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ABSTRACT

The uncertainty in the redshift distributions of galaxies has a significant potential impact on the
cosmological parameter values inferred from multi-band imaging surveys. The accuracy of the photo-
metric redshifts measured in these surveys depends not only on the quality of the flux data, but also
on a number of modeling assumptions that enter into both the training set and SED fitting methods of
photometric redshift estimation. In this work we focus on the latter, considering two types of modeling
uncertainties: uncertainties in the SED template set and uncertainties in the magnitude and type pri-
ors used in a Bayesian photometric redshift estimation method. We find that SED template selection
effects dominate over magnitude prior errors. We introduce a method for parameterizing the resulting
ignorance of the redshift distributions, and for propagating these uncertainties to uncertainties in
cosmological parameters.

1. INTRODUCTION

The surprising discovery of the accelerated expansion
of the universe (Riess et al. 1998; Perlmutter et al. 1999)
has invigorated efforts to determine the history of the ex-
pansion rate to high precision. By providing a greater
understanding of the cosmic acceleration, further ob-
servational input holds exciting prospects for improving
our understanding of the fundamental laws of physics as
well as the fate and possibly the origin of the universe
(Albrecht et al. 2006). Many observational efforts are
aimed at determining the distance-redshift relation via
a variety of distance-dependent signals including the ap-
parent magnitude of supernovae, the angular location of
the acoustic feature in the galaxy number density corre-
lation function, and the amplitudes of tomographic cos-
mic shear power spectra. See Bassett & Hlozek (2009);
Howell et al. (2009); Heavens (2009); Zhan et al. (2009);
Huterer (2010) for recent reviews.
Determining the redshifts associated with these sig-

nals can be challenging. In many cases, due to the large
numbers and the faintness of the objects being used for
distance determinations, we must extract redshift infor-
mation not from spectroscopy, but from photometry in
multiple broad bands (Baum 1962; Connolly et al. 1995).
Redshifts determined from such data are called photo-
metric redshifts, or simply photo-z ’s. Recent work has
emphasized the stringent requirements on the quality of
redshift information needed to avoid significantly degrad-
ing or biasing inferences about the dark energy posited to
explain cosmic acceleration (Fernández-Soto et al. 2002;
Huterer & Takada 2005; Ma et al. 2006; Albrecht et al.
2006; Zhan 2006; Abdalla et al. 2008; Bridle & King
2007; Ma & Bernstein 2008).
Traditional tomographic analysis of photometric data

for cosmic shear and galaxy clustering begins with a sort-
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ing of galaxies into photo-z bins. This binning is a useful
stage of data compression which, if done correctly, leads
to very little loss of information. These bins can be small
in number and hence fairly coarse. As Ma et al. (2006)
have shown (in the context of a low-dimensional dark en-
ergy model and a relatively shallow survey) cosmological
parameter uncertainties do not decrease significantly in
going from five to more photo-z bins. However, signifi-
cant information loss can occur if the redshift probability
distribution for a given galaxy, P (z), is discarded imme-
diately after binning.
The analysis procedure we present here also begins

with a sorting of galaxies. We refer to this sorting process
as ‘collecting’ rather than ‘photo-z binning’ to emphasize
two points: 1) the sorting criterion, (or possibly criteria)
is not restricted to redshift estimates and 2) even if the
sorting is based on a redshift estimate, the distribution of
the collection of galaxies with redshift will extend beyond
the photo-z redshift range used to define the collection.
However the collection is defined, a weak lensing map

and a galaxy count map can then be made for each col-
lection. From these maps, all the auto and cross-power
spectra can then be calculated (Hu 1999), as well as other
summary statistics such as bispectra (Takada & Jain
2004) and shear peak counts (Wang et al. 2009).
The crucial redshift information that we need in or-

der to calculate model predictions for these power spec-
tra (and any other summary statistics) is the redshift
distribution, dN/dz, for each collection (Ma et al. 2006;
Huterer et al. 2006a; Zhan 2006). In this paper, as dis-
cussed in Wittman (2009), we sum individual P (z)’s for
the galaxies in each collection in order to infer the dN/dz
for that collection.
Our estimates of dN/dz are model-dependent. They

depend on assumptions about the distribution of galax-
ies with respect to spectral type, apparent magnitude in
a reference band and redshift. We analytically demon-
strate that, if the modeling assumptions are correct that
go into our dN/dz estimates, then these estimates are
unbiased (Appendix A).
Of course the modeling assumptions can not be per-

fectly correct. Thus a crucial element of our method-

http://arxiv.org/abs/1011.2239v1


2

ology is a treatment of the uncertainty in dN/dz that
arises from uncertainty in the modeling. Our treatment
allows for this uncertainty to be propagated through to
the rest of the data reduction process. The method for
determinining the uncertainty in dN/dz in a way that
can be fully propagated to scientific conclusions is the
chief contribution of this paper.
Past work on propagation of redshift errors through

to the cosmological parameters has typically relied
on highly idealized models for the distribution of the
redshift errors. The redshift distributions considered
are often far simpler than the distributions expected
for real photometric surveys (Ilbert, et al. 2009). For
instance Ma et al. (2006) assume the distribution of
photo-z estimate for given true redshift, P (zph|ztrue),
to be Gaussian, parameterized by a mean and scatter
as a function of redshift. Huterer et al. (2006b) as-
sume that photo-z errors take the form of a bias that
varies with z. In reality, degeneracies in color space
for multiband photometric determination of redshifts
can result in redshift error distributions that are
asymmetrical and multi-peaked, with peaks separated
by ∆z > 1. As demonstrated by a growing body of
research, it is important to take into account these
catastrophic photo-z errors and to add complexity
to the photo-z uncertainty models (Schneider et al.
2006; Amara & Réfrégier 2008; Ma & Bernstein
2008; Sun et al. 2009; Bernstein & Huterer 2010;
Nishizawa et al. 2010; Hearin et al. 2010).
Although sufficiently robust spectroscopic sampling

may reduce the need for modeling assumptions and the
resulting uncertainties, for proposed large-scale future
weak lensing surveys such as LSST, PanSTARRS and
DES, there is much to be gained from using very large
numbers of faint and distant galaxies for the distance de-
terminations. In the case of LSST, several billion galaxies
with i band magnitudes as faint as 25 will be used. It is
very challenging to spectroscopically determine redshifts
for a fair sample of such faint objects. Spectroscopic
samples preferentially contain galaxies with clear spec-
tral features and are therefore biased towards specific
galaxy types. Moreover they are significantly volume
incomplete several magnitudes brighter than the faint
limits of the photometry. In other words, training sets
used to develop photometric model inputs may be un-
representative of the larger galaxy population, resulting
in uncontrolled errors in the photo-z estimation. Thus, a
method for quantifying such modeling uncertainties is an
absolute necessity for understanding the resulting uncer-
tainties in the redshift distributions and the subsequent
uncertainties in the cosmological parameters.
We present here a method for parameterizing the red-

shift error distributions that is completely general and
thus accommodates the existence of catastrophic errors.
The parameterization arises naturally out of the consid-
eration of specific modeling assumptions and data. For
specificity we use the LSST data model (described in § 3)
when giving examples of sensitivity to model assump-
tions.
We show that changes in modeling assumptions result

in variations in the redshift distribution, dN/dz, which
can be captured by principal component analysis (PCA),
where just a few modes are sufficient to represent these
effects. The dN/dz can be reproduced from linear com-

binations of these modes with the weights on each mode
becoming the parameters of the new representation. The
uncertainty on each weight is extracted from the varia-
tions resulting from uncertainties in modeling assump-
tions, and this information is then usable for any like-
lihood analysis into which photo-z uncertainties enter.
These new variables are continuous and lend themselves
to a Fisher matrix or MCMC analysis of the parameter
space.
In § 2 we review Bayesian (model-based) methods for

inferring redshifts from multi-band photometry, and we
introduce principal component analysis as a method for
naturally capturing the modeling uncertainties in pho-
tometric redshift estimation. In § 3 we present a model
demonstrating how uncertainty in the selection of a set
of spectral energy distribution (SED) templates can be
captured by principal component analysis. In § 4 we ex-
plore uncertainties in the type and magnitude distribu-
tions that can be used as priors on photometric redshift
estimates (Beńıtez 2000) and demonstrate again the util-
ity of PCA in parameterization of the modeling uncer-
tainty. In § 5 we relate our results to work that has prop-
agated photo-z uncertainties through to constraints on
dark energy. In § 6 we summarize our findings.

2. INFERRING REDSHIFTS FROM MULTI-BAND
PHOTOMETRY

Our method takes as a starting point a calculation of
the probability distribution of the redshift of an object
given its measured colors and certain modeling assump-
tions. We then present a simple estimator for the redshift
distributions, dN/dz, of collections of such galaxies. For
us, the “collections” will consist of galaxies all in the
same photometric redshift bin. Of course, our model-
ing assumptions may be incorrect. Thus we present a
method for parameterizing the resulting uncertainty in
the dN/dz for each photometric redshift bin. With the
uncertainty in the dN/dz parameterized, and the uncer-
tainty in the parameters specified, the problem is now
well-posed for further propagation of the uncertainty in
the photo-z ’s to uncertainty in the cosmological param-
eters. The following subsections lay out each of these
steps.

2.1. Bayesian Calculation of Redshift Probability
Distributions

Let us consider t to be a variable (or set of variables)
that uniquely specifies the spectral energy distribution of
a galaxy. Then specifying for a galaxy its t, redshift z,
and apparent magnitude in a single reference wavelength
band, m1, is sufficient for determining the fluxes, fλ, in a
set of well-defined bandpasses where λ = 1 we will take to
be the reference band. If we model the measured fluxes
(the data), as due to the true fluxes plus noise terms
fd
λ = fλ + nλ and we assume that the nλ are Gaussian
random variables with mean zero and 〈nλnλ′〉 = σ2

λδλλ′

then

P (fd
λ |t, z,m1, σ

2
λ) =

1

(2π)N/2Πλσλ
exp

[

−
∑

λ

(fd
λ − fλ(t, z,m1))

2

2σ2
λ

]

(1)

We can turn this around, using Bayes’ theorem, to
get an expression for the probability distribution of the
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unknowns t, z andm1 in terms of the knowns, the fd
λ , and

whatever assumptions we care to make, which we shall
call I (for Information). According to Bayes’ theorem,
which follows from axiomatic properties of probability
distributions,

P (t, z,m1|fd
λ , I) = P (fd

λ |t, z,m1, σ
2
λ)

P (t, z,m1|I)
P (fd

λ |I)
. (2)

The probability distribution on the left-hand side is
called the “posterior” distribution (because it is the prob-
ability distribution after we have the data), and the
P (t, z,m1|I) is called the “prior” distribution (because
it is the probability distribution for the parameters prior
to our collection of the data). The prior is where all
our modeling assumptions are encapsulated. The term
in the denominator we can ignore since it has no depen-
dence on the model parameters. While m1 is formally a
measured quantity derived from one of the band fluxes,
it is treated as an unknown here because we want to map
variations in P (z) by perturbing it within its Gaussian
noise distribution.
If we are interested in only the redshift, we can obtain

its (marginal) distribution by integrating over all possible
values of t and m1 so that

P (z) ≡ P (z|fd
λ , I) =

∫

dt

∫

dm1P (t, z,m1|fd
I , I) (3)

where we have written the distribution simply as P (z),
suppressing the dependence on the data and I (model-
ing assumptions) for notational convenience.4 Although
we have ignored the P (fd

λ |I) factor, we can now make
up for that by choosing a normalization factor such that
∫

∞

0
P (z)dz = 1. A number of authors have used Bayes’

theorem in this way to obtain the marginalized probabil-
ity distribution of the redshift (see for instance Beńıtez
2000; Edmondson et al. 2006; Chapin et al. 2004).

2.2. Estimating dN/dz

Often the redshift distribution is reduced to a single
value of redshift, zp, perhaps the highest peak in P (z),
and then this value of z is referred to as a Bayesian photo-
metric redshift estimate. Here we use zp to sort galaxies
into photometric redshift bins (collections) but use all
the information in the P (z) for each galaxy to estimate
dN/dz for the collection.
As various authors have noted (Mandelbaum et al.

2008; Wittman 2009), the use of the full P (z) can im-
prove on the systematic errors in photometric redshift
estimation. Errors in photometric redshifts are often due
to degeneracies in color space. (For instance, when an
object’s spectrum is represented by the fluxes in low res-
olution optical bands, the Lyman break at z ∼ 3 may
be indistinguishable from the 4000Å break at low red-
shift.) Although this might result in a drastically miscal-
culated point estimate redshift (i.e. catastrophic error),
the P (z) for most galaxy types near this redshift is mul-
timodal. Because inference of cosmological parameters
(for instance through weak lensing observations) relies
less on the redshift of specific galaxies and more on the
distribution of galaxies in a collection, the use of the full

4 Recall that t may be representing an array of variables and so
the integration over t may be a multidimensional one.
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Fig. 1.— The blue line is an example of a photometrically calcu-
lated probability distribution for a single galaxy. The true redshift
(the red ‘x’) is at z = 2.6, whereas the P (z) peaks at .2. By assign-
ing non-negligible probability at the true redshift, it can be seen
how the P (z) can be more accurate than a single-point estimate.

P (z) is a vast improvement over point estimates. Con-
sider Fig. 1: the maximum of the P (z) is at low redshift,
whereas the true redshift is near z ∼ 3. In a point es-
timate approach this would be a catastrophic error, but
the full P (z) assigns almost half of the probability to the
galaxy being near its true redshift.
Enumerating the galaxies in a given collection with

index g, we define our estimate for dN/dz in that bin as

dN

dz
(z) =

∑

g

Pg(z). (4)

The estimate is motivated by the fact that the proba-
bility distribution of the redshift of a galaxy drawn at
random from the bin is given by 1

N

∑

g Pg(z) where N
is the number of galaxies in the bin. The Appendix A
proves that this intuitive estimator is not biased as long
as the prior and the likelihood in Equation (2) are known
perfectly.
The advantage to calculating the dN/dz in this way

can be seen in Fig. 2, which shows the dN/dz calculated
for a mock galaxy catalogue of 100, 000 galaxies based on
the 6 spectral types drawn from the Hubble Deep Field
North (HDFN) and used in Beńıtez (2000). A crude
binning of only two redshift bins is used in order to better
demonstrate the effect. (The simulated catalogues we use
are described in more detail in the next section.) The full
P (z) is calculated for each galaxy, and the galaxies are
sorted in two redshift bins based on the peak value (or
point estimate for the photo-z). We compare the actual
value dN/dztrue to the dN/dz calculated from summing
and histogramming the single point photo-z estimates,
dN/dzpeak. The latter necessarily lies within its assigned
bin, thus the dN/dzpeak will always be zero outside of the
bin. This is a major failing of the point estimator method
since the true redshift distribution of galaxies, dN/dztrue,
may have tails that extend to redshifts far outside of the
bin. With the P (z), however, a galaxy placed in a bin
may have probability extending outside the bin, thus the
distribution dN/dzprob can more accurately reflect the
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Fig. 2.— dN/dz for two redshift collections for illustration: top
plot shows bin 1, bottom plot shows bin 2. The blue line shows
the dN/dz estimated by binning and summing the single point
photo-z estimates (the peak values of the P (z)). The circles are
the value of the corresponding dN/dz for the true redshifts. The
dashed black line shows the dN/dz estimated by binning by the
peak value but summing the entire P (z). It can be seen that
dN/dzprob traces much more closely the true distribution than the
distribution derived from the point estimate. (The tendency to
overestimate dN/dz outside the collection’s redshift range is the
result of smoothing during intermediate steps in the data analysis.)

true redshift distribution for the bin.
Despite the use of the full P (z) there are many possi-

ble sources of error in the photo-z estimation that could
still cause us to miscalculate the distribution of galaxies,
dN/dz. These include use of a small number of galax-
ies, mischaracterization of the statistical properties of
the flux noise, and errors in the modeling assumptions
summarized by the prior, P (t, z,m1|I). The latter in-
cludes prior assumptions about galaxy distributions as
a function of type, redshift, magnitude, surface bright-
ness, etc., and also includes the choice of SED templates.
Errors from these modeling assumptions are the central
concern of this paper.

2.3. Parameterizing Modeling Uncertainty

We capture the effect of modeling uncertainty by ex-
plicitly varying the modeling assumptions and seeing how
the dN/dz’s vary in response. We use principal com-
ponent analysis to define functions of z (modes) that
describe the departures from the mean dN/dz. These
modes, together with their amplitudes, define our pa-
rameterization of dN/dz.

We consider two different kinds of variation. In one
procedure we explore effects due to discrete variations
in the SED templates used to generate the photo-z es-
timations. The other procedure is for the case where
parameters governing the prior are not perfectly known,
but are constrained by auxiliary observational data. In
this latter case one can sample from the posterior dis-
tribution of these “prior” parameters, and generate the
dN/dz from this sample.
No matter how one generates the samples of dN/dz,

the PCA is performed as follows. Given a data matrix
comprised of multiple entries for a set of observables,
principal component analysis finds the eigenvalues and
eigenvectors of the covariance matrix for these data. In
this framework we treat the values of dN/dz at discrete
points in redshift space as our set of observables, and
each modeling variation results in small changes in this
set. We start by forming the data matrix η for each
collection

ηiα =

(

dN

dz

)

α

(zi). (5)

Here i indexes the points in z space for which dN/dz is
defined and α runs over the variations. Subtracting the
mean of each row from each element in the row of η, we
have

Diα = ηiα − ηi (6)

where

ηi =
1

m

∑

α

ηiα (7)

and m is the number of variations. The covariance ma-
trix is

C =
1

m− 1
DD

⊺. (8)

Computing the eigenvalues ({λ} and eigenvectors {U},
the first principal component U1 corresponds to the
largest eigenvalue, the second principal component U2

corresponds to the next largest eigenvalue, and so on.
Each data vector (indexed by α) can be written as a
linear combination of the principal components, i.e.

ηiα = ηi +

N
∑

β=1

BαβUiβ (9)

where the weights, Bαβ, are given by the linear transfor-
mation

B = U
⊺η (10)

There are N principal components of length N , where
again, N is the number of discretized values of z. If the
eigenvalues decrease sufficiently quickly from biggest to
smallest, then most of the variation in ηiα is described by
the first few modes. By keeping only the first k modes,
we are able to reduce the dimensionality of the parameter
space. We can reproduce the data via

η′iα = ηi +

k
∑

β=1

BαβUiβ (11)

where η′iα ≃ ηiα for a small value of k if the eigenvalue
spectrum is sufficiently steep.
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The above description was for a single photo-z collec-
tion. It can be repeated for each of the γ = 1, ...nz photo-
z collections; we will distinguish quantities for different
photo-z collections with a superscript γ.
We can now finally define our parameterization of the

redshift distribution as the amplitudes of the modes Uγ
iβ

defined by the above process. We will call these am-
plitudes bγβ and they influence the redshift distributions

ηγi ≡ dN/dzγi via

ηγi = η̄i +

k
∑

β=1

bγβUiβ (12)

Each modeling variation, α, leads to a particular value
of bγβ = Bγ

αβ and we can use these ‘realizations’ to

model the prior distribution of the bγβ , in this lower, k-

dimensional space. The bγβ are not fixed at the discrete
values, but are allowed to vary continuously to describe
the full space of model uncertainty. This distribution
will have zero mean due to the mean removal that occurs
prior to the principal component decomposition. We can
estimate a covariance matrix via

Cγβ,γ′β′ ≡ 〈bγβb
γ′

β′〉 ≃
1

m− 1

m
∑

α=1

Bγ
αβB

γ′

αβ′ . (13)

2.4. Relation to the Estimation of Cosmological
Parameters

For the analysis of cosmic shear data, we assume it
is possible to take a set of model shear power spectra,
Cγν

l and calculate its likelihood, given the shear data.
We further assume that one can take a specification of
cosmological parameters, and a redshift distribution for
each photo-z collection, and use these to calculate the
model Cγν

l . From the power spectra likelihood, any prior
constraints on the cosmological parameters (for exam-
ple from CMB observations), and a prior constraint on
the redshift distribution parameters, one can then form
a joint posterior distribution for the cosmological plus
redshift-distribution parameters:

lnPposterior(θcos)= lnL
(

Cγν
l (θcos, b

γ
β)|shear data

)

+lnPprior(θcos) + lnPprior(b
γ
β) (14)

where
lnPprior(b

γ
β) = bγβC−1

γβ,γ′β′bγ′β′/2 (15)

With the ability to calculate this joint posterior, one
would then be able to explore the constraints on this
parameter space given by the data via Markov Chain
Monte Carlo, for example.

3. EXAMPLE 1: TEMPLATE UNCERTAINTY

One of the potentially largest sources of modeling er-
rors in photometric redshift estimation may come from
the selection of the template set in the SED fitting
method, the technique currently used for deep and faint
redshift surveys. At present, many photo-z codes use
a small number of template spectra from nearby galax-
ies e.g. the popular CWW+SB set (Coleman et al.
1980; Kinney et al. 1996) used in part of our analysis.
Though the SEDs are sometimes ‘tweaked’ to better fit

the data, (e.g. Budavári et al. 2000), expanding be-
yond such simple template sets almost always involves
the use of population synthesis models (Brammer et al.
2008; Ilbert et al. 2009), due to the lack of sizeable num-
bers of high signal-to-noise spectra at high redshift. The
difficulty of spectroscopic followup of faint, high redshift
galaxies means these models may be incomplete and un-
representative of true galaxy evolution. Such biases can
have a significant effect on the photo-z estimations (see
for instance MacDonald & Bernstein 2010). Because the
SED shape for some population of galaxies may evolve,
or a population not represented at low redshifts/high lu-
minosities is present in the deep photometric data, the
choice of template set is an important source of modeling
uncertainty.
There are also convergence issues. Since the photo-z is

a non-linear inverse problem, a small amount of photom-
etry noise will drive a noisy assignment of templates for
each galaxy. The amount of this induced template noise
is a non-linear function of the photometry noise. This
is a general feature of threshold systems: the signal-to-
noise ratio peaks at a small non-zero value of input noise
(Wiesenfeld & Moss 1995). At zero noise the photo-z er-
ror is large and due entirely to errors in the modeling
assumptions, whereas at high noise levels the photo-z er-
ror is large because no template assignment converges.
In this paper we focus on photo-z errors due to errors in
models of SED templates and magnitude and type pri-
ors at constant photometry noise given by the LSST data
model.
To begin to explore the sorts of uncertainties present

in an actual survey with noise and where galaxy types
may be left out or incorrectly modeled, we start by gen-
erating a mock catalog based on 20 SED templates. We
then calculate the photometric redshifts while system-
atically leaving out one each of the SED’s at a time.
When one of the templates is removed, the galaxies in
the catalog matching this SED will be fit to another,
incorrect, SED, creating errors in the photometric red-
shifts and variations in the resulting dN/dz. The result
is a set of 21 distinct photometric redshift estimates for
the galaxies in the catalog, which we can use to develop
a parameterization and model of uncertainty for the red-
shift distribution. (We note that this is just one of the
many ways in which template noise can be examined.)

3.1. Mock Data

To generate our set of templates, we begin with a cata-
logue of galaxies from GOODSN (Giavalisco et al. 2004)
with measured spectroscopic redshifts and seventeen
band photometry, covering U-band to IRAC mid-infrared
wavelengths, available as part of the Photo-z Accu-
racy and Testing (PHAT) program 5 (Hildebrandt et al.
2010). Although there are hundreds of galaxies in the
sample, for tractability we develop a more manageable
set of 20 SED templates that are representative of the
larger dataset.
To derive our template set we use a modified version of

the LRT code from Assef et al. (2008, 2010), which fits
the 17 band data for each galaxy with a non-negative lin-

5 Further information on PHAT, including the dataset used here
is available at: http://www.astro.caltech.edu/twiki phat/bin/view
/Main/WebHome

http://www.astro.caltech.edu/twiki_phat/bin/view
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ear combination of four basis templates (Elliptical, Spi-
ral, Irregular, and AGN) shifted to the measured red-
shift. We eliminate galaxies with a strong AGN com-
ponent, which results in a sample of 375 galaxies, each
described by a linear combination of E, Sbc, and Im tem-
plates. Examination of this reduced three dimensional
space reveals that the galaxies’ coefficients are not signif-
icantly clustered. In order to choose a more manageable,
but still representative, set of templates that spans the
dataset, we run a simple k-means algorithm (MacQueen
1967) to choose 20 sets of coefficients that will comprise
our mock galaxy template set. The resulting templates
are shown in Fig. 3. To facilitate the following step, we
categorize the templates in terms of their dominant mor-
phological type, E, or T1, Sbc or T2 and Im, T3, with the
reddest templates 1 − 6 corresponding to T1, templates
7−13 to T2 and the bluest templates 14−20 correspond-
ing to T3.
We generate magnitudes for the LSST ugrizy filter set,

with depth and error properties expected for the “gold”
sample described in section 3 of the LSST Science Book
(LSST Science Collaborations and LSST Project et al.
2009), which consists of expected full ten year depth
and cut to i < 25.0 magnitude. The 5σ limiting mag-
nitudes in the ugrizy bands are: 26.1, 27.4, 27.5, 26.8,
26.0, 24.8. The “gold” sample galaxies will have S/N
& 20 in multiple filters, which is highly recommended
for meaningful photo-z measurements. We begin by
generating an r -band apparent magnitude that follows
p(m) ∝ 100.37m to approximate a typical number count
distribution. We then choose one of the 20 template
types for each galaxy by Monte Carlo, such that the
morphological types, T1, T2 and T3 are distributed
according to

p(T |m0) = ft exp{−kt(m0 − 20)}. (16)

We then assign via Monte Carlo a redshift to each galaxy,
but such that

p(z|T,m0) ∝ zαt exp{−[
z

zmt
(m0)

]αt} (17)

is satisfied, where zmt
(m0) = z0t + kmt

(m0 − 20), and
T refers to E, Sbc, or Im. The free parameters, ft, kt,
z0t and αt, are fit to a training set of spectroscopically
measured redshifts. We take these to be the values given
in Beńıtez (2000), (listed in Table 1). Given the redshift,
type, and r -band magnitude, the expected magnitudes in
the remaining ugizy bands are assigned appropriately.

TABLE 1
Fiducial parameter values for magnitude priors

Spectral type ft αt z0t kmt kt

E/SO 0.35 2.46 0.431 0.0913 0.450
Sbc,Scd 0.50 1.81 0.390 0.0636 0.147
Irr 0.15 0.91 0.0626 0.123

3.2. Results

With the fiducial catalogue generated, we can begin to
explore how template noise affects the photo-z distribu-
tion. We run the photo-z estimation code BPZ (Beńıtez
2000) to calculate the P (z) for each galaxy in the cata-
logue. We perform 21 iterations – once with the fiducial

Fig. 3.— The 20 LRT SED templates derived from GOODSN
and linear combinations of the Assef basis templates. The galaxies
are further broken into three type classifications which follow the
redshift distributions as parameterized in Table 1.
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tom panels show the residuals for each realization – that is the dif-
ference between the fiducial (all 20) template set and the reduced
(19 only of the 20) template sets, ∆dN/dzi = dN/dzfid − dN/dzi,
for each template set realization.

model, e.g. all 20 SED’s included for the estimation, and
then 20 variations, each realized by leaving out one of
the 20 SED templates.
Each incomplete set of SED’s produces slightly differ-

ent errors in the photo-z estimations, which result in
variations in the dN/dz for each photo-z collection. The
dN/dz is stored as a vector of 134 “microbins” with a
width of .03 from z = 0 to z = 4. Hence the sum,

Nγ =

134
∑

j=1

dN/dzjγ , (18)

returns the total number of galaxies per collection γ,
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and summing over the galaxies in each collection re-
turns the total number of galaxies in the catalog, e.g.
100, 000 =

∑

γ Nγ . In Fig. 4 the dN/dz are shown for
each realization of the templates. The bottom panels
show the residuals, dN/dzi − dN/dzall, where i refers to
a realization where a single template has been left out for
the photo-z estimation. It can be seen that the residuals
are on the order of a few percent when compared to the
dN/dz.
The distribution of galaxies can be described by the

mean and variance of the dN/dzi per collection γ, and
are different for each template set realization. (Note that
the collection index γ has been suppressed for clarity.)

〈z〉i =
∫

dz z dN/dz (19)

and

△i = σ2 =

∫

dz(z − 〈z〉)2dN/dz (20)

where i refers to the specific template choice. We calcu-
late the mean and the standard deviation of the previous
quantities, i.e.

µX =
1

21

21
∑

i=1

(Xi) (21)

σX =

√

√

√

√

1

21

21
∑

i=1

(Xi −X)2 (22)

where X refers to either the mean or the variance of each
variation. These values are shown in Fig. 5. (To keep
the axes on the same scale, we actually plot the average
offset for the bin, µ<z> − zcenter.)
The spread in the means is typically on the order of

10−3, although for collection 4 it is larger. This reflects
the difficulties in calculating photometric redshifts for the
redshift range of collection 4, 2.4 < z < 3.2 Specifically,
the Lyman break at z ∼ 3 is easily confused with the the
4000Å at low redshift. (This is the cause of the low red-
shift “bump” in the dN/dz in bin 4 seen in Fig. 4.) This
effect is even more apparent in the standard deviation
of the variance for collection 4. The variance is sensitive
to probability moving into and out of outlying redshift
“islands”. To a lesser extent, this effect is also visible
in the spread of the variance for collection 1. The effect
is smaller, however, due to the large numbers of bright
galaxies that also populate collection 1. (Note the asym-
metry of this degeneracy, which makes this effect more
pronounced in the higher redshift bins: bright objects
are unmistakably at low redshift, whereas faint objects
may either be low redshift intrinsically faint galaxies or
high redshift intrinsically bright galaxies.)
We calculate the principal components of the dN/dz

due to the variations of the template sets. The fraction
of the variance captured by a given mode i is λα

∑

i λi,
where λi is an eigenvalue of the covariance matrix corre-
sponding to the ith mode. It is difficult to assign a phys-
ical interpretation to the modes themselves, which show
a complex and data-dependent structure. The modes
will be a function of the methodology used to vary in-
put model, e.g. we could have chosen to leave out 2
templates at a time and the modes returned would have
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Fig. 5.— LRT set: Top panel shows the average of the bias,
µ<z>−zcenter , where zcenter is the center of the redshift collection.
(This is essentially a plot of the average of the means, but the
subtraction of the collection center allows the scale of top and
bottom plots to be the same.) The standard deviation (spread) in
the bias is plotted as error bars, where for visibility we multiply
by a factor of 10: σ × 10. The bottom panel shows the average
variance, µ∆, and the standard deviation in the variance is plotted
as error bars. For visibility we multiply by a factor of 10: σ × 10.
The large error bars in collections 4 and 5 show the effects of the
degeneracies present in faint galaxies at low redshift.

shown a different structure; however, they will always
represent the “directions” in the data, rank-ordered by
the amount of variance captured. As an example, the
first three modes of collection 4 are plotted in Fig. 6.
Some features of the underlying data can be seen in the
modes. The high amplitude of the modes at low redshift,
for instance, reflects the fact that the template set vari-
ations move probability of certain galaxies into and out
of this low redshift outlying region.
As noted above, the principal components are useful

for dimensionality reduction. For all collections, the first
three principal components cumulatively account for 80%
or more of the variance. The eigenvalue spectrum is plot-
ted in Fig. 6, where it can be seen that higher number
modes quickly approach zero.
Recall from Subsec. 2.3 that the first step of PCA is to

subtract the mean from each dN/dzα, where α refers to a
specific realization of template set. We define {dα} to be
the set of mean-subtracted data, i.e. dN/dzα−〈dN/dz〉.
Each dα can be reconstructed from a specific linear com-
bination of principal components. Performing the recon-
struction of the dN/dz’s of the LRT template variations
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with the first three modes, it is possible to recover 80%
or more of the variance per bin. In general, the precise
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Fig. 8.— LRT set: The top panel shows the standard deviation
of the variations dα (the mean-subracted dN/dzα) at each point in
redshift space. The bottom panel is the standard deviations of the
dα reproduced from linear combinations of modes 4 and higher. It
can be seen that most of the variance can be accounted for with
modes 1− 3 – little is described by the higher number modes.

amount of variance recovered with the first three modes
will depend on the specific methodology used to vary the
photo-z modeling assumptions and also on the data set.
In general, the variance and the fidelity of the recon-
struction can be “tuned” by retaining a larger or smaller
number of the modes, e.g. if 1% accuracy is required,
we can retain seven or eight modes that capture 99% of
the variance. In the case of three modes retained and
five tomographic bins, the photo-z uncertainty is param-
eterized by just 15 free parameters. This is a relatively
tractable number considering analyses propagating red-
shift uncertainties through to the cosmological param-
eters have used 60 or more free parameters (Ma et al.
2006; Zhan 2006; Ma & Bernstein 2008).
Fig. 7 shows dall, the mean-subtracted dN/dz for the

case of all 20 SED templates. The blue (solid) line is
the actual residual and the cyan (dashed) line is the re-
construction from the first three principal components.
While some of the detailed structure is missed, the over-
all shape is reproduced. The addition of more modes
would continue to improve the reconstructed dall.
What about the variance of the variation? In the top

panel of Fig. 8 we plot the standard deviation of the set
of dα at each point in redshift space. This essentially
captures the uncertainty in the photometric redshift cal-
culations as a function of redshift. However, it is not
necessary to retain all the modes to capture this level
of error; rather with just three modes over 80% of this
uncertainty can be represented. This is illustrated in the
bottom panel of Fig. 8 where we reconstruct the dα only
using modes 4 and higher and recalculate the standard
deviation as a function of z using these reconstructed
dα. It can be seen that the standard deviation from the
reconstruction is greatly reduced for all bins – in other
words, a large portion of the variance is captured by the
first three principal components and little is accounted
for by the higher order modes.
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4. EXAMPLE 2: MAGNITUDE AND TYPE PRIOR
DISTRIBUTION UNCERTAINTY

Another modeling assumption that can affect the pho-
tometric redshift estimations is the assumed distribution
for redshifts as a function of type and magnitude. In
the Bayesian framework, these distributions can be ap-
plied as a prior in the SED template fitting method with
the intent to improve photometric redshift estimates. In
(Beńıtez 2000) these priors are derived semi-empirically,
that is to say, a functional form is chosen and the param-
eters are fit with a training set of spectroscopic redshifts.
The probability of a galaxy being at a certain redshift is
given by

p(z|C,m) ∝
∑

T

p(z, T |m0)p(C|z, T ) (23)

and using the product rule

p(z, T |m0) = p(T |m0)p(z|T,m0). (24)

The distributions, p(T |m0) and p(z|T,m0) are con-
strained using auxiliary data. Errors may be introduced
into these priors in a number of ways. For instance, a
biased spectroscopic redshift sample (one that under-
represents a certain galaxy population present in the
photometric sample) could cause errors in the inferred
type distributions. An incorrect analytical form could
also be chosen that is unable to accurately represent the
prior distributions; or simple statistical errors, such as
those resulting from the finite training set, could cause
the prior parameters to be known only to low accuracy.
In this section, we show again that PCA can be used
to describe uncertainties in redshift estimates resulting
from such errors in the magnitude and type priors.

4.1. Mock Data

To investigate the effects of imperfect knowledge of
the Bayesian prior, we generate a mock “training” set
of 100, 000 galaxies. The simulated data are created ac-
cording to the procedure described in § 3: the generat-
ing r -band magnitudes, types and redshifts via Monte
Carlo, while following the distributions for p(T |m0) and
p(z|T,m0), given in Equations 16 and 17, with the free
parameters of the distribution given in Table 1.
Instead of using the LRT template set as a ba-

sis for generating the 17 band photometry, we use
the CWW+KIN set that are included with the BPZ
software, assigning elliptical/reddest as type 1 and
SB2/bluest as type 6. Rather than limiting ourselves to
an overly simplified model with only six discrete types,
which would result in very few type misidentifications, we
create a continuous color distribution by linearly inter-
polating between the galaxy types (a continuous number
between 0.8 and 6.2) to assign color to each galaxy.

4.2. Results

We use the mock catalog as a starting point for probing
the uncertainty in the prior parameters, ft, kt, z0t and
αt, and investigating the effects of this uncertainty on the
photometric redshift estimations. We run BPZ to fit each
galaxy to one of the standard 6 HDFN templates. (Be-
cause of the interpolation step (described above), some
galaxies will necessarily be mistyped and these errors,

on top of statistical errors associated with a finite train-
ing set, could further affect the estimation of the prior
parameters.)
With this output, we use the Monte Carlo Markov

Chain method (Metropolis Hastings algorithm) to find
the best fit values and the confidence bounds on ft, kt,
z0t and αt. (Note that although there are many esti-
mators that may have worked in our case, MCMC was
chosen because of the high dimensionality of the parame-
ter space: 14 free parameters.) The results are presented
in Table 2. It can be seen that these values are close to,
but not the same as, the fiducial parameters in Table 1.

TABLE 2
Parameter values for fit using MCMC for magnitude and

type priors

Spectral type ft αt z0t kmt kt

E/SO 0.305 2.350 0.416 0.0935 0.368
Sbc,Scd 0.503 1.640 0.356 0.070 0.152
Irr 0.192 0.902 0.0687 0.119

To probe the effects of variations in the priors, we select
100 values of the parameters drawn from the Markov
chain. To make sure we consider both best and worst case
scenarios, we also add the best fit values and parameter
values at the upper and lower 2σ confidence levels (note
that when all the parameters are at the 2σ confidence
limit, this reflects a much larger than 2σ fluctuation.)
We run the photo-z redshift code, BPZ, on our simu-

lated galaxy catalogue for each instance of prior parame-
ters. As in the template uncertainty case, for each galaxy
in our catalogue, the product of the code is a probability
distribution, P (z), for 0 < z < 4.
We sort each galaxy into 5 redshift collections evenly

spaced from z = 0 to z = 4 based on the peak of the P (z).
As for the previous case, the dN/dzi for each “bin”, i, is
calculated by summing the P (z) for each galaxy in the
collection.
Variations in the priors create changes in the esti-

mated dN/dz. The dN/dzi and the residuals, dN/dzi −
dN/dzbest-fit is plotted in Fig. 9. The differences be-
tween the overall dN/dz’s plotted here and those of the
LRT model (shown in Fig. 4), are due to the mock data
and the template set used for the photo-z estimation
(not the priors). While we avoid the overly simplistic
6 template (CWW+SB) model by generating data to in-
clude linear combinations of the SEDs, we only compare
to the 6 discrete HDFN templates to estimate the red-
shifts. Thus, not every galaxy is accurately represented
in the template library. It is the non-representativeness
of these templates that cause the deviations seen in
Fig. 9. (Note that in the LRT case, we left one tem-
plate out of 20 instead of using 6 to represent a contin-
uous mix of types.) The variations in the dN/dz due
to variations in the prior are small, as can be seen by
the difference between the dN/dz using the best fit prior
parameters and the dN/dz’s from each Monte Carlo sam-
pling dN/dzi − dN/dzbest-fit. They are a factor of 5 or
more smaller when compared to the variations due to
the template uncertainty. Thus, at least for the case of
a well-sampled training set, small errors in the prior are
not as important as having well-calibrated SED template
set.



10

0 2 4
-5

0

5

0 2 4
-5

0

5

0 2 4
-5

0

5

z
0 2 4

-10

-5

0

5

10

0 2 4
-10

-5

0

5

10

 (
d
N

/d
z
 

 z
)

0 2 4
0

500

1000

1500

2000

2500

d
N

/d
z

 z

2 4 2 4
z

2 4 2 4

Fig. 9.— Continuous HDFN priors: Variations in prior param-
eters drawn from Markov chain. The top panels show the dN/dz
per tomographic redshift bin, the bottom panels show the difference
between the dN/dz from the best fit values and the dN/dz from
the variations, dN/dzbf − dN/dzi, for each bin. These differences
are small in comparison to those of the LRT template variations.

2 4 2 4 2 4 2 4

10
0

10
1

10
2

0

0.5

1

i/
(

i)

10
0

10
1

10
2

0

0.5

1

10
0

10
1

10
2

0

0.5

1

mode number
10

0
10

1
10

2
0

0.5

1

10
0

10
1

10
2

0

0.5

1

0 2 4
-0.5

0

0.5

Z

U

1

2

Bin 3 Bin 4 Bin 5Bin 2Bin 1

Fig. 10.— Continuous HDFN priors: Top panels of the plot show
the first two principal components for each bin. The bottom panels
show the eigenvalue spectrum (i.e. amount of variance captured
by each principal component). In all cases, more than 80% of the
variance is captured by the first 2 principal components.

Once again, we perform PCA on the set of dN/dz to de-
rive a lower dimensional parameterization of the photo-
z uncertainties. We find that for variations of the priors,
only two modes are necessary to account for over 80% of
the variance. The top panels of Fig. 10 show the first two
principal components for each redshift bin. The bottom
panels show the eigenvalue spectrum for each bin.
One caveat to this approach is that we have not in-

cluded the differences in the dN/dz’s resulting from the
difference between the fiducial prior parameters and the
best fit parameters. However these differences in the
dN/dz remain small and are of the same order as the
variations we do consider. We note that in a case where
the type distributions of the training set are more dras-
tically biased, the prior parameter distribution may have

a greater impact. What we have presented here is a
method for exploring such uncertainties and parameter-
izing their effects on the redshift distributions in such
a way that they could be propagated through to error
bounds on cosmological parameters.

5. CONNECTION TO OTHER WORK

Many authors have considered the propaga-
tion of photo-z errors through to the cosmologi-
cal parameters, see for instance Huterer & Takada
(2005); Ma et al. (2006); Albrecht et al. (2006); Zhan
(2006); Abdalla et al. (2008); Bridle & King (2007);
Ma & Bernstein (2008). A commonly quoted result
is from Ma et al. (2006), where it was shown that for
a photo-z distribution modeled as a Gaussian with
redshift dependent mean and standard deviation, that
for the a two parameter dark energy model, (the
dark energy density ΩDE, its equation of state today
w0 = pDE/ρDE|z=0), the 1σ errors on zbias(z) and σz(z)
must be less than .01 per “bin” in order to avoid a
degradation in the dark energy parameters of more than
50%. Note that this result does not apply to the mean
and bias for the tomographic redshift bins, rather the
analysis refers to the mean and bias on “micro bins”
of width δz = .1. Moreover, it does not include the
powerful self-calibration enabled by a joint analysis of
WL and BAO, due to the shared large scale stucture.
To put in perspective the variations we produce via

changes in template sets and magnitude priors, we com-
pare the size of the resulting variations in the dN/dzγ
per tomographic redshift bin γ to those of the model an-
alyzed in Ma et al. (2006). The dN/dzγ per bin is given
by

dN

dz γ
(z) =

∫ z
(γ+1)
ph

z
(γ)
ph

dzph
dN

dz tot
(z) p(zph|z) . (25)

where
dN

dz tot
∝ zα exp

[

−(z/z0)
β
]

(26)

The photo-z distribution is modeled as

p(zph|z) =
1√
2πσz

exp

[

− (z − zph − zbias)
2

2σz
2

]

(27)

and is defined for “micro” bins of width δz = .1, each
with two photo-z parameters the bias, zbias(z), and the
scatter, σz(z). The dN/dzγ for each “macro” bin, or
tomographic redshift bin, is obtained by interpolating the
between each p(zph|z)i, to return a continuous function
defined for the entire redshift range, and then integrating
Eq. 25.
To calculate the fluctuations in the tomographic red-

shift bins resulting from 1σ errors of .01 on zbias(z) and
σz(z) for each “micro” bin, we start with the photo-
z model described above. We assume a fiducial case
with 40 “micro” bins between z = 0 and z = 4 with
δz(z) = .1, zbias(z) = 0 and σz(z) = .05(1+ z). We then
randomly draw 21 samples (consistent with the fact that
we generated 21 samples from variations of template set
(we could have used 103 to correspond to variation of the
prior parameters, but given that the distribution is Gaus-
sian, the extra variations add little information) from a
80-D Gaussian distribution with σbias = σscatter = .01.
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We linearly interpolate to create a continuous function
in z, P (zph|z), and we perform the integral in equation
25 each time to obtain a set of 21 dN/dzα for each the
tomographic redshift bins.
We define, as in § 3, dα = dN/dzα − 〈dN/dz〉, i.e.

the mean-subtracted data. The dN/dzα and the dα are
shown in Fig. 11. It can be seen that dα are of the
same order (although somewhat larger) than those of
the template variations (Fig. 4). However, there are no
catastrophic “islands”, i.e. non-zero values for the dN/dz
far outside of the redshift bin. This is also reflected in
Fig. 12 which shows the standard deviation in the mean
redshift (Eq. 19) and the variance (Eq. 20) for each
bin. What is perhaps most interesting to note is the dif-
ference between the Gaussian case and the model-based
variations in bins 4 and 5, and to a lesser extent bin 1,
which are subject to the redshift degeneracies associated
with faint galaxies, as discussed in § 3. In particular,
these differences are apparent in the standard deviation
in the variances (bottom panels of Fig. 12), where the
values are significantly higher for the LRT template set
variations and even, though to a lesser extent, for the
variations the HDFN priors.
Given the differences between the Gaussian case and

our model-based variations, we refrain from drawing any
conclusions about what this would mean for constraints
on the dark energy, leaving the propagation of such un-
certainties through to the cosmological parameters for
future work. However, it is important to note that we
have considered a level of uncertainty in the photometric
redshift errors that is significant for constraints on the
dark energy. The differences from the Gaussian case un-
derscore the importance of considering realistic sources of
uncertainty (although the two variations presented here
are somewhat simplified examples and not intended to
be taken as a full exploration of such uncertainties). We
note that we have parameterized uncertainties of similar
order to those considered in Ma et al. (2006), but more
generally and with fewer parameters (15 vs. 40).

6. DISCUSSION AND CONCLUSIONS

With the potential to significantly improve our knowl-
edge of the expansion history of the universe, future ob-
servational programs are necessary for making theoreti-
cal progress on the puzzle of dark energy. However sys-
tematic errors have the potential to wreak havoc on these
results. In particular, photometric redshift methods, es-
sential to many future experimental programs, rely on
modeling assumptions that can cause both biases and
catastrophic errors in the redshift estimates. In order
for future observations to deliver on their promise, these
errors must be reduced or well-understood.
In this work we have presented a method of explor-

ing and parameterizing modeling uncertainties associ-
ated with photometric redshift estimates. We consider
two sources of modeling uncertainty – the SED template
set and magnitude priors – and we show that both cause
errors in the photometrically estimated dN/dz. Though
both cases utilize simplified models to probe their im-
pact, the results indicate that template selection effects
are dominant to those of the magnitude priors (mean
subtracted data, dα = dN/dzα − 〈dN/dz〉, are nearly an
order of magnitude larger for the template variations).
This result comes with the caveat that the underlying
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and the variance of the dN/dzi, the redshift distribution per bin,
for the three models considered (LRT, priors (Continuous HDFN)
and Gaussian with priors on mean and spread of .01). It can be
seen that the variance in the means for the Gaussian model is
often larger than that of the model-based variations. The larger
variance in the LRT variations and the prior variations for bins
4 an 5 is indicative of catastrophic outliers which the Gaussian
parameterization cannot represent.

parameterization of the prior distribution was perfectly
known for the template variations and we only consider
the effects of uncertainties in prior parameters (differ-
ences could be larger in the case where the functional
form of the distribution is incorrect or training set is bi-
ased in some way.) Additionally, we vary the template
set and the priors independently, although the effects of
these variations may be correlated. A more sophisticated
model would enable us to examine such modeling uncer-
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tainties jointly.
We have shown that in both cases, the variations in the

dN/dz can be characterized by a principal component
analysis, which selects out the directions of maximum
variance. Using the principal components as the new
basis, the dN/dz can be parameterized by the weights,
bi, where the dN/dzi for each bin is constructed accord-
ing to Eq. 9. The uncertainties in the model, can then
be described in terms of a covariance matrix for the bi
and can be used in a likelihood analysis for weak lensing
or other cosmological observations involving photometric
redshifts.
PCA allows for dimensionality reduction (here we find

that two or three modes are sufficient to account for 80%
of the variation in the data). We note that the precision
of the reconstruction can be easily “tuned” by retention
of a larger or smaller number of modes. The exact num-
ber of modes needed for a given level of fidelity to the
original data will depend on the exact data set and mod-
eling uncertainties considered. However it is a simple
matter to choose a desired level of variation captured by
the parameterization: λα/

∑

i λi, where λi is the eigen-
value associated with a given mode. For the case of five
redshift bins and three principal components, the uncer-
tainty in the photometric redshifts can be captured by 15
numbers (a computationally tractable result). Moreover,
this parameterization is completely general and does not
resort to ad hoc forms such as Gaussians. Thus we
present a way of parameterizing realistic modeling un-
certainties and propagating these uncertainties through

to the cosmological parameters.
More generally, this method of estimating photo-z un-

certainty and propagating to cosmological parameters
could be applied to the more realistic observational
case where two or more probes of geometry and struc-
ture formation (such as cosmic shear tomography and
baryon acoustic oscillations) are combined. This cross-
calibration removes degeneracies, significantly reducing
sensitivity to systematic error. Finally, there are statis-
tical calibrations that can be done in regions of the sky
where there are spectroscopic samples, and this informa-
tion can be imported to the method we have developed.
In such cases the mean redshift of the galaxy population
in every collection may be calibrated by cross-correlating
that sample with a bright spectroscopic sample in angle
and redshift (Matthews & Newman 2010). Leveraging
the new deep-wide spectroscopic surveys, one could go
beyond a calibration of the mean redshift of that sam-
ple to knowledge of the distribution Pλt(z) of galaxies
in that bin as a fuction of type. This information could
then be incorporated into the prior.
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APPENDIX

ESTIMATOR BIAS

Here we show that the simple estimator Equation (4) is unbiased if the prior and likelihood are both correct.
Assuming an underlying redshift distribution dN/dz, we get a posterior distribution for the ith galaxy

Pi(z) ≡ P (z|fd
λ,i) = P (fd

λ,i|z)
dN

dz
A(fd

λ,i), (A1)

where A(fd
λ,i) is a normalization factor so that

∫

dzPi(z) = 1. (A2)

For simplicity we have suppressed t & m1, which can be integrated out via Equation (3). In what follows, we also drop
the subscript λ and superscript d of f for convenience. We group galaxies that meet certain criteria, e.g., within a
volume in color space, together and call the collection a “redshift” bin. Redshift is only one application; the collection
criteria can be more general. In terms of symbolics, we use f ∈ F to denote the criteria. On the one hand, dN/dz in
this F collection is

dNF

dz
=

∫

f∈F

df
dN

dz
P (f |z). (A3)

On the other hand, the estimator is

dN̂F

dz
=

∑

fi∈F

P (z|fi). (A4)

Calculating the expectation value for this estimator is the same as calculating its value in the limit of very large
numbers of galaxies, assuming that the galaxies follow the redshift distribution dN/dz. In this large-N limit we can
replace

∑

fi∈F

with

∫

f∈F

df

∫

dz∗
dN

dz∗
P (f |z∗),
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so that
〈

dN̂F

dz

〉

=

∫

f∈F

df

∫

dz∗
dN

dz∗
A(f)P (f |z∗)P (f |z)dN

dz

=

∫

f∈F

df
dN

dz
P (f |z) = dNF

dz
. (A5)

Since the above derivation does not use any specific form of the likelihood function, and since the collection F is
generic, the estimator is not biased. In reality, the prior dN/dz and the likelihood P (f |z) are not accurately known,
and systematic errors in them can still cause biases in the results.
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