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3× 3 MINORS OF CATALECTICANTS

CLAUDIU RAICU

Abstract. Secant varieties to Veronese embeddings of projective space are classical va-

rieties whose equations are not completely understood. Minors of catalecticant matrices

furnish some of their equations, and in some situations even generate their ideals. Geramita

conjectured that this is the case for the secant line variety of the Veronese variety, namely

that its ideal is generated by the 3×3 minors of any of the “middle” catalecticants. Part of

this conjecture is the statement that the ideals of 3×3 minors are equal for most catalecti-

cants, and this was known to hold set-theoretically. We prove the equality of 3× 3 minors

and derive Geramita’s conjecture as a consequence of previous work by Kanev.

1. Introduction

The secant varieties to rational normal curves are defined by ideals of minors of Hankel

matrices, which are fairly well understood (see [GP82] or [Con98] and the references therein).

However, surprisingly enough, we do not know in general the equations of the secant varieties

to Veronese embeddings of higher projective spaces. Minors of catalecticant matrices (see

Section 2.2) provide some equations for these secant varieties, but turn out not to be

sufficient in many cases.

Determinantal loci of catalecticant matrices are of particular interest in their own

right, but also via their connection to Hilbert functions of Gorenstein Artin algebras, the

polynomial Waring problem, or configurations of points in projective space (see [IK99]).

In [Ger99], Geramita gives a beautiful exposition of classical results about catalecticant

varieties, and proposes several further questions (see also [IK99], Chapter 9). We recall the

last one, which we shall answer affirmatively in Theorem 7.1. It is divided into two parts:

Q5a. Is it true that

I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n))

for all t with 2 ≤ t ≤ d− 2?

Q5b. Is it true that for n ≥ 3 and d ≥ 4

I3(Cat(1, d − 1;n)) ( I3(Cat(2, d− 2;n))?
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Here Cat(t, d−t;n) denotes the t-th generic catalecticant (see Section 2.2), and I3(Cat(t, d−

t;n)) is the ideal generated by its 3× 3 minors.

Geramita also conjectures that any of the catalecticant ideals I3(Cat(t, d− t;n)), 2 ≤

t ≤ d − 2, is the ideal of the secant line variety to the d-uple embedding of Pn−1. This is

also true, and is part of our main result:

Theorem 7.1. Let K be a field of characteristic 0 and let n, d ≥ 2 be integers. The following

statements hold:

(1) For all t with 2 ≤ t ≤ d− 2 one has

I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n)).

(2) If d ≥ 4 then there is a strict inclusion

I3(Cat(1, d − 1;n)) ( I3(Cat(2, d − 2;n)).

(3) Any of the ideals I3(Cat(t, d − t;n)), 2 ≤ t ≤ d − 2, is the ideal of the first secant

variety to the d-th Veronese embedding of Pn−1
K .

We can actually do a little better than that, namely describe the decomposition of

the space of 3× 3 minors of any catalecticant into irreducible representations of the general

linear group, and hence calculate the number of generators of the ideal of the first secant

variety to the d-th Veronese embedding of Pn−1.

Theorem 7.2. With the assumptions in Theorem 7.1 and writing Pn−1
K = PV ∗ for some

n-dimensional K-vector space V , the following statements hold:

(1) As GL(V )-representations,

I3(Cat(2, d − 2;n))3 ≃ S(3)S(d)V/

d
⊕

i=0
i 6=1

S(3d−i,i)V.

(2) The number of generators of the ideal of the first secant variety to the d-th Veronese

embedding of Pn−1
K is, whenever this ideal is nonzero (i.e. n ≥ 3, or n = 2 and

d ≥ 4), given by the formula
(
(n+d−1

d

)

+ 2

3

)

−

(

n+ 2d− 1

2d

)

·

(

n+ d− 1

d

)

+

(

n+ 3d− 2

3d− 1

)

· n−

(

n+ 3d− 1

3d

)

.

When n = 2, it is well-known (see [GP82], [Eis86] for a proof) that

Ik(Cat(k − 1, d− k + 1; 2)) = Ik(Cat(t, d− t; 2))

for all t with k−1 ≤ t ≤ d−k+1, and that any of these ideals is the ideal of the (k−2)-nd

secant variety to the d-uple embedding of P1. This fact will turn out to be useful in the

proof of Theorem 7.1. We note that part (3) of Theorem 7.1 is a consequence of (1) and
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(2), combined with the result of Kanev ([Kan99]) which states that the ideal of the secant

line variety to the Veronese variety is generated by the 3× 3 minors of the first and second

catalecticants.

Theorem 7.1 yields special cases of two general conjectures. One of them is implicit

in Geramita’s question Q4 from [Ger99]:

Conjecture 1.1. For all k, n ≥ 2, d ≥ 2k − 2 and t with k − 1 ≤ t ≤ d− k + 1, one has

Ik(Cat(k − 1, d− k + 1;n)) = Ik(Cat(t, d− t;n)).

Moreover, the following inclusions hold:

Ik(Cat(1, d − 1;n)) ⊂ Ik(Cat(2, d− 2;n)) ⊂ · · · ⊂ Ik(Cat(k − 1, d − k + 1;n)).

The other one is a conjecture by Sidman and Smith ([SS09]):

Conjecture 1.2. Let k be a positive integer. If X ⊂ Pn is embedded by the complete linear

series of a sufficiently ample line bundle, then the homogeneous ideal of the (k−2)-nd secant

variety of X is generated by the k × k-minors of a 1-generic matrix of linear forms.

Conjecture 1.2 has been recently proved to be false for singular X ([BGL10]), but

there are no known smooth counterexamples. The case X = Pr is a sufficiently interesting

special case. Both conjectures 1.1 and 1.2 are known to be true for k = 2, by results of

Pucci ([Puc98]) and Sidman and Smith ([SS09]). The argument in [Puc98] is rather long,

so we will give a simplified proof in Section 6.

The main tool that we will be using in our proofs will be the construction of a series of

polarization maps from certain representations W of the general linear group to represen-

tations W ′ of some symmetric group. These maps will be sections of certain specialization

maps going in the opposite direction. Both the polarization and specialization maps will

just be maps of vector spaces, depending on a partition λ and some choices: the choice

of a Borel subgroup of GLn and of a Young symmetrizer cλ. The key point is that they

will induce isomorphisms between the λ-highest weight space hwtλ(W ) ⊂ W and the “λ-

highest weight space” hwtλ(W
′) = cλ ·W

′ ⊂ W ′, allowing us to go back and forth between

GL-representations and representations of symmetric groups.

The structure of the paper is as follows. In Section 2 we introduce the basic notions

from representation theory that will be needed later. We also give some background on

catalecticant varieties and describe their relationship to Gorenstein Artin algebras, which

motivates Conjecture 1.1. Section 3 deals with the secant varieties to the Veronese variety.

We give a characterization of their equations as intersections of kernels of certain maps of

representations (the prolongations in [Lan10]). In Section 4 we set up the “generic case”: we

introduce certain representations of symmetric groups which correspond by specialization to

ideals of minors of catalecticant matrices; we also introduce the “generic prolongations”. In

Section 5 we describe the construction and properties of the polarization and specialization
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maps. We then illustrate our techniques in Section 6 by giving a simple proof of Pucci’s

result - Conjecture 1.1 in the case k = 2. Section 7 contains the proofs of the main results

- theorems 7.1 and 7.2.

2. Preliminaries

2.1. Representation theory. In this section K will be a field of characteristic zero and G

a group, either GL(V ), the group of invertible linear transformations of some vector space

V , or SN , the group of permutations of the set {1, · · · , N}, for some positive integer N . For

an introduction to the representation theory of the symmetric and general linear groups see

[FH91] or [Mac79].

A (finite dimensional) representation of G is a left-module over the group algebra

K[G] = {
∑

g ag · g : ag ∈ K, ag = 0 for almost all g}, which is finite dimensional as

a vector space over K. A representation is said to be irreducible if it has no nontrivial

subrepresentations. Every representation decomposes as a direct sum of irreducible repre-

sentations.

A partition λ of an integer N is a nonincreasing sequence λ1 ≥ λ2 ≥ · · · with N =
∑

λi. We write λ = (λ1, λ2, · · · ). Alternatively, if µ is a partition having ij parts equal to

µj for all j, then we write µ = (µi1
1 ·µi2

2 · · · ). To a partition λ we associate a Young diagram

which consists of left-justified rows of boxes, with λi boxes in the i-th row. We shall identify

a partition λ with its Young diagram. A tableau is a filling of the Young diagram. The

canonical tableau is the one that numbers the boxes consecutively from left to right, up to

down. For λ = (3, 3, 1) = (11 · 32), the canonical tableau is

1 2 3
4 5 6
7

2.1.1. The general linear group: G = GL(V ). Fixing a basis x1, · · · , xn of V we get an

identification of G with the set of invertible n×nmatrices. The G-representations for which

elements of G act as matrices with polynomial entries are called polynomial representations.

The polynomial irreducible G-representations are classified by partitions λ with at most n

terms. They are the so called Schur functors SλV . Special cases are

S(d)V = SymdV, the d-th symmetric power of V, and

S(1k)V = ΛkV, the k-th exterior power of V.

Every polynomial representation W decomposes as a direct sum of SλV ’s. We write

W =
⊕

λ

Wλ, where Wλ ≃ (SλV )mλ for some nonnegative integers mλ.
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mλ = mλ(W ) is called the multiplicity of SλV in W . We call Wλ the λ-part of the

representation W . From now on, every representation will be assumed to be polynomial.

We consider the maximal torus T ⊂ G consisting of the diagonal matrices in G and

the Borel subgroup B ⊂ G of upper-triangular matrices with ones on the diagonal. Given

a G-representation W , a weight vector w with weight a = (a1, · · · , an) ∈ Zn
≥0 is a nonzero

vector in W with the property that for any t = diag(t1, · · · , tn) ∈ T ,

t · w = ta11 · · · tann w.

The vectors with this property form a vector space called the a-weight space of W , which

we denote by wta(W ).

A highest weight vector of a G-representation W is an element w ∈ W invariant under

the action of B. Such a w is automatically a weight vector. W = SλV has a unique (up to

scaling) highest weight vector w with corresponding weight λ = (λ1, · · · , λn). In general,

we define the λ-highest weight space of a representation W to be the set of highest weight

vectors in W with weight λ, and denote it by hwtλ(W ). It is a vector space of dimension

mλ(W ).

2.1.2. The symmetric group: G = SN . The irreducible representations of G are in one-

to-one correspondence with the partitions of N . They are isomorphic to the left ideals

Vλ = K[G] · cλ for certain Young symmetrizers cλ ∈ K[G] constructed as follows. Given the

canonical tableau Tλ of shape λ, we consider the subgroups of G

Rλ = {g ∈ G : g preserves each row of Tλ},

Cλ = {g ∈ G : g preserves each column of Tλ}

and define

aλ =
∑

g∈Rλ

g, bλ =
∑

g∈Cλ

sgn(g) · g, cλ = aλ · bλ,

where sgn(g) denotes the signature of the permutation g. Every G-representation W de-

composes as a direct sum of Vλ’s. We write

W =
⊕

λ

Wλ, where Wλ ≃ V mλ

λ for some nonnegative integers mλ.

mλ = mλ(W ) is called the multiplicity of Vλ in W . We call Wλ the λ-part of the repre-

sentation W . We define, in analogy with the general linear group situation, the λ-highest

weight space of W to be the vector space hwtλ(W ) = cλ ·W ⊂ W . It is a vector space of

dimension mλ.
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2.2. Catalecticant varieties. Given a vector space V of dimension n over a field K of

characteristic zero, and a basis x1, · · · , xn of V , we consider its dual space V ∗ with dual

basis e1, · · · , en. For every positive integer d we get a basis of S(d)V
∗ consisting of divided

power monomials e(α) of degree d in the ei’s, as follows. If α = (α1, · · · , αn) is a multiindex

of degree |α| = α1 + · · · + αn = d, then we write eα for the monomial eα1

1 · · · eαn
n , and

e(α) for eα/α!, where α! = α1! · · ·αn!. For a, b > 0 with a + b = d we get a divided

power multiplication map S(a)V
∗ ⊗ S(b)V

∗ → S(d)V
∗, sending e(α) ⊗ e(β) to e(α+β). We can

represent this via a multiplication table whose rows and columns are indexed by multiindices

of degree a and b respectively, and whose entry in the (α, β) position is e(α+β). The generic

catalecticant matrix Cat(a, b;n) is defined to be the matrix obtained from this multiplication

table by replacing each e(α+β) with the variable zα+β , where (zγ)|γ|=d ⊂ S(d)V is the dual

basis to (e(γ))|γ|=d ⊂ S(d)V
∗.

One can also think of zγ ’s as the coefficients of the generic form of degree d in the

ei’s, F =
∑

zγe
(γ). Specializing the zγ ’s we get an actual form f ∈ S(d)V

∗, and we denote

the corresponding catalecticant matrix by Catf (a, b;n). Any such form f is the dual socle

generator of some Gorenstein Artin algebra A ([Eis95]) with socle degree d and Hilbert

function

hi(A) = rank(Catf (i, d− i;n)).

Macaulay’s theorem on the growth of the Hilbert function of an Artin algebra ([BH93])

implies that if hi < r for some i ≥ r − 1, then the function becomes nonincreasing from

that point on. In particular, since A is Gorenstein, h is symmetric, so if hi < r for some

r − 1 ≤ i ≤ d− r + 1, then we have

h1 ≤ h2 ≤ · · · ≤ hr−1 = hr = · · · = hd−r+1 ≥ hd−r+2 ≥ · · · ≥ hd.

If we denote by Ir(i) = Ir(Cat(i, d− i;n)) the ideal of r× r minors of the i-th generic

catalecticant, then the remarks above show that whenever r − 1 ≤ d − r + 1 we have the

following up-to-radical relations:

Ir(1) ⊂ · · · ⊂ Ir(r − 1) = · · · = Ir(d− r + 1) ⊃ · · · ⊃ Ir(d− 1).

Conjecture 1.1 states that these relations hold exactly. We prove this in the case r = 3 in

Theorem 7.1.

3. Equations of the Secants to Veronese Varieties

Given a vector space U over a field K of characteristic zero, we write P(U) for the

projective space of lines in U . For 0 6= u ∈ U , we denote by [u] the corresponding line. If U

comes with a basis B in which u has coordinates (uβ)β∈B then we also write [uβ]β for [u].

For some positive integer d, we consider the Veronese embedding

νd : P(V ∗) → P(S(d)V
∗), given by [e] 7→ [e(d)].
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Fixing bases e1, · · · , en for V ∗ and e(α) = eα/α! for S(d)V
∗, νd is given as

[ui]i 7→ [uα]α.

We define the k-th secant variety to the Veronese embedding of PV ∗ to be the closure

of the set
{[

k
∑

i=0

civ
(d)
i

]

: ci ∈ K, vi ∈ V ∗

}

in P(S(d)V
∗), and denote it by σk+1(νd(PV

∗)). Note that for k = 0 this is just the image of

νd.

The homogeneous coordinate ring of P(S(d)V
∗) is S = Sym(S(d)V ), the symmetric

algebra over S(d)V . Using the basis (zα) ⊂ S(d)V dual to (e(α)) ⊂ S(d)V
∗ we can write S

as the polynomial ring K[zα]. One very classical problem which is still open is to find the

ideal I ⊂ S of polynomials vanishing on σk(νd(PV
∗)) (see [LO10] for the current state of

the art). The following result is well-known (see [IK99] or [Lan10]).

Lemma 3.1. For every 1 ≤ i ≤ d and k ≥ 1, the ideal Ik+1(Cat(i, d − i;n)) is contained

in the ideal of σk(νd(PV
∗)).

Given a positive integer r and a partition µ = (µ1, · · · , µt), we consider the set Pµ of

all partitions of {1, · · · , r} of shape µ, i.e.

Pµ =

{

A = {A1, · · · , At} : |Ai| = µi and

t
⊔

i=1

Ai = {1, · · · , r}

}

.

The set OPµ of ordered partitions of shape λ is defined analogously,

OPµ =

{

A = (A1, · · · , At) : |Ai| = µi and

t
⊔

i=1

Ai = {1, · · · , r}

}

.

Definition 3.2. For a partition µ = (µi1
1 · · · µis

s ) of r, we consider the map

πµ : S(r)S(d)V −→
s
⊗

j=1

S(ij)S(d·µj )V,

given by

z1 · · · zr 7→
∑

A∈Pµ

s
⊗

j=1

∏

B∈A
|B|=µj

m(zi : i ∈ B),

where

m : (S(d)V )⊗µj = S(d)V ⊗ S(d)V ⊗ · · · ⊗ S(d)V −→ S(d·µj)V

denotes the usual multiplication map.
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Note that when µ = (1r), πµ is the identity map. We shall soon see that the polyno-

mials vanishing on the secants to the Veronese variety may be characterized as the elements

in the intersections of kernels of certain maps πµ. In the next section we will consider

analogous maps in the context of representations of symmetric groups.

Example 3.3. Take d = 4, µ = (2, 1) = (11 · 21), z1 = z(3,1,0), z2 = z(2,1,1), z3 = z(2,0,2)
(recall that zα denotes the dual of e(α)). Then

πµ(z1z2z3) = m(z1, z2)z3 +m(z1, z3)z2 +m(z2, z3)z1

= z(5,2,1)z(2,0,2) + z(5,1,2)z(2,1,1) + z(4,1,3)z(3,1,0).

Proposition 3.4 (Prolongation, [Lan10]). For a positive integer r, the polynomials of degree

r vanishing on σk+1(νd(PV
∗)) are precisely the elements of S(r)S(d)V in the intersection of

the kernels of the maps πµ, where µ ranges over all partitions of r with at most k+1 parts.

Remark 3.5. If r ≤ k + 1 then the partition µ = (1r) has at most k + 1 parts. As noticed

before, πµ is then the identity map, proving that there are no polynomials of degree at most

k + 1 vanishing on the k-th secant of the Veronese (see [Lan10] for generalizations of this

fact).

Proof of proposition 3.4. Consider a polynomial f ∈ S(r)S(d)V vanishing on the variety

σk+1(νd(PV
∗)). We write

f =
∑

α

cαz
α,

where each α = {α1, · · · , αr} is a multiset of multiindices α1, · · · , αr, |αi| = d, and

zα = zα1
zα2

· · · zαr .

Consider k + 1 generic points vi ∈ PV ∗, and a generic combination of νd(vi)

p =

k
∑

i=0

ai[v
α
i ]α ∈ σk+1(νd(PV

∗)).

We have

0 = f(p) =
∑

α={α1,··· ,αr}

cα

r
∏

j=1

(

k
∑

i=0

aiv
αj

i

)

=
∑

α

cα ·









∑

µ0+···+µk=r

aµ0

0 · · · aµk

k









∑

A∈OPµ

A=(B0,··· ,Bk)

v

∑
j∈B0

αj

0 · · · v

∑
j∈Bk

αj

k

















=
∑

µ0+···+µk=r

aµ0

0 · · · aµk

k









∑

α,A∈OPµ

A=(B0,··· ,Bk)

cα · v

∑
j∈B0

αj

0 · · · v

∑
j∈Bk

αj

k









.
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Now since a0, · · · , ak are generic, we must have for each µ = (µ0, · · · , µk) that

∑

α,A∈OPµ

A=(B0,··· ,Bk)

cα · v

∑
j∈B0

αj

0 · · · v

∑
j∈Bk

αj

k = 0.

The vi’s are also generic, so in fact
∑

α,A∈OPµ

A=(B0,··· ,Bk)

cα · z∑
j∈B0

αj
⊗ · · · ⊗ z∑

j∈Bk
αj

= 0.

Now since two ordered partitions in OPµ correspond to the same unordered partition in Pµ

if and only if they differ by permutations of parts with the same size, one can see that the

left hand side of the above equality is precisely
∑

α

cαπµ(zα1
· · · zαr) = πµ(f),

so f ∈ Ker(πµ).

Conversely, the above calculations show that if f ∈ Ker(πµ) for all µ with at most

k + 1 parts, then f vanishes on σk+1(νd(PV
∗)). �

Remark 3.6. In fact, in the previous proposition it suffices to take the intersection of the

kernels of the maps πµ, for µ a partition of r with exactly k + 1 parts. This is because if

λ is a partition obtained from µ by collecting together parts of µ, then πλ factors through

πµ, so the kernel of πλ is superfluous.

Corollary 3.7. The polynomials of degree k+2 vanishing on the k-th secant variety to the

Veronese variety are precisely the elements in the kernel of the map π(1k ·21).

4. The “Generic” Case

Let W r
d = indSN

Sr∼Sd
(1) denote the induced representation of the trivial representation

of the subgroup Sr ∼ Sd ⊂ SN , where N = N(r, d) = r · d and Sr ∼ Sd is the wreath

product of Sr by Sd, regarded as a subgroup of SN as follows. We think of SN as the group

of permutations of the set {1, · · · , N} and embed Sr
d = Sd×Sd× · · ·×Sd (r times) into SN

by letting the i-th copy of Sd act as the permutations of the set {d · (i − 1) + 1, · · · , d · i}.

Then Sr ∼ Sd is regarded as the normalizer of Sr
d inside SN .

We shall think of W r
d as the space of monomials

m = zα1
· · · zαr , where α1, · · · , αr is a partition of the set {1, · · · , N},

with |αi| = d for all i = 1, · · · , r.

An element σ of the symmetric group SN acts on a monomial m as follows:

σ(m) = σ(zα1
· · · zαr) = zσ(α1) · · · zσ(αr),
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where for a subset α ⊂ {1, · · · , N},

σ(α) = {σ(x) : x ∈ α}.

For k ≤ r, a, b with a+b = d, and disjoint subsets α1, · · · , αk, β1, · · · , βk ⊂ {1, · · · , N}

with |αi| = a, |βi| = b for all i = 1, · · · k, we let

[α1, · · · , αk|β1, · · · , βk] = det(zαi∪βj
)1≤i,j≤k.

Fixing k, d and a, b with a+ b = d, we define the ideal of generic k × k minors of the a-th

catalecticant to be the collection, indexed by r, of subrepresentations Irk(a, b) ⊂ W r
d spanned

by the expressions

[α1, · · · , αk|β1, · · · , βk] · zγ1 · · · zγr−k
,

where α1, · · · , αk, β1, · · · , βk, γ1, · · · , γr−k form a partition of the set {1, · · · , N}, with |αi| =

a, |βi| = b, |γi| = d. When r is understood from the context, we write Ik(a, b) for the

representation Irk(a, b).

We would like to understand the decomposition into irreducible representations of all

Irk(a, b). This is of course a hopeless goal at this point, since not even the case k = 1, i.e.

the decomposition of W r
d , is understood in general. Nevertheless, we will be able to achieve

our goal in the case of the representations I22 (a, b) and I33 (a, b). This will allow us to prove

conjectures 1.1 and 1.2 in the special cases k = 3, X = Pn, and to reprove Pucci’s result

(Theorem 6.1). We start with a general observation:

Proposition 4.1. For any k, r, d, the subrepresentation Irk(1, d−1) ⊂ W r
d is the sum of the

irreducible subrepresentations of W r
d corresponding to partitions λ with at least k terms.

Given a partition λ of N , we index the boxes of its Young diagram in the usual

way: the i-th box is the one whose entry in the canonical tableau is equal to i. We shall

identify a monomial zα1
· · · zαr with a tableau of shape λ, having d entries equal to i in

the positions indexed by the elements of the set αi. For example, if λ = (6, 2), r = d = 3,

m = z1,3,8 · z2,4,7 · z5,6,9, we write

m = 1 2 1 2 3 3
2 1 3

.

Two tableaux differing by a permutation of the numbers {1, · · · , r} correspond to the same

monomial, so we identify them.

m = z2,4,7 · z5,6,9 · z1,3,8 =
3 1 3 1 2 2
1 3 2

.

Given a tableau T , we write Ti for the entry in its i-th box. An element σ ∈ SN sends

T to a tableau T ′ with T ′
i = Tσ−1(i). If we write σ = (1, 2, 4) · (3, 5) ∈ S9 in cycle notation,

we get

σ ·m = z2,5,8 · z4,1,7 · z3,6,9 =
2 1 3 2 1 3
2 1 3

.
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Recall that cλ is the Young symmetrizer corresponding to the canonical tableau of

shape λ.

Lemma 4.2. With the above conventions, we have

(1) cλ ·m = 0 if m has repeated entries in some column.

(2) cλ·m1 = ±cλ·m2 if m1,m2 differ by permutations within columns or by permutations

of columns of the same size.

Proof. If σ is a permutation preserving the columns of the canonical tableau, then cλ · σ =

sgn(σ) · cλ, so the first part of (2) follows. If m is a tableau with two equal entries in some

column, say in the i-th and j-th boxes, then the transposition σ = (i, j) preserves m. We

get

cλ ·m = cλ · (σ ·m) = (cλ · σ) ·m = −cλ ·m,

so cλ · m = 0, proving (1). To finish the proof of (2), notice that if σ is a permutation of

columns (of the same size) of a tableau m, then σ commutes with the symmetrizer bλ and

aλ · σ = aλ, so cλ · σ = cλ. �

Proof of Proposition 4.1. To prove the proposition, it’s enough to show that

a) cλ ·m ∈ Irk(1, d − 1) whenever λ has at least k terms and m ∈ W r
d is a monomial,

and

b) cλ · Irk(1, d − 1) = 0 when λ has less than k terms.

To prove a), consider a monomial m = zγ1 · · · zγr ∈ W r
d and write λ = (λ1, · · · , λt) with

k ≤ t ≤ r, λt 6= 0. It’s enough to prove that cλ ·m ∈ Irt (1, d−1), since Irt (1, d−1) ⊂ Irk(1, d−

1). If the tableau m has repeated entries in the first column, then cλ ·m = 0 ∈ Irk(1, d− 1)

by the preceding lemma. Otherwise, by rearranging the terms in the product zγ1 · · · zγr , we

may assume that the entries in the first column of m are 1, · · · , t.

Let αi = {1 + λ1 + · · · + λi−1} ⊂ γi, i = 1, · · · , t, be singletons corresponding to the

indices of the boxes in the first column of m, and let βi = γi \αi. We write the symmetrizer

bλ as b · b′, with b′ =
∑

σ∈C1
sgn(σ) · σ, where C1 is the subgroup of Cλ consisting of

permutations of the first column of the Young diagram of λ. We have

b′ ·m = [α1, · · · , αt|β1, · · · , βt] · zγt+1
· · · zγr ∈ Irt (1, d − 1).

It follows that

cλ ·m = (aλ · b) · (b′ ·m) ∈ Irt (1, d − 1),

proving a).

To prove b) it suffices to show that aλ · Irk(1, d − 1) = 0. Consider

u = [α1, · · · , αk|β1, · · · , βk] · zγk+1
· · · zγr ∈ Irk(1, d − 1)
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with |αi| = 1, |βi| = d− 1. Since λ has less than k terms, there exist two sets αi, αj whose

elements index boxes living in the same row of λ. Let σ denote the transposition of these

two elements. We get σ · u = −u and aλ · σ = aλ, thus

aλ · u = aλ · (σ · u) = aλ · (−u)

yielding aλ · u = 0. �

Remark 4.3. Proposition 4.1 is the analogue in the setting of SN -representations of Corollary

7.2.3 in [Wey03] or Theorem 5.2.3.6 in [Lan10].

We now want to construct analogous maps to the ones in Definition 3.2. For a partition

µ = (µi1
1 · · ·µis

s ), we consider the SN -representation W µ
d = ⊠

s
j=1W

ij
dµj

, defined as follows. If

we let dj = d · ij · µj , each W
ij
dµj

is an Sdj -representation, so tensoring together all these

representations we get a representation W of H = Sd1 × · · · × Sds . We regard H as a

subgroup of SN by choosing any partition A1 ⊔ · · · ⊔ As of {1, · · · , N} into parts of sizes

d1, · · · , ds, and letting Sdi act as the permutations of Ai. We define W µ
d to be the SN -

representation induced from the representation W on H. The way we think of W µ
d is as the

space of monomials
∏

α∈A

zα, for A ∈ Pλ,

where λ = dµ = ((dµ1)
i1 · · · (dµs)

is) is the partition obtained from µ by multiplying its

parts by d, and Pλ is as defined in Section 3.

Definition 4.4. For a partition µ = (µi1
1 · · · µis

s ) of r, we consider the map

πµ : W r
d → W µ

d

defined by

zα1
· · · zαr −→

∑

A∈Pλ

s
⊗

j=1

∏

B∈A
|B|=µj

z∪i∈Bαi
,

where λ = dµ, as in the preceding paragraph.

Example 4.5. If d = r = 3 and µ = (2, 1) then

πµ(z{1,3,8} · z{2,4,7} · z{5,6,9}) =z{1,2,3,4,7,8} · z{5,6,9} + z{1,3,5,6,8,9} · z{2,4,7}

+ z{2,4,5,6,7,9} · z{1,3,8}.

Remark 4.6. We shall think of the intersection of the kernels of the maps πµ, for µ a partition

with (at most) k+1 parts, as “generic prolongations”, in analogy with Proposition 3.4. Next

section will make this analogy more precise.
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5. Polarization and Specialization

Consider the vector space V with basis x1, · · · , xn, and let W denote the GL(V )-

representation S(r)S(d)V (the composition of the Schur functors S(r) and S(d)) for some

positive integers r, d. Let N = r · d and consider the SN -representation W ′ = W r
d described

in the previous section. The character of W and the characteristic function of W ′ are equal

as symmetric functions to the plethystic composition hr ◦ hd (here hm denotes the m-th

complete symmetric function, see [Mac79]). It follows that for each partition λ with at

most n parts, the multiplicities of SλV in W and Vλ in W ′ are the same. In this section

we construct explicit maps inducing isomorphisms of vector spaces between hwtλ(W ) and

hwtλ(W
′) for all such λ.

We fix a partition λ of N with at most n parts and consider the weight space wtλ(W ) ⊂

W .

Proposition 5.1. There exist polarization and specialization maps

Pλ : wtλ(W ) −→ W ′, Qλ : W ′ −→ wtλ(W ),

with the following properties:

(1) Qλ is surjective.

(2) Pλ is a section of Qλ.

(3) Pλ and Qλ restrict to maps between hwtλ(W ) and hwtλ(W
′) which are inverse to

each other.

Proof. We identify a permutation σ ∈ SN with the “tensor”

σ(1)⊗ σ(2) ⊗ · · · ⊗ σ(N),

and consider the (regular) representation of SN on the vector space R with basis consisting

of the tensors σ for σ ∈ SN . The action of SN on R is given by

σ · i1 ⊗ i2 ⊗ · · · ⊗ iN = σ(i1)⊗ σ(i2)⊗ · · · ⊗ σ(iN ).

We also consider the vector space map Qλ : R → V ⊗N given by

i1 ⊗ i2 ⊗ · · · ⊗ iN 7→ g(i1)⊗ g(i2)⊗ · · · ⊗ g(iN ),

where g : {1, · · · , N} → {x1, · · · , xn} is the map sending i to xj if the i-th box of λ is

contained in the j-th row of λ (or equivalently if λ1 + · · · + λj−1 < i ≤ λ1 + · · ·+ λj). The

image of Qλ is wtλ(V
⊗N ).

There is another (right) action of SN on both the tensors in R and V ⊗N , which we

denote by ∗. It is given by

t1 ⊗ t2 ⊗ · · · ⊗ tN ∗ σ = tσ(1) ⊗ tσ(2) ⊗ · · · ⊗ tσ(N),

and the map Qλ defined above respects this action. The ∗ and · actions commute on R.
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We view Sr ∼ Sd as a subgroup of SN like in the previous section, and define the

symmetrizer s by

s =
∑

σ∈Sr∼Sd

σ.

We can identify W ′ with R ∗ s and W with V ⊗N ∗ s, and note that Qλ restricts to a map

between these two spaces. In fact, the image of Qλ lies in W ∩ wtλ(V
⊗N ) = wtλ(W ). W

and W ′ don’t inherit the ∗ action of SN , but W ′ is still an SN -representation via the ·

action.

We now construct the polarization map Pλ. Assume that λ has t parts, λ = (λ1, · · · , λt).

We define Pλ : wtλ(V
⊗N ) → W ′ to be the unique map of SN -representations (with respect

to the ∗ action), which sends

x1 ⊗ x1 ⊗ · · · ⊗ x1 ⊗ x2 ⊗ · · · ⊗ xt, with each xi appearing λi times, to

1

λ1! · · · λt!

∑

σ∈Sλ1
×···×Sλt

σ(1) ⊗ · · · ⊗ σ(λ1)⊗ σ(λ1 + 1)⊗ · · · ⊗ σ(N),

where we regard the product of symmetric groups Sλ1
× · · · × Sλt

as a subgroup of SN by

letting each Sλi
act as the permutations of the subset

{λ1 + · · ·+ λi−1 + 1, · · · , λ1 + · · ·+ λi} ⊂ {1, · · · , N}.

Note that

Pλ(x1 ⊗ x1 ⊗ · · · ⊗ x1 ⊗ x2 ⊗ · · · ⊗ xt) =
1

λ1! · · · λt!
aλ · 1⊗ · · · ⊗N,

and Qλ ◦ Pλ is the identity. Pλ restricts to a map from wtλ(W ) to W ′ which is a section of

Qλ, so (1) and (2) hold.

It remains to prove that Pλ, Qλ induce inverse isomorphisms between hwtλ(W ) and

hwtλ(W
′). The two vector spaces have the same dimension, so it suffices to prove that

a) Qλ(w
′) ∈ hwtλ(W ) and

b) Pλ(Qλ(w
′)) = w′ for all w′ ∈ hwtλ(W

′).

For any monomial m ∈ W ′, and hence for any element m ∈ W ′, we have

Pλ(Qλ(m)) =
1

λ1! · · ·λt!
(aλ ·m),

thus

Pλ(Qλ(aλ ·m)) =
1

λ1! · · · λt!
(a2λ ·m) = aλ ·m.

Since hwtλ(W
′) ⊂ aλ ·W ′, b) follows.

To prove a) it’s enough to show that Qλ(cλm) is fixed by the Borel, for any monomial

m. Writing m = t ∗ s for some tensor t = t1 ⊗ · · · ⊗ tN ∈ R, we get

Qλ(cλm) = Qλ(aλ · bλt ∗ s) = λ1! · · ·λt!Qλ(bλt) ∗ s.
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Since the ∗ action commutes with the GL(V ) action on V ⊗N , it suffices to show that Qλ(bλt)

is invariant under the Borel. We can write Qλ(bλt) as a tensor product of exterior products

x1 ∧ · · · ∧ xλ′

i
,

where λ′
i denotes the i-th part of λ′, the conjugate partition to λ. Each such exterior product

is invariant under the Borel, hence so is Qλ(bλt), concluding the proof. �

Example 5.2. Suppose r = 2, d = 3, dim(V ) = 2 and λ = (4, 2). Consider the monomial

m = z{1,2,3} · z{4,5,6} ∈ R. Then

Qλ(m) = z(3,0) · z(1,2), and

Pλ(Qλ(m)) =
1

4! · 2!
(3! · 2!z{1,2,3} · z{4,5,6} + 3! · 2!z{1,2,4} · z{3,5,6}

+ 3! · 2!z{1,3,4} · z{2,5,6} + 3! · 2!z{2,3,4} · z{1,5,6})

=
1

4
(z{1,2,3} · z{4,5,6} + z{1,2,4} · z{3,5,6} + z{1,3,4} · z{2,5,6} + z{2,3,4} · z{1,5,6}),

where the 3! comes from the permutations of the entries of the index set of the first term

of each monomial, and the 2! comes from the permutations of {5, 6} in the index set of the

second term of each monomial.

Notice that Pλ sends elements of Irk(a, b) to elements of Ik(Cat(a, b;n)), and Qλ sends

homogeneous elements of degree r of Ik(Cat(a, b;n)) to Irk(a, b). We get the following

Corollary 5.3. If λ is a permutation with at most n parts, then the multiplicity of SλV

in the degree r part of Ik(Cat(a, b;n)) is the same as the multiplicity of Vλ in Irk(a, b).

Moreover, the polarization and specialization maps induce isomorphisms between the λ-

highest weight spaces of Ik(Cat(a, b;n))r and Irk(a, b).

Remark 5.4. The highest weight spaces of the kernels of the maps πµ in definitions 3.2 and

4.4 correspond to each other via the polarization and specialization maps (note that this

gives a way to explain the inheritance principle of [Lan10]). It follows that in order to check

that the the equations (of degree k) of the (k − 2)-nd secant to the Veronese are precisely

the k×k-minors of the catalecticant matrices (in the cases we’ll be interested in), it suffices

to check their equality in the “generic” case.

6. 2× 2 Minors

In this section we give two proofs of the following result of Pucci, which is the case

k = 2 of Conjecture 1.1. The first proof works in arbitrary characteristic, while the second

one is a characteristic zero proof meant to illustrate the methods we shall use in the case

of 3× 3 minors.
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Theorem 6.1 ([Puc98]). Let K be a field of arbitrary characteristic and let n, d ≥ 2 be

integers. Then for all t with 1 ≤ t ≤ d− 1 one has

I2(Cat(1, d− 1;n)) = I2(Cat(t, d− t;n)).

Proof in arbitrary characteristic. For multiindices m1,m2, n1, n2 we let

[m1,m2|n1, n2] =

∣

∣

∣

∣

zm1+n1
zm1+n2

zm2+n1
zm2+n2

∣

∣

∣

∣

.

With this notation, we have the following identity for multiindices u1, u2, v1, v2, α1, α2,

β1, β2:

[u1 + u2, v1 + v2|α1 + α2, β1 + β2] = [u1 + α1, v1 + β1|u2 + α2, v2 + β2]

+ [u1 + β2, v1 + α2|v2 + α1, u2 + β1].
(6.1)

We shall prove that I2(Cat(a, b;n)) ⊂ I2(Cat(a + 1, b − 1;n)) for a + b = d and

1 ≤ a ≤ d−2. This is enough to prove the equality of the 2×2 minors of all the catalecticants,

since I2(Cat(1, d− 1;n)) = I2(Cat(d− 1, 1;n)). Since the ideal I2(Cat(a, b;n)) is generated

by minors [m1,m2|n1, n2] with |m1| = |m2| = a and |n1| = |n2| = b, it follows from 6.1 that

it’s enough to decompose m1,m2, n1, n2 as

m1 = u1 + u2, m2 = v1 + v2, n1 = α1 + α2, n2 = β1 + β2,

in such a way that

|u1|+ |α1| = |v1|+ |β1| = a+ 1, |u2|+ |α2| = |v2|+ |β2| = b− 1,

|u1|+ |β2| = |v1|+ |α2| = b− 1, |v2|+ |α1| = |u2|+ |β1| = a+ 1,
(6.2)

or

|u1|+ |α1| = |v1|+ |β1| = a+ 1, |u2|+ |α2| = |v2|+ |β2| = b− 1,

|u1|+ |β2| = |v1|+ |α2| = a+ 1, |v2|+ |α1| = |u2|+ |β1| = b− 1.
(6.3)

If a ≤ 2b− 2, then we can find 0 ≤ x, y ≤ b− 1 with x+ y = a. Choose any such x, y

and decompose

m1 = u1 + u2, m2 = v1 + v2, with |u2| = |v1| = x and |u1| = |v2| = y,

and

n1 = α1 + α2, n2 = β1 + β2, with

|α1| = x+ 1, |β1| = y + 1, |α2| = b− 1− x and |β2| = b− 1− y.

It’s easy to see then that 6.2 is satisfied.

If b ≤ 2a+2, then since b ≥ 2 (a ≤ d− 2), we can find 1 ≤ x, y ≤ a+1 with x+ y = b.

Choose any such x, y and decompose

n1 = α1 + α2, n2 = β1 + β2, with |α2| = |β1| = x and |α1| = |β2| = y,
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and

m1 = u1 + u2, m2 = v1 + v2, with

|u1| = a+ 1− y, |v1| = a+ 1− x, |u2| = y − 1 and |v2| = x− 1.

It’s easy to see then that 6.3 is satisfied.

If neither of a ≤ 2b− 2 and b ≤ 2a+ 2 holds, then

a ≥ 2b− 1 ≥ 2(2a + 3)− 1 = 4a+ 5,

so 0 ≥ 3a+ 5, a contradiction. �

Proof in characteristic zero. By Corollary 5.3, it’s enough to treat the “generic case”. We

want to show that for a + b = d, N = 2d, all SN -subrepresentations I2(a, b) ⊂ W 2
d =

indSN

Sd∼S2
(1) are the same. Clearly the trivial representation V(N) is not contained in any

I2(a, b), so

I2(a, b) ⊆ W 2
d /V(N) =

⌊d/2⌋
⊕

i=1

V(2·(d−i),2·i), for all a, b with a+ b = d.

(see [Mac79] for the formula of the decomposition of W 2
d into irreducible representations;

as the rest of the proof will show, we don’t really need the precise description of this

decomposition).

We will finish the proof by showing that all of the above inclusions are actual equalities.

To see this, it’s enough to prove that for any a, b with a+ b = d, any partition λ with two

parts, and any monomial m = zα · zβ, α ⊔ β = {1, · · · , N}, we have cλ ·m ∈ I2(a, b). Fix

then such a, b, λ = (λ1, λ2) and m = zα · zβ.

Recall from Section 4 that we can identify m with a tableau of shape λ with 1’s in the

positions indexed by the elements of α, and 2’s in the positions indexed by the elements of β.

Recall also that if m has repeated entries in a column, then cλ ·m = 0. Since permutations

within columns of m can only change the sign of cλ ·m, and permutations of the columns

of m of the same size don’t change the value of cλ ·m, we can assume in fact that

m = z{1,··· ,d} · z{d+1,··· ,N} =
1 1 1 · · · 2 2 · · ·
2 2 · · ·

.

Consider the sets

α1 = {2, · · · , a+ 1}, α2 = {1, · · · , d} \ α1, β1 and β2 = {d+ 1, · · · , N} \ β1,

where β1 is any subset with a elements of {d+1, · · · , N} containing λ1 +1. It follows that

[α1, β1|α2, β2] = zα1∪α2
· zβ1∪β2

− zα1∪β2
· zα2∪β1

= m−m′,

where m′ is a tableau with two equal entries in the first column. We get

cλm = cλ(m−m′) = cλ[α1, β1|α2, β2] ∈ I2(a, b),

completing the proof. �
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Remark 6.2. The characteristic zero case is really much simpler than that: since all the

partitions λ that show up have at most two parts, it suffices to prove the theorem when n =

2, but in this case all the catalecticant ideals are the same, as remarked in the introduction.

7. The Proofs

We are now ready to give an affirmative answer to questions Q5a and Q5b in the

introduction.

Theorem 7.1. Let K be a field of characteristic 0 and let n, d ≥ 2 be integers. The following

statements hold:

(1) For all t with 2 ≤ t ≤ d− 2 one has

I3(Cat(2, d− 2;n)) = I3(Cat(t, d− t;n)).

(2) If d ≥ 4 then there is a strict inclusion

I3(Cat(1, d − 1;n)) ( I3(Cat(2, d − 2;n)).

(3) Any of the ideals I3(Cat(t, d − t;n)), 2 ≤ t ≤ d − 2, is the ideal of the first secant

variety to the d-th Veronese embedding of Pn−1
K .

Proof. To prove (1), it suffices by Corollary 5.3 to show that I33 (2, d − 2) = I33 (t, d − t) for

2 ≤ t ≤ d−2. We shall write I3 instead of I33 for the rest of the proof. The λ-highest weight

spaces of all I3(t, d − t), 2 ≤ t ≤ d − 2, are all equal when λ has at most 2 parts. This

follows by combining Corollary 5.3 with the fact that the theorem is known when n = 2.

We shall prove that the λ-part of I3(t, d − t) is equal to the λ-part of W 3
3 for all t with

1 ≤ t ≤ d − 1 (we already know this when t = 1, by Proposition 4.1). This will imply (1)

and the inclusion of (2). The reason why this inclusion is strict for d ≥ 4 is because it is

already strict for n = 2, and inheritance holds for catalecticant ideals by Corollary 5.3.

Consider a partition λ = (λ1, λ2, λ3) with 3 parts, a monomial (tableau) m ∈ W 3
d and

integers 2 ≤ a ≤ b with a + b = d. We shall prove that cλ ·m ∈ I3(a, b). We will see that

if λ has only one entry in the second column, then cλ · m = 0, so let’s assume this isn’t

the case for the moment. We may also harmlessly assume that m has no repeated entries

in a column. Since permuting the numbers 1, 2, 3 in the tableau m doesn’t change m, and

permutations within the columns of m preserve cλ · m up to sign (Lemma 4.2), we may

assume that m contains the subtableau

1 1
2 2
3

in its first two columns (there may or may not be a third box in the second column of λ).
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It follows that m = zγ1zγ2zγ3 , with γ1 = {1, 2, · · · }, γ2 = {λ1 + 1, λ1 + 2, · · · }, γ3 =

{λ1 + λ2 + 1, · · · }, |γi| = d. Consider subsets αi ⊂ γi, |αi| = a satisfying the conditions

1, 2 ∈ α1, λ1 + 1 ∈ α2, λ1 + 2 /∈ α2, λ1 + λ2 + 1, λ1 + λ2 + 2 /∈ α3,

and let βi = γi \ αi, for i = 1, 2, 3. We have

[α1, α2, α3|β1, β2, β3] = m+
5
∑

j=1

±mj,

where each mj is a monomial with repeated entries in one of the first two columns. It

follows that

cλ ·m = cλ · [α1, α2, α3|β1, β2, β3] ∈ I3(a, b),

which is what we wanted to prove.

To see that cλ ·m = 0 for all monomials m when λ = (3d− 2, 1, 1), it suffices to notice

that if σ is the transposition of the (3d− 1)-st and 3d-th boxes of λ (the 2nd and 3rd boxes

in the first column of λ), then σ ·m and m are the same up to permutations of the columns

of m of size 1 (and permutations of 1, 2, 3, the entries of the tableau m). It follows that

cλ ·m = cλ · (σ ·m) = (cλ · σ) ·m = −cλ ·m,

so cλ ·m = 0, as desired. Alternatively, see [Mac79] for a description of the decomposition

of W 3
d into a sum of irreducible representations.

As mentioned in the introduction, part (3) follows from (1), (2) and the result of

Kanev ([Kan99], see also [Lan10], Corollary 6.4.2.4). We include a proof for completeness:

by Proposition 4.1 and Corollary 5.3, the modules in S(r)S(d)V corresponding to partitions

λ with at least 3 parts are contained in I3(1, d − 1;n), hence also in I3(t, d − t;n) for all

t, and in the ideal of σ2(νd(PV
∗)); it remains to check that the modules corresponding

to partitions with at most 2 parts in the ideal of σ2(νd(PV
∗)) are the same as those in

I3(t, d− t;n) for 2 ≤ t ≤ d− 2, but this follows by inheritance from the case of the rational

normal curve (n = 2). �

We now give a more precise description of the degree 3 part of the ideal of the secant

line variety to the Veronese variety.

Theorem 7.2. With the assumptions in Theorem 7.1 and writing Pn−1
K = PV ∗ for some

n-dimensional K-vector space V , the following statements hold:

(1) As GL(V )-representations,

I3(Cat(2, d − 2;n))3 ≃ S(3)S(d)V/

d
⊕

i=0
i 6=1

S(3d−i,i)V.
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(2) The number of generators of the ideal of the first secant variety to the d-th Veronese

embedding of Pn−1
K is, whenever this ideal is nonzero (i.e. n ≥ 3, or n = 2 and

d ≥ 4), given by the formula
(
(n+d−1

d

)

+ 2

3

)

−

(

n+ 2d− 1

2d

)

·

(

n+ d− 1

d

)

+

(

n+ 3d− 2

3d− 1

)

· n−

(

n+ 3d− 1

3d

)

.

Proof. By Corollary 3.7 and part (3) of Theorem 7.1, it follows that I3(Cat(2, d− 2;n))3 is

the kernel of the map

π(2,1) : S(3)S(d)V −→ S(2d)V ⊗ S(d)V ≃

d
⊕

i=0

S(3d−i,i)V,

given on monomials by

zαzβzγ 7→ zα+βzγ + zα+γzβ + zβ+γzα.

It follows that in order to prove (1) it suffices to show that the image of π(2,1) contains all the

irreducible representations in the decomposition of S(2d)V ⊗ S(d)V , except for S(3d−1,1)V .

We will prove the corresponding statement in the generic case, namely for the map

π(2,1) : W
3
d −→ W

(2,1)
d = V(2d) ⊠ V(d).

(see Definition 4.4). V(3d−1,1) does not occur in the decomposition of W 3
d (see [Mac79]

or the proof of the similar statement for V(3d−2,1,1) on the previous page). The trivial

representation V(3d) is in the image of π(2,1), since the image of c(3d) ·m is nonzero for some

(any) monomial m.

Consider now a partition λ = (3d− i, i) with 2 ≤ i ≤ d, and let m be the monomial

m = 1 1 · · · 1 · · · 1 2 · · · 2 3 · · · 3
2 3 · · · 3

,

i.e. m has entries 1, 2 in the first column, 1, 3 in each of the 2nd to the i-th column, and

(d − i) 1’s, (d − 1) 2’s and (d − i + 1) 3’s in the remaining columns. π(2,1)(m) is a sum of

three monomials with corresponding tableaux obtained from the tableau of m by letting

two of the three entries 1, 2, 3 equal. Making 1, 2 or 1, 3 equal yields a tableau with repeated

entries in the 1st or 2nd column, i.e. one that is killed by the symmetrizer cλ. It follows

that

π(2,1)(cλ ·m) = cλ ·m′,

where

m′ = 1 1 · · · 1 · · · 1 2 · · · 2 2 · · · 2
2 2 · · · 2

= z{1,··· ,d} · z{d+1,··· ,3d}.

Now it is not hard to check that

cλ ·m′ = d! · z{1,··· ,d} · z{d+1,··· ,3d} + other terms,

i.e. it is nonzero. This shows that Vλ occurs as a subrepresentation in the image of π(2,1),

finishing the proof of part (1).
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To see why (2) is true, note that since V has dimension n, S(d)V has dimension
(n+d−1

d

)

,

hence

dim(S(3)S(d)V ) =

(
(n+d−1

d

)

+ 2

3

)

.

By Pieri’s rule

S(2d)V ⊗ S(d)V ≃
d
⊕

i=0

S(3d−i,i)V

and

S(3d−1,1)V ≃ S(3d−1)V ⊗ V/S(3d)V.

It follows that

dim(I3(Cat(2, d − 2;n))3) = dim(S(3)S(d)V )− dim(S(2d)V ⊗ S(d)V )

+ dim(S(3d−1)V ⊗ V )− dim(S(3d)V ),

and a simple calculation based on the fact that dim(S(r)V ) =
(n+r−1

r

)

yields the desired

formula. �
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