A0+ ) X(0); XO(0) = Id (1)
where A is continuous on the d-dimensional torus T¢, matrix-valued and w € R? is a
rationally independent vector. In this case we say that X is the cocycle associated to A.
In this paper we will have a particular interest in the case when A is sl(2, R)-valued since
in this case it is possible to compute the fibered rotation number of the cocycle and have
information on the rotational behaviour of the solutions of ().

It is interesting to define an equivalence relation on cocycles as follow: if A, B € C°(T¢, gl(n, C)),

one says that A and B are conjugated in the sense of cocycles, or just conjugated, if there
exists a map Z which is continuous on the torus 2T? = R?/2Z? such that

Vo € 2T, %Z(@ T W)y = A(B)Z(60) — Z(6)B(6) 2)

This kind of conjugation preserves some important dynamical invariants, as we will see
later on. A natural question arises when dealing with a cocycle: can it be conjugated, in
the sense of cocycles, to a system with constant coefficients? When it is so, one says that
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the solution cocycle is reducible. More precisely, a cocycle X solution of (Il is reducible
if (2)) holds for some constant B. In this case we also say that A is reducible to B by Z,
which is equivalent to

V(t,0) € R x 2T, X'(0) = Z(0 + tw) B Z(0) (3)

It is well known since the theory of Floquet that every periodic cocycle (i.e, in the notation
above, when d = 1) is reducible (notice that we have allowed one period doubling in
our definition of reducibility). However, the presence of at least two incommensurable
frequencies in the coefficient of the system gives rise to non-reducible cocycles.

To mend this difficulty, some authors have considered the problem of almost reducibility
of quasi-periodic cocycles. In some topology C, a cocycle is said to be almost reducible if
it can be conjugated, in the sense above, with Z of class C, to another cocycle which is
C-arbitrarily close to a constant cocycle.

Many results about reducibility and almost reducibility of quasi-periodic cocycles have
been obtained in the perturbative case, i.e the case when the vector w satisfies a diophan-
tine condition and () has the following form:

d
EXt(Q) = (A+ F(0+tw)X'(0); X°0)=0 (4)
where the coefficient A+ F'(6+tw) is close enough to a constant, with a closeness condition

related to the diophantine condition on w:

| E fle< e(n, d,w, A) ()
Then, if C stands for some analytic topology, it is known that

e cvery cocycle is almost reducible ([4], [2])

e almost all cocycles are reducible, when considering a generic one-parameter family
([3], [7] completed with [1])

e reducible cocycles are dense ([2])

e in the SO(3)-valued case, also non reducible cocycles are dense ([3]).

In fact, [3] also investigates the link between reducibility and the rotational behaviour of
the solutions, showing that Schrodinger cocycles are reducible if and only if their fibered
rotation number either satisfies a diophantine condition or is rational with respect to w;
this result was extended to general SL(2,R)-valued cocycles in [6].

Here we shall adopt the perturbative framework, but in a finitely differentiable topology,
a framework in which little is yet known. The aim of this work is to show that in the
perturbative regime described by (@) and (), for cocycles which are sufficiently smooth
but finitely differentiable, say C* for some k > ko(d,w, A), and have values in SL(2,R),
all cocycles are almost reducible in a finitely differentiable topology C*~P with a loss of
differentiability D which is independent of the initial regularity k; in fact, we state this
theorem in such a way that it also holds for cocycles with values in other Lie groups. More
precisely, we will prove, for G amongst SL(2,C), SL(2,R),O(n), GL(n,C),U(n), letting
G be its Lie algebra:



Theorem 1.1 Let A € G. There exists ko, D € N such that if k > kg, there exists ¢g > 0
such that if F € C*T%G) and || F |[x< €, then there evist Zy, € C*P(T% G) and
Ay € CFP(T4,G) such that

V0 € T, 0,700(8) = (A+ F(0)) Zucl0) — Zoo(0) Auc(0) (6)
and As is the limit, in C*=P (T4, G), of reducible functions.

Theorem [I.1lis about almost reducibility of differentiable cocycles. It easily implies density
of reducible cocycles near a constant. The reason why it holds for those Lie groups is that
it is based on another theorem which holds for many classical Lie groups (see [2]), but we
can apply it here only when no period doubling is needed, that is to say, in the complex
case or in the 2-dimensional case.

Focusing now on the 2-dimensional case, we will show that given a sl(2, R)-valued
cocycle, if its fibered rotation number satisfies a diophantine condition or is rational with
respect to w, then it is in fact reducible, thus extending Eliasson’s theorem of [3] to the
differentiable case:

Theorem 1.2 Let A € sl(2,R). There exists ko, D € N such that if k > ko and F €
C*(T4, sl(2,R)), there exists g > 0 such that if || F |[x< € and the fibered rotation
number p(A+ F) has the form 2m(m,w), m € Z* or satisfies a diophantine condition with
respect to w:

3k > 0,7 > max(1,d — 1), Ym € Z*\ {0}, | p(A+ F) — 27(m,w) |>

[ m |7

then the cocycle associated to A+ F is reducible in C*~P(T¢, SL(2,R)).

The demonstration of Theorem [Tl relies essentially on a proposition shown in [2], which
was used as an inductive lemma in a KAM scheme to show almost reducibility for some
analytic and Gevrey cocycles. Here, we use it to get a good control on a sequence of
analytic cocycles which, following an idea of Zehnder (|§]), are constructed in such a way
that they approach a given differentiable cocycle. Since they are shown to be conjugated
to something which becomes closer and closer to a constant, one finally gets almost
reducibility for their limit in a topology with a finite loss of differentiability with respect
to the initial topology.

The specificity of SL(2,R), however, is that the eigenvalues of the constant part get closer
to 0 every time that, in the KAM scheme, a resonance is removed. Thus, non reducibility
implies that the fibered rotation number of the limit cocycle cannot be diophantine, and
so, by invariance through conjugation in the sense of cocycles, neither can the fibered
rotation number of the initial cocycle, which gives Theorem [L2 We then easily get an
application to Schrodinger cocycles inspired by [3].



1.1 Definitions and assumptions

Throughout this paper, we will make the following assumption.

Assumption: there exists 0 < k < 1 and 7 > max(1,d — 1) such that

Vm e 74 \ {0}, | (m,w) |>

(7)

The numbers x and 7 will be fixed from now on. This is a diophantine condition on w.
We shall define other types of diophantine conditions, which refer to the vector w.

[m |7

Definition: Let z € R; we say that z is diophantine with respect to w € R? and we
write 2 € DC,, if there exists ' > 0,7' > max(1,d — 1) such that for all m € Z\ {0},

KJ/

| z — 2w (m,w) |> T

(8)

The following diophantine condition is also known as "second Melnikov condition" and
refers to the spectrum of a matrix:

Definition: Let A € gl(n,C) and {ay,...,a,} its spectrum. Let " > 0, N € N; we
say that A has a DCY(k',T) spectrum if

V1 <j k <n,Vm € Z*\ {0},| m |< N =| Im(a;) — Im(ay) — 27{m, w) |>
If A € sl(2,R) with spectrum {£a}, this reduces to

vm € Z%\ {0},| m |< N =| 2Im(a) — 27(m,w) |>

(10)

Definition: We will denote by M, the set of numbers which are rational with respect
to w, i.e

M, = {2r(m,w), m € Z%} (11)
It has a module structure, therefore it is sometimes called the frequency module.
Now we recall the definition of the fibered rotation number of an SL(2, R)-valued cocycle:

Definition: Let A € C*(T% sl(2,R)). We will denote by p(A) and refer to as the
fibered rotation number of the cocycle X associated to A the number

p(A) = Jim - Arg(X'(6)0)

where Arg is the variation of the argument.

Remark:

e This number does not depend on the choice of ¢ (see [3], appendix);
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e If A and B are conjugated in the sense of cocycles, then p(A) = p(B) + (m,w) for
some m € %Zd;

e if A is reducible to B by some function Z, then p(A) coincides with the Floquet
exponent of A i.e the modulus of the imaginary part of the eigenvalues of B (which
is well-defined only modulo %./\/lw)

Notations: The usual operator norm will be denoted by || . ||. In the space C*(T¢, gl(n, C))
of k times differentiable matrix-valued functions on the torus, we will use the norm

| Flle=sup || d"F(9)]]

k' <k;0€Td

For any map Z € C(2T¢, gl(n,C)) we will denote by 8, Z the derivative of Z in the
direction w:

Vo € QTd,awZ<9) = %Z(@ -+ t(,d)|t:0

2 A lemma on analytic cocycles

We first recall a proposition which will be used as inductive step in the proof of Theorem
LIl It was proved in [2] (Proposition 2.14).

Notations: In the following proposition, for » > 0 and any set E, we will denote by
C¥(T?, E) the space of functions which are analytic on a "strip" {z = (z1,...,24) € C%, |
Imz |[<7,...,| Imzg |< r}, 1-periodic in Rezy,...,Rezy and whose restriction on R?
has values in E. The writing C*(2T¢, F) will stand for functions which are analytic on a
strip and E-valued on R?, but only 2-periodic in Re z1, . .., Re 2q4.

The norm in C¥(2T%, gl(n,C)) will be written | . |,.

We shall fix a Lie group G amongst GL(n,C),U(n), SL(2,C), SL(2,R), O(2) and denote
by G its Lie algebra.

To simplify the statements, we shall use the following technical abreviations:

27
R(r,r") = = 80* (3n(n — 1) + 1)° (12)

Proposition 2.1 Let
e A,
o r < i€ [Brr

o A, F € C¥T%G) and U € C*(2T%, G),
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o = \F’|r,

There exists C > 0 depending only on n,d, k, 7 and there exists D € N depending only on
n,d, T such that if

1. A is reducible to A by U,

2.
S = veits (13)
3. W], < (2)730-"") et [T, < (1)),
then there exist
o ¢ c [61‘%(7",7"”)"27 €100]
e 7' € C4 (2T, G),
. X F' € C5(21,G),
e U € C¥(2T¢,G),
o A g
satisfying the following properties:
1. A’ is reducible by W' to A’,
2. |F'n <€,
3. | W]y < (i)i(”*r”) and [¥'~1),n < (i)i(rw”)’
b |JAN] < JA[+ [loge | (:25)";
5. o -
0.2 =(A+ F)2' ~Z(X + F) (14
6. )
|Z' — Id|.» < é ((1 + |r|fi||2,|/10g€|> (1-40r—r") (15)
and so does (Z')~! — Id.
Moreover,

o if G =0(2) oru(n), the same holds with the weaker condition

e<C(r—r"P (16)
instead of ([I3));



e if G =5l(2,C) orsl(2,R), then either W'~V is the identity or || A" ||< K" (r, 7", €)+
€.

The proof of Proposition 2] given in [2] also implies the following:

If A has a DCY (K", 1) spectrum with N = N(r,€) and " = " (r, 7", €), then ¥ = ¥’
By construction, functions ¥ and ¥’ also satisfy the following, in case G = sl(2,R):
If U satisfies:

for all A, A’ € C°(T?, sl(2,R)), 0,V = AV — VA = p(A) = p(A") + 27 (m,w) for some
m € $Z°

then V' satisfies the same property:

for all A, A’ € C°(T%, sl(2,R)), 0,V = AV — VA" = p(A) = p(A’) + 2m(m’, w) for
some m’ € $7°

with m = m' if and only if ¥ = V',

3 Almost reducibility

First we need a numerical lemma;:

Lemma 3.1 Let C > 0,D,k € Nj¢; = ij There exists a ki such that if k > kq, then for
all 7 > 2,

1——2 1
Cli(j +1) | loge; [|7¢; 7070 < 7 (17)
Proof: Equation (I7) is equivalent to
L 2D, L E(1—-—2-) 1
Cli(j + 1)klog j] (3) s (18)
There exists ky such that for all £ > kq,7 > 2,
kP 1
C k < 9 (19)
j(§*3D) 7

so (I7) holds. O

We will now state the main result for G among GL(n,C),U(n), SL(2,C),SL(2,R), O(2).
We shall denote by G the Lie algebra associated to G.

Theorem 3.2 Let A € G. There exists ko, D' € N only depending on n,d, k, 7, A such
that for all k > ko and F € C*(T%,G), there exists ¢y depending only on n,d, k, 7, A, k
such that if || F||x < €0, then there exist



Zy € CFP(T, @),
A, € CHD'(T4,G),

e a sequence (A;);>1 of functions in C*=P (T4, G),
e a sequence (V;);51 of functions in C*P' (T, G),
e a sequence (A;);>1 of elements of G
such that
1. Ay is the limit in C*=P' (T, G) of the sequence A;,
2. the functions A; are reducible to A; by ¥,

3.
0 Zoo(0) = (A+ F(0)) Zoo(0) — Zoo(60) A (0)

Moreover, in the case G = sl(2,R), there exist
e a sequence (M;);>1 of elements of %Zd
e unbounded sequences (N;);>1 and (R;);j>1 of integers
e and a sequence (kj);>1 tending to 0
such that
o for all Ay, Ay € CO(T?, s1(2,R)) and all j,

J
aw\lfj = Al\I/j — \I/jAQ = p(Al) = p(AQ) + 27 Z(Ml,w)

=1

(20)

o cither A; has a DCf,Vj(/@j,T) spectrum, which implies that M; =0 or M;_y =0, or

R;_1N;_1 < M; < N; and in that case o0(A;) C B(0,kj_1);

o | p(Aj11) = (p(A)) +2m(Mj,w)) |< Ky

e if there exists J > 1 such that M; =0 for all j > J, then A+ F is reducible.

In this statement, properties [I, 2 and [3] are sufficient to get Theorem [Tl but the other

properties will be used in the application to SL(2,R)-valued cocycles.

Proof: e By [8], there exists a sequence (F});>1, F; € C¥(T% G) and a universal
j

constant C”, such that

||F; — F||x = 0 when j — 400

|Fjl < C'lIFl
|Fj+1 - F’]|J% < Cﬂ(%)kHF’HIC
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Moreover, this sequence is obtained from F' regardless of its regularity, i.e if & < &’ and
F € C¥, then properties (21 hold with k" instead of k (since F} is the convolution of F
with a map which does not depend on k).

Let C' > 0, D be as in Proposition 2I1 One can assume C' < 1. Recall that these numbers
only depend on n,d, k, T, A. For all r > r’ > 0, let

ey(r,r') = C(r —r")P
For all j > 1, let

1 1

e

Let k1 be as in Lemma [B.1] and let ky > k; be a number depending only on n,d, , 7, A
such that for all j > 2,

¢j = €

¢ <
o <
Assume k > kg and let
¢
& = jk
and
4
o = ——
T+
e First step: Assume that
C
ClNFl <6 =5 (22

(notice that this condition on ||F||x only depends on n,d, k, T, A, k). Then

|F2|% <en<e
therefore, by Proposition 2.1l there exist

o &5 <|F[}"
2

o Zy€ CY(TG),

Ay € C¥(T9,G)

Fy, € C¥(T4,G)

U, € C¥(T, G)

A, €@



such that

1. A, is reducible to Ay by U,

2. | F |§§ €y < 1el,

3. | Uy \%g <Ei,2,>a2, as well as ;!

4. ) )
O0uZo = (A+ Fy)Zy — Zs(Ag + )

5.

| I | < ! : (1 || H)“ | ‘ ‘ | ‘17&2
Zo — Id|: — | — + A og | 5|1 I 1
? 57 C \ay 172l 23

as well as Z; !,

6. and if G = sl(2,R), U, satisfies: for all A, A’ € C°(T?, sl(2,R)),
1
0, Wy = AWy — Wy A" = IM, € §Zd, p(A) = p(A) + 27 (M, w)

Property (24]) implies

1 /4 O
2 1dly < 3 (0 Al oggl) (6

as well as for Z,!. Lemma [3.1] then implies that |Z, — Id|1 <

L 1
3 4’

e Induction step: Let j > 2. Suppose that there exists
e A eg
o U, € C¥(T4G)
o A;€C¥ (T4 G)et F; € C% (T4, G)

J+1 Jj+1
[ ] Zj € C‘L(']I‘d,G),
RS
such that
1. A; is reducible to A; by ¥;

2. [0 | o < |F5

W

. |Zj —]d|j% < E{:ZIL?
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5. if G = sl(2,R), for all A, A’ € C°(T4, sl(2,R)),

1
&J\Ifj = A\I/j—\I/jAl = ElMl, ceey Mj—l S —Zd, p(A/) = p(A)+27T<M1+ . -+Mj_1,w)

2
(27)
6. and
0.Z; = (A+ Fj)Z; — Zj(A; + F) (28)
Then
0.Z; = (A+ Fj1)Z; — Zj(A; + Z7H(Fy — Fj) Z; + F) (29)
and moreover, by (21]),
~7—1 7 n 1 / 4 !
|25 (Fa = F3) 2 + Fj| o, < §€j+1+j_ko||F||k (30)
which implies, by assumption ([22I), that
|Z ( J+1_F)Zj+Fj|#§€;‘+1 (31)

1
so one can apply Proposition 21t denoting & = |Z; ' (Fj.1 — Fy) Z; + F| 1, there exists

o ¢/ < 6100

Jj+1

o Zjy1 € Ci(TdaG)a
72

o Aj+1 S Ci (Td, Q) and Fj+1 S Ci (Td, g)
J+2 T2

o Ujpi € CH(T,Q)

o Aj1 €@
such that
1. Ajyy is reducible by W, to Ajyq,
2. |F +1| 1 < 6g+1 < <€9+1)100 <3 3 ]+2
3o [ Wy [, < () 7 < |Fja _f;ﬁl
4. - - ) )
0uZjir = (Aj+ Z7 (Fys — F))Zj + F)) Zjsr = Zja (Aj + Fia) - (32)
5.

1/ 4 \" N
Z—1dly, < & (o lADlosa] ) @ 33)

J+1
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6. if G = sl(2,R), for all A, A" € C°(T4, sl(2,R)),

1
aw\Ile = A\I]jJrl—\I]jJrlA/ = ElMl, cey M] € §Zd, p(AI) = p(A)+27T<M1+ : —|—MJ, w>

(34)
7. if A; has a DCf,Vj(/@j,T) spectrum, with N; = £ | logé; | and k; = W with
Ry = 4((j + 1)(j + 2))%80%, then U,,; = U,
8. | p(Ajr) — p(Ay) + 2m(Mj,w)) |< 5y
Property (B3]) implies
D \1-aiy
| Zjpr = 1d| 1, < C((G +2)%log &)™ (&) (35)
so by lemma Bl |Z;11 — [d\ L +1)2 Let Zj41 = Z;jZ;+1. Then
j+1
| Zin = 1d| 1, <| Zjpa = 1d |1, + | Zja | 1| 25 —Id|112<zl2 (36)

Property (33)) also implies

Zia = Tdl_y, < C (G + 2P ogg])” (&)

C ((

~ D ,, g
C ((j +2)?| log( j+1>|) (€ pp) 7" (37)
C' k2P

<
< IR (j 4 DHesms 0

e Concluston: So for all 7 > 2, there exist
e 7;,7; € C‘%(T%G),
o A;€C¥ (T4 G) and F; € C* (T%G)
T THT
o U, € CY(T4G),
e A;eg

such that

. Z,=2,...2,
2. A; is reducible to A; by ¥

12



40 < B

7
5. B B B B B
0 Z;j(0) = (A+ Fj(0))Z;(0) — 2;(0)(A;(0) + F;(0)) (38)
6.
|Zj—Td| 1 <15 |27 —1d| 1 <1 (39)
7. and
|Z; —1d| 1, < G 2D jh(ei=1)+3D (40)

Moreover there exists a sequence (M;),>1 of elements of %Zd such that for all 7 > 1,

e if A; has a DCf,Vj(/@j,T) spectrum, with N; = £t | logé; | and k; = with

Rj =4((j +1)(j +2))®80%, then ¥,,; = ¥; and M; = 0;

5
2[BRZN;]"

o for all A, A’ € C°(T4, sl(2,R)),

O (W 1 U5h) = AU, U — 05 UM A = p(A) = p(A') +21(Mj,w)  (41)
and either M; =0 (if and only if ¥; = ¥;,,), or M;_; =0, or

Rj_le_l < Mj < Nj

o | p(Aj1) = p(A) + 2m(Mj, w) [< K.

e Convergence: Now we have to compute the topology in which the sequence (Z;) defined
above is Cauchy. Since

S é/kZD(j + 1)kf(0¢j+1—1)+3D

then for all &’ € N,

1Z; — Zjia||pr < Ca(j + 1)Memn DDk (43)

for some Cj independent of j, so the sequence (Z;) is Cauchy in the C* topology if there
exists an j such that for all j/ > j,

K +1+k(aj—1)+3D <0 (44)
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Let k' = k — 3D — 2. If j' > 4k, then ([@4) holds, therefore (Z;) is Cauchy in the C*
topology.

Let Z. be the limit of (Z;) in the C* topology. Taking the limit in (B8], one gets

0uZoo(0) = (A+ F(0)) Zo(0) — Zoo(6) A (0) (45)
where A, € C¥(T?,G) is the limit in C*¥ (T¢, G) of functions A; such that

o Reducibility: If there exists J > 1 such that V;; = ¥; for all j > J, then, taking
the limit in (46]), one finds a matrix A, satisfying

0,V =AWy — W A
so A is reducible, and therefore A 4+ F is reducible. O

4 Application to the fibered rotation number

Proposition 4.1 Let A € C°(T9 sl(2,R)). There exists k, D' only depending on d, k, T, jl(O)
and ¢ only depending on d, k, 7, A(0), k such that if A € C*(T?, sl(2,R)), if p(A) €
DC,UM, and if || A — /21(0) [:< €0, then the cocycle associated to A is reducible in
C*P(T¢, SL(2,R)).

~

Proof: We shall apply Theorem with A = A(0) and F = A — zfl(()) Let
ko, D' only depending on d, x, 7',/21(0) as in Theorem B.2] k& > ky and ¢y only depend-
ing on d, k,7, A(0),k as in Theorem B2 If || A — A(0) ||s< €0, there exists Zo, €
CFP(T4, SL(2,R)), Ay, € C*P' (T4, 51(2,R)) such that if

00700 = AZ s — ZooAs
and A, is the limit of a sequence of maps (A;) which are reducible to A; by ¥;.

Let (M;), (k;j), (IV;) be sequences as in Theorem .2 We shall proceed by contradiction;
suppose that the cocycle associated to A is not reducible: then there exists a sequence
(J1)i>1 such that for all [, ¥; 1y # U, (i.e Mj, # 0). Now by definition of the sequence
(M), for all j,

-|—27TZ M, w) = p(4;)

j'=1

so we have

| p(A5) = p(Aji1) |=] p(Ajia) — (p(A;) — 21 (M}, w)) < &5

and therefore
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| p(4;

|<ZK’J

/>]

Suppose p(A) € DC,,, then for all m € Z¢\ {0},

| p(A) = 2m(m,w) |>

Ff//

“TmT

for some &', 7’; now there exists M € Z? such that for all m € Z2\ {0},

| P(As) = 2m(m, w) |=[ p(A) — 27 (m — M, w) |
So, for all m € Z4\ {M} and all [ big enough,

jlil /
K
(Ajl)+27rz<Mj/,w +Zli] ,w) |> 1 (47)
i = |m— M |
Now by definition of the sequence (7j;), for all [,
‘ p(Ajz) 27 <szvw> |< K3,
therefore
Ji—1 Ji—1
(Aj,) +2m Z(Mj/,w + Z ki —2m(M;, — ZMj/,w |< 2 Z K (48)
Jj'=1 J'>01 Jj'=1 3>
If one lets
Ji—1
k=23 Ryl My =Y My |+ | M| (49)
3> Jj'=1
then
Ky > 2 k(R Ny = (e = DNjat | M|)7 >0 (50)
3>
and
Ji—1 Ji—1 !
(Aj,)+2m Yy (Mj,w)+ Kj, — M/, w) l
l ]/2 gﬂ l Z ‘ Z]llM/_M|T
(51)

The sequence ] also satisfies

/{l<221@ ZN+|M| < c(iN
j=1

J'Zhn

| M) Z“J <C(]1RQT
j

>0
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where ¢, ¢’ do not depend on I. For [ big enough, (GBIl contradicts (A7) since (M;);>1 is
unbounded and «; tends to 0.

In the case when p(A) is rational with respect to w, since A and A, are conjugated,
p(As) is also rational with respect to w. Therefore, (A7) still holds, with " = k and

7' =7, for M such that p(Aw) = (M,w), so one is led to the same contradiction. [J

Let us now consider the cocycle associated to the Schrodinger equation

LX) = (A + F)X() 52)
where Ay = ( (1] _0)\ ) and F(tw) = ( 8 V%w) ) with V' € C*(T?) with k to be

determined later on.

Theorem 4.2 There exists kg only depending on d, k, T such that if k > ko and if V €
Ck(T?), there exists €y only depending on d,r, T,k such that if || V |[x< €, then the
cocycle which is solution of (B2)) is

e almost reducible for all \,
o reducible for all X such that p(A\ + F) € DC, U M,,.

Proof: e First case: A € [-2,2]. The norm of A, is then bounded independently of
A so it is enough to apply Theorem with A = A, and F as above to deduce almost
reducibility; to infer reducibility if p(Ay + F') € DC,, U M, apply Proposition 1] with
A=A+ F.

>

2 ) X(t), one has

N N[

2

A e

e Second case: | A |[> 2. Letting Y () = <

Y'(1) = (

with

and

~ _V(tw) V (tw)
F(\ tw) = ( _\/2(\{5) \3(\15/5) )
2VA 2V
Thus, one can apply Theorem with A = A()\) and F(tw) = F(\, tw) to get almost
reducibility if V' is bounded in the C* topology by some constant depending only on
d, &, 7, k. One can also apply Proposition BTl with A = A()) + F'(), tw) to get reducibility
in the case when p(A) + F) € DC, U M,, since p(A + F) = p(A(N\) + F(),.)). O
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