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Abstract—We consider the problem of decentralized power inthe other scenario where the users are competing agaiast o

allocation for competitive rate-maximization in a frequency-
selective Gaussian interference channel under bounded chael
uncertainty. We formulate a distribution-free robust fram ework
for the rate-maximization game. The solution to the proposd

another and aiming to maximize their own information rates.
This competitive rate-maximization problem can be modklle
as a strategic noncooperative game. The Nash equilibfijim [8

game has each user formulating a best response to the worst-Of this game can be achieved via a distributed waterfilling

case interference. We present the robust-optimization edlibrium
for this game and derive sufficient conditions for its existace
and uniqueness. We show that an iterative waterfilling algathm
converges to this equilibrium under certain sufficient condtions.
The set of channel coefficients for which the robust-optimiation
equilibrium is unique and the iterative waterfilling algori thm
converges shrinks as the channel uncertainty bound increas.
We analyse the social properties of the equilibrium under vaying
channel uncertainty bounds for the two-user case. We provera
interesting phenomenon that increasing channel uncertaity can
lead to a more efficient equilibrium, and hence, a better sumate
in certain multi-user communication systems.

Index Terms—Game theory, rate-maximization, Nash equilib-
rium, waterfilling, CSI uncertainty, robust optimization.

I. INTRODUCTION

algorithm where each user performs waterfilling by consider
ing the multi-user interference as an additive colouredgeoi
However, most of the current results on rate-maximization
and waterfilling algorithms assume the availability of petf
information which is a strong requirement and cannot be met
by practical systems.

This paper addresses the following fundamental questions:
i) How can the users independently allocate power if the
channel state information (CSI) they have is imperfect? How
can we formulate a rate maximization game under channel
uncertainty and what is the nature of the equilibrium of this
game? ii) What are the existence and uniqueness propefties o
such an equilibrium? How can such a solution be computed
by a distributed algorithm and what are the conditions for
asymptotic convergence of such an algorithm? iii) How are

Rate-maximization is an important signal processing protiese conditions affected by the channel uncertainty? gV
lem for power-constrained multi-user wireless systems. ift the effect of uncertainty on the sum-rate and the price
involves solving a power control problem for mutually in-of anarchy of such a system? In answering these questions,
terfering users operating across multiple frequencies inwe can gain further insight into the behaviour of waterfdglin
Gaussian interference channel. In modern wireless systeatgorithms and methods to improve sum-rate in general.
where users may enter or leave the system freely and make

decisions independently, decentralized control appreseind
distributed algorithms are necessary. Game-theoretibodst

A. Summary of Main Results

provide an appropriate set of tools for the design of suchThe main contributions of this paper are four-fold. First,
algorithms and have been increasingly used for the analygie provide a game-theoretic solution for the problem of

and study of communications problems [2].

competitive rate-maximization in the presence of channel

In multi-user systems, the users can either cooperate withcertainty. Second, we analyse the existence and unigsiene
each other to achieve a socially optimal solution or compe® the equilibrium, along with the asymptotic convergence
against one another to optimize their own selfish objective® the algorithm used to compute this equilibrium. Third,
Cooperative game-theoretic approaches to the problem vg# analyse the efficiency of the equilibrium as a function
power control in wireless networks have been investigated @f the channel uncertainty bound. Finally, we verify these

[3], [4] and surveyed in [5]E[7]. In this paper, we are intetes
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results via simulations. We prove an interesting phenomeno
that for systems with significant interference, boundedalea
uncertainty leads to an improved sum-rate but at the cost of
guaranteed uniqueness of the equilibrium and asymptotie co
vergence of the algorithm compared to the nominal solution
with no uncertainty.

For systems with bounded channel uncertainty, we present
a distribution-free robust formulation of the rate-maxation
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in the CSI. In this game, the users formulate best responses t
the worst-case multi-user interference under boundedreian
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uncertainty. We present the robust-optimization equiliior wherein techniques to define the uncertainty set such tegt th
(RE) for this game. At the RE, the users perform a modifiezhn be solved distributively by robust optimization tecjugs
waterfilling operation where frequency-overlap among sisesre presented. IN_[22], incomplete-information finite game
is penalized. We derive sufficient conditions for the exisee have been modelled as a distribution-frebust gamewhere
and uniqueness of the equilibrium. We provide sufficienbe players use a robust optimization approach to counter
conditions for the convergence of an asynchronous iteratibounded payoff uncertainty. This robust game model also
waterfilling algorithm for computing the equilibrium of #i introduced a distribution-free equilibrium concept cdllghe
game. Compared with the Nash equilibrium for the rate@ebust-optimization equilibriumon which our approach is
maximization game under perfect CSl [9], we show that the dedsed.
of channel coefficients for which the equilibrium is guaeset A brief look at a robust optimization approach for the
to be unique and the algorithm is guaranteed to convengde-maximization game with uncertainty in the noise-plus
shrinks when the channel uncertainty bound or the numbeterference estimate has been presented_ih [23], where the
of users increases. We also find that more iterations of thathors present a numerically computed algorithm unlile th
algorithm are needed to converge to the equilibrium as toksed form results presented here. Such a numerical soluti
uncertainty bound increases. Thus, channel uncertairtyien prevents further mathematical analysis of the equilibramd
a cost in terms of more stringent conditions for existenag aits behaviour under different uncertainty bounds. Alsas th
unigueness of equilibrium. uncertainty model is different from ours, where we assume
We investigate the effect of channel uncertainty on the sunie availability of CSI of the interfering channels and that
rate of the system for the two-user case under two scenarithgse quantities have a bounded uncertainty.
viz., a two-frequency system and a system with large numberA similar problem of rate-maximization in the presence
of frequencies. For the two-frequency system, the equilibr of uncertainty in the estimate of noise-plus-interferetese
sum-rate improves and the price of anarchy decreasese#s due to quantization in the feedback channel has been
the channel uncertainty increases under high interferéDoe considered in[[24]. This problem has been solved using a
the other hand, the behavior is reversed at low interferengeobabilistically constrained optimization approach asdin
For the system with asymptotic number of frequencies, vwir work, also results in the waterfilling solution movingsér
show that increasing channel uncertainty always drives ttee an FDMA solution, with corresponding improvement in
equilibrium closer to a frequency division multiple accessum-rate. However, the effect of quantization on the coorait
(FDMA) solution for any set of channel coefficients. This isor existence and uniqueness of the equilibrium and conver-
because under increased uncertainty, the users become rgerece of the algorithm have not been considered. The results
conservative about causing interference and this leadstterb presented in[[24] are for a sequentially updated algorithm
partitioning of the frequencies among the users. Undeairtertwhereas our results allow asynchronous (and thus seqlientia
channel conditions, this also translates to an improverimentor simultaneous) updates to the algorithm. Also, the power
the sum-rate and a decrease in the price of anarchy of #ilcations computed by such a probabilistic optimizafimn
system. Thus, we show an interesting phenomenon whenelation do not guarantee that the information rates exgect
increased channel uncertainty can lead to a more efficientl be achieved for all channel realizations, unlike ourrste
equilibrium, and hence, a better sum-rate in certain nugér case optimization formulation. Furthermore, the relagveor

communication systems (and not just the absolute error due to quantization) in the
interference estimate as defined [n1[24] is assumed to be
B. Related Work bounded and drawn from a uniform distribution, which is

An iterative waterfilling algorithm for maximizing infor- inaccurate. In addition, this bound on the relative erran ca
mation rates in digital subscriber line systenmis][10] is amnly be computed if the noise variance at the receivers is
early application of a game-theoretic approach to desggain assumed to be known (which is not the case). The bounds
decentralized algorithm for multi-user dynamic power coht computed in such a fashion are very loose and will degrade
This framework has been further analysed and extendéd,in [System performance. The other assumption that this relativ
[11]-[14]. The inefficiency of the Nash equilibrium (whicherror bound is in the rangé,1) means that the absolute
need not be Pareto optimal) has been addressed in [15] aueéntization error has to be less than the noise variandeat t
[16] and methods to improve the sum-rate of the system bgceivers, which restricts the applicability of the apmtoeOur
using various pricing schemes and modified utility funcsionproblem formulation has no such limitation on the uncettain
have been presented In [14], [17],[18]. A centralized colfgr bound based on the noise variances in the system.
maximizing the sum-rate of the system leads to a non-convexRobust rate-maximization for a cognitive radio scenario
optimization problem and has been shown to be strongly N®R4th uncertainty in the channel to the primary user has
hard in [19]. The Pareto-optimality of the FDMA solutionbeen presented im [25]. This leads to a noncooperative game
for this sum-rate maximization problem under certain clghnrformulation without any uncertainties in the payoff fumcts
conditions has been proved in [20]. of the game (unlike in our case) with robust interferencétim

Uncertainty in game theory and distributed optimizatioacting as a constraint on the admissible set of strategtgs. T
problems has only recently been investigated. The issue gafme is then solved by numerical optimization as there is no
bounded uncertainty in specific distributed optimizatioalp closed form solution.
lems in communication networks has been investigateldih [21 Initial results of our work, involving the problem formula-



tion of the robust rate-maximization game and the results fBach receiver computes the optimal power allocation across
sufficient conditions for existence and uniqueness of the-eqthe frequency bins for its own link and transmits it back te th
librium, along with the conditions for asymptotic convenge corresponding transmitter in a low bit-rate error-freedtesck

of the waterfilling algorithm to the equilibrium, have beerthannel. Note that this leads to sharing of more information
presented in(J1]. We now extend this work to include detailecbmpared to other works in literature such(as [9]. The chlanne
proofs and analysis of the efficiency of the equilibrium as state information estimated by each receiver is assumed to

function of the channel uncertainty bound. have a bounded uncertainty of unknown distribution. Edligds
_ is often used to approximate complicated uncertainty &8k [
C. Paper Outline We consider that at each frequency, the uncertainty in the

This paper is organized as follows: Sectioh 1l describediannel state information of each user is deterministicall
the system model and provides the necessary preliminariggdelled under an ellipsoid approximation as
Section[l] formulates the robust game model for the rate-
maximization game for the SISO frequency-selective Gamssi ~ F4 = {Frq(k) +AF gk - Z |AF,qk|* < 63}, 1)
interference channel. SectibnllV presents the robust filater r#q
ing solution for the robust rate-maximization game. Sed#b for = 1,..., N, wheree, > 0V ¢ € Q is the uncertainty
presents the robust-optimization equilibrium for this @myound and
and conditions for its existence and uniqueness, along with a |Hrg(R)?
the conditions for asymptotic convergence of the waterdlli  |Hye(B)|?

algorithm to the equilibrium. Sectidn VI presents the asaly | .- Fy () being the nominal value. We can consider uncer-

?hnet?v(\jo(-efsg: :Z:::ﬁétalsnézt?mn th,ﬁ sm:g;—er?:g gifrrtztlaa;gztl(tex:; ff)arinty in I, instead ofH,.,(k) because a bounded uncertainty
X P iH F,.,(k) and H,,(k) are equivalent, but with different

Frg(F) )

and Sectiof VIl presents the conclusions from this work and ds
possible future research directions. The information rate of usey can be written ad [27]
Il. SYSTEM MODEL AND PRELIMINARIES N pa(k)
Notations used:: Vectors and matrices are denoted by Rq= »_log <1 + 2T . Fro(ip (k))’ 3)
lowercase and uppercase boldface letters respectively. Th k=1 a g AT

operators(-)”, ()", E{-} and|| - || are respectively trans- whereo?(k) £ 2(k)/|Hqq(k)[*. The two popular measures
pose, transpose of matrix inverse, statistical expectadiod of “inefficiency” of the equilibria of a game are the price of
Euclidean norm operators. The diagonal matrix with thgnarchy and the price of stability. The price of anarchy is
arguments as diagonal elements is denotediyg(-). The (efined as the ratio between the objective function value at
quantity [A];; refers to the(i, j)-th element ofA. RT"™" is the socially optimal solution and theorst objective function

the set ofim x n matrices with real non-negative elements. Thggjue at any equilibrium of the gamé [28]. The price of
spectral radius (largest eigenvalue) of matAxis denoted stapility is defined as the ratio between the objective fionct

by p(A). The operatioriz]; is defined asz]; = aif © < yajue at the socially optimal solution and tbestobjective

a; wifa < @ < b bif 2 > b and (2)" £ max(0,7). function value at any equilibrium of the gamz [28]. We
The matrix projection onto the convex sét is denoted by consider the sum-rate of the system as the social objective

[x].2 £ argminse o ||z — x||2. The termw > 0 indicates that function. The sum-rate of the system is given by
all elements ofw are positive andX > 0 indicates that the

. . . . Q
matrix X is positive definite. S — Z R,
qg=1

(4)

We consider a system similar to the one [in [9], which is
a frequency-selective Gaussian interference channel With
frequencies, composed fSISO links.Q2 £ {1,...,Q}isthe In our case, the price of stability and anarchy are the same
set of the players (i.e. SISO links). The quantity,,(k) de- as we prove the sufficient conditions for the existence of a
notes the normalized frequency response of the k-th frazyueninique equilibrium in Theoreifl 2. Thus, the price of anarchy,
bin of the channel between sourgeand destination;. The PoA, is the ratio of the sum-rate of the system at the social
variance of the zero-mean circularly symmetric complexssauoptimal solution,S*, and the sum-rate of the system at the
sian noise at receivey in the frequency birk is denoted by robust-optimization equilibriums™®, i.e.,

o2(k). The channel is assumed to be quasi-stationary for the S

q

duration of the transmission. Let’(k) £ 62(k)/|Hgq(k)|? PoA = Grob ()

anci the total transmit power of useibe N 1. Let the_vector Note that a lower price of anarchy indicates that the equilib

Sq = [84(1) 54(2) ... s4(IV)] be theN symbols transmitted by (i,m is more efficient.

userg on the N frequency bins ang, (k) = E{|s,(k)|*}/P,

be the power allocated to theth frequency bin by usey and

Py = [pg(1) py(2) ... py(N)] be the power allocation vector. ) i
Each receiver estimates the channel between itself and/| Nominal Game - No Channel Uncertainty

the transmitters, which is private information. The powds-a  The problem of power allocation across the frequency bins

cation vectors are public information, i.e. known to all igse is cast as a strategic noncooperative game with the SIS® link

IIl. ROBUSTRATE-MAXIMIZATION GAME FORMULATION



as players and their information rates as pay-off funct{Sjis a form represented by protection functiohs|[21] as{q € Q,
under the following two constraints:

N
k
o Maximum total transmit powzr for each user Hll)zzxArgjgk kz::l log <1+o§(/~c)+z (Frf(qk()J)rAFTq,k)pT(k))
B{lls 3}/ Py =Sl (B) <N, (©) o,
) ) . S. t. . < €, )
for ¢ =1,...,Q, where P, is power in units of energy 5.1 ; (A" < €g Pq €Py (11)
per transmitted symbol. 7
« Spectral mask constraints From the Cauchy-Schwarz inequalify [29], we get
1
E{[sq(k)I*}/ Py = pg(k) < pi*(k), 7 ’
{|Sq( )l }/ q pq( ) —pq ( ) ( ) ZAFrq,kpr(k) S [Z|AFrq,k|2Z|pr(k)|2:|
for k =1,...,N andq = 1,...,Q, wherep**(k) is r#4q r#4q r#q (12)
the maximum power that is allowed to be allocated by <e, Z#q p2(k)

userq for the frequency birk.
Mathematically, the nominal gani"°™ can be written as Using [12), we get the robust gam&°" as, Vg € €,

N N
pq(k
max Zlog <1 + Pq(F) ) II%)&XZlOg <1—|— 20 3 F (k)q((;)+ > 2(k)>
Pq 1 = r T r
o3+ D FraOpeR) vgen, N L SBR[ 2P
r#q
ot pi e s.t. Py € Py (13)

. _ - ® Now that we have defined the problem for robust rate-
where 2 = {1,...,Q} is the set of theQ) players (i.e. the maximization under bounded channel uncertainty, we ptesen
SISO links) andP, is the set of admissible strategies of usehe solution to the optimization problem i {13) for a single
g, which is defined as user in the following section.

N
1z 2 {pq cRN . %qu(k) =1, IV. ROBUSTWATERFILLING SOLUTION
k=1 9) The closed-form solution to the robust optimization proble
0 < py(k) < pI®(k), k = 17_._7]\,}. in (@3) for any particular usey is given by the following
theorem:

The inequality constraint i 16) is replaced with the edyali Theorem 1. Given the set of power allocations of other users
constraint in [®) as, at the optimum of each problem[in @b, 2 {pP1,...,Pg—1.Pgt1,.--.P0}. the solution to the
the constraint must be satisfied with equality. To avoid thgpust optimization problem of user

trivial solution p,(k) = pj**(k) Vk, it is assumed that N
Zﬁ;lp;naw > N. Further, the players can be limited to puremaxzjlOg (1+ pq(k) )
strategies instead of mixed strategies, as shown ih [16]. Py o2(k) +3 Frq(k)p, (k) +eq | p2(K)
r#q r#q
S.t. Ppg € Py (24)

B. Robust Game - With Channel Uncertainty
) is given by the waterfilling solution
According to the robust game model [22], each player

formulates a best response as the solution of a robust (worst p; = RWFq4(p—¢), (15)
case) optimization problem for the uncertainty in the pay
function (information rate), given the other players’ stres.
If all the players know that everyone else is using the robu

%fhere the waterfilling operatorRWF,(-) is defined as
[RWE, (p—,)], 2
Pq

optimization approach to the payoff uncertainty, they wioul mar (k)
then be able to mutually predict each other’s behaviour. The[uq - ag(k) - Z Frq(k)pr(k) — €4 /Zpg(k)]
r#q

robust game&7*°® where each player formulates a worst-case rq 0
robust optimization problem can be written ag,q € Q, (16)
N for k = 1,..., N, wherey, is chosen to satisfy the power
. N N
o pin 3 log (1 ETESS (zi) ) (k)) ronsam it =
q rq o T i . .
P k=1 q r2q a\")P (10) Proof: This can be shown using the Karush-Kuhn-Tucker
st Fg€Fy (KKT) optimality conditions [26] of this problem. [ |

The robust waterfilling operation for each user is a dis-
tributed worst-case optimization under bounded channel un
where F, is the uncertainty set which is modelled undecertainty. Compared with the original waterfilling opeaoatiin
ellipsoid approximation as shown ifll(1). This optimizatiof9] under perfect CSI (i.ec, = 0), we see that an additional
problem using uncertainty sets can be equivalently written term has appeared ii{16) fey > 0.

Pq € Py,



This additional term can be interpreted as a penalty f@ontraction Property of the Waterfilling Projection
allocatir_lg power to frequencies having a large product of The contraction property of the waterfilling mapping is
uncertainty bound and norm of the powers of the other played@en by the following lemma:
currently transmitting in those frequencies. This is beedahe
users assume the worst-case interference from other usrslemma 1. Givenw = [wy,...,wg]" > 0, the mapping
are thus conservative about allocating power to such ctgnn@WF(-) defined in(39) satisfies

where there is a strong presence of other users. ||RWF (p(l)) — RWF (p(z))Hw < |IS™me LBV,
2,block — oo, ma

x Hp(l) - p(Q)HZblock’
(26)

A. Robust Waterfilling as a Projection Operation vpW, p® e P, E and S as defined in(24) and (23)
respectively. Furthermore, if
Let ®,(k) represent the denominator terms [inl(14), which s
is the worst-case noise+interference IS +E|

for somew > 0, then the mappingRWF(-) is a block
2
Oy(k) £ 02(k) + > Frg(R)pr(k) + g /%:P%(k)- (I7) " contraction with modulus: = ||S™** 4 E||%
r#q

oco,mat*
r#q

. - . Proof: See AppendikcA. [
::ta:aSe bi?]f:r Srg?e\,ana?Eh@eO]ELthit dégi Wg[.ee r(iltliltl)nng O?paersggn Having derived the robust waterfilling solution for a single
. P . . Proj -~ H%er in the presence of channel uncertainty, we consider
onto a simplex. Using this framework, the robust waterfjlin

: : > _whether a stable equilibrium for the system exists and if so,
operator in[(IB) can be expressed as the Euclidean prajectiq . . ; . .
. tit t dh t b ted th
of the vector®, £ [®,(1),...,®,(N)]T onto the simplexP, a> I's properties are and how 1t can be comptied in the

multi-user scenario in the following section.

L < 1, (27)

w
0o, ma

defined in [9):
RWF(p—q) = [ — @q}Pq, (18) V. ROBUST-OPTIMIZATION EQUILIBRIUM
which can be conveniently written as The solution to the gam@™® is the robust-optimization
equilibrium (RE). At any robust-optimization equilibriuf
RWF,(p_,) = [_ oy Z F,.pr — quq} . (19) this game, the optimum action profile of the playeﬁ;}qeg-z _
s P, must satisfy the following set of simultaneous waterfilling
equations¥qg € €,
where
T »=RWF(p},---,P;_1:Prs1,---,P5) = RWF(p*,).
op 2 [02(1),.., 02N (0) P alPTy o P P+ PQ) Py
F,, £ Diag (Fw(l), .. -7Frq(N))7 (21) It can easily be verified that the RE reduces to the Nash
T equilibrium of the systeni[9] when there is no uncertainty in
£ 2 { IS L p2() S ?N] _(22) the system. In Section VI, we analyse the global efficiency
! ZorzaPr(l) ZrzPr(V)] - (22) of the RE and show that the RE has a higher efficiency than

the Nash equilibrium due to a penalty for interference which

Let V' = {1,..., N} be the set of frequency bins. L&t encourages better partitioning of the frequency space gmon

denote the set of frequency bins that ugexould never use

. tme users.
as the best response to any set of strategies adopted by the
other users,

A. Analysis of the RE of Gan#™"
Dgé{ke {1,...,N}:

(23) The contraction property of the waterfilling mapping is
useful in the analysis of the equilibrium of gar@°’. The
sufficient condition for existence and uniqueness of the RE o

whereP_, 2 Py x -+ x Py X Pyy1 X -+ X Pg. The non- game%*° is given by the following theorem:

[RWFQ(P—q)]k =0 Vp_4€ P—q}

P i max xXQ i
negative matrice® andS™** € RY" are defined as Theorem 2. Game%™" has at least one equilibrium for any
¢ if g set of channel matrices and transmit powers of the users.
[E]yr & { 0q7’ otherwiSé (24) Furthermore, the equilibrium is unique if
and p(S™7) < 1= p(B), (29)
max_ Frq(k) if g whereE and S are as defined ir24) and (23) respectively.
mazx A keD,ND, ’ ’
[8™] { 0 ! otherwis (25) Proof: See AppendixB. [ |
’ & In the absence of uncertainty, i.e. whep= 0 Vg € €,
whereD, is any subset of1,..., N} such that\' —D; C we can see that this condition reduces to conditiom) (id

D, C{1,...,N}. [9] as expected. Since(E) > 0, the condition onS™*



Algorithm 1 — Robust Iterative Waterfilling Algorithm robust iterative waterfilling algorithm described in Aligom([T

Input: converges to the unique RE of gam#&°® for any set of
Q: Set of users in the system feasible initial conditions and any update schedule. m
P,: Set of admissible strategies of user The global convergence of the distributed robust iterative
7,: Set of time instants: when the power vectopé") of Wwaterfilling algorithm to the unique RE is guaranteed by
userq is updated Theorem B using conditiol (P9) despite gasfe® and the

T: Number of iterations for which the algorithm is run ~ waterfilling operationRWF(-) being nonlinear. Also, from
T;Z(n): Time of the most recent power allocation of user Lemmall, we can see that the modulus of the Waterfllllng

available to user at timen contraction increases as uncertainty increases. Thisdtes
RWF,(-): Robust waterfilling operation i {16) that the convergence of the iterative waterfilling algarith
Initialization: n = 0 andpgo) —anyp e P,, YgeQ b_ecome_:s slower as the uncertainty increases, a_s_shown in
for n—0to T do simulation results. Also, the set of channel coefficients fo

(n+1) | BWEFq (p(_T;(M))’ if neT,, which convergence of the algorithm is guaranteed reduces as

Py = Vg € Q.  the uncertainty bound increases.
p{", otherwise, o

end for Corollary 1. When the uncertainties of all th€ users

are equal (saye), the RE of the gamé&*°® is unique and
Algorithm[ converges to the unique RE of gaf&® as

becomes more stringent as the uncertainty bound increases;” o° for any set of feasible initial condition if

i.e. the set of_ phgnngl coefficients for which the existen’ce_o p(S™T) <1 — ¢(Q —1) (31)

a unique equilibrium is guaranteed shrinks as the uncéytain

bound increases. Proof: When the uncertainties of al) users ise, we get
p(E) = e(Q - 1) 0

The above corollary explicitly shows how the uncertainty
bound and the number of users in the system affect the

In this section, the iterative waterfilling algorithm bas&u existence of the equilibrium and the convergence to the
the one presented inl[9] for computing the robust-optintrat equilibrium using an iterative waterfilling algorithm. Far
equilibrium is presented. We shall first present an overviefixed uncertainty bound, as the number of users in the system
of the assumptions for the asynchronous iterative waiedill increases, there is a larger amount of uncertain informatio
algorithm followed by the modified waterfilling algorithm toin the system. Hence, the probability that a given system for
compute the robust-optimization equilibrium. a fixed uncertainty bound will converge will decrease as the

Letthe discrete séf = N = {1,2,... } be the set of times number of users in the system increases. Alse(@—1) > 1,
at which one or more users update their strategies/abe the we will not have a guaranteed unique equilibrium and algerit
number of iterations for which the algorithm is run. L;@E;”) mic convergence for non-zero uncertainty bounds regasdies
denote the vector power allocation of usgemt the discrete the channel coefficients. This will help designers plan Far t
timen, and let7, C 7 denote the set of time instantswhen appropriate uncertainty bounds based on the planned number
the power vectopé") of usergq is updated. Let?(n) denote of users in the system.
the time of the most recent power allocation information of

userr which is available to useg at timen (Note that0 < V|, EFFICIENCY AT THE EQUILIBRIUM — TwO-USER CASE
74(n) < n). Hence, if the strategy of useris updated at time

B. Iterative Algorithm for Robust Waterfilling

In this section, we analyse the effect of uncertainty on the

n, then social output of the system. For the two user case, the worst-
p(f"(n)) 2 <p(ff(n)) p(f;ll(n)) case interference in each frequency reduceq #p, (k) +
—q ! et ’ €q)pr(k) with ¢,r = 1,2 and ¢ # r. This means that the
(T(;z+1(n)) (ng(n))> (30) r(_)bust waterfilling operatior_l for the tvyo user cagg=£2)is
Pg+1 1o Pg . simply the standard waterfilling solution with the worstea

] ] o . channel coefficients. We restrict the analysis to the twer-us
The robust asynchronous iterative waterfilling algoritton f 56 with identical noise variano%(k) — o2 Vk, q across all
1 rob ; 1 1 1 H . . . . ’
computing the RE of gam@™" in a distributed fashion is gequencies and identical uncertainty bourgs= e, = ¢ and
described in Algorithnii]l. The convergence of Algorithim 1 gyt power constraintgiv,lpl(k) _ 25—1192(/‘?) — 1 for

guaranteed under the following sufficiency condition: both users. We analyse the sum-rate of the system at the RE

Theorem 3. The asynchronous iterative waterfilling algorithmfor two cases, smallY' = 2) number of frequencies and large
described in Algorithrii]1 converges to the unique RE of garf® — oo) number of frequencies.

@b as the number of iterations for which the algorithm

is run, T — oo for any set of feasible initial conditions if A, Two Frequency CaseV( = 2)

condition 29) is safisfied. Consider a two-frequency anti-symmetric system as shown

Proof: From Lemmdl and(63) the waterfilling mappingn Figure [1 where the channel gains afél;(1)|> =
RWF(-) is a block-contraction. Froni[31, Theorem 2], théH;1(2)]? = |Ha(1)]? = |H2(2)]*> = 1;|H12(2)]* =



Rx 1 as a measure of the extent of partitioning of the frequency
It is minimum (J(k) = —1) when both the users allocate all
their total power to the same frequenkyand is maximum
(J(k) = 0) when at most one user is occupying the frequency
k. Note thatJ(k) = 0 Vk € {1,..., N} when the users adopt
an FDMA scheme.
The following lemma describes the effect of the uncertainty

w2 [} ] RX2 " bound on the extent of partitioning of the system:

Fig. 1. Anti-symmetric system with) = 2, N = 2,e; = €2 = | emma 2. When the number of frequencies, — oo, the

€ and the noise varianc_es for both users in both frequenciggent of partitioning in every frequency is non-decregsis

is o®. The channel gains aré#1:1(1)]* = |[H11(2)]> = the uncertainty bound of the system increases for any set of
[Hy2(1)]* = |H22)? = L;|Hi12(2)]> = [H21(1)]*> = @ channel matrices, i.e.,

and |H2(1)]? = |H21(2)]? = ma with m > 1 and

0 < a < 1. The power allocations for this system at the robust- 4 J(k)>0 Vke{l,...,N} when N - o0 (37)
optimization equilibrium are presented [n132),1(38).1 (a#x de

33). with equality for frequencies wheré(k) = 0, where J (k) is
defined in(38).
_ Proof: See AppendikD. [
|Ho1 (1) = a and|Hyp(1)]* = [H2(2)]” = mawithm > 1 The above lemma suggests that the robust-optimization
and0 < a < 1. From [16) the power allocations at the robustequilibrium moves towards greater frequency-space jiarit
optimization equilibrium of this system are, ing as the uncertainty bound increases when there is a large
1 - 1+ 32 num_ber of frequencies in the system. In oth_er words, the RE is
pi(1) = 02 (o )p2(1)] ’+ (32) moving closer to an FDMA solution under increased channel
pi(2) = [m—o” = (ma+e)p(2)]7, (33) uncertainty. When the FDMA solution is globally optimal,
p2(l) = [z — o — (ma+e)pi(1)]F, (34) this will lead to an improvement in the performance of the
p2(2) = [u2—o® —(a+e)pi(2)]7T. (35) equilibrium. This is stated in the following theorem:
and the total power constraint for each usepiil) +p; (2) = Theorem 5. As the number of frequenciel, — oo, the sum-

p2(1) + p2(2) = 1. The following theorem presents the effectate (price of anarchy) at robust-optimization equilibmiuof
of uncertainty on the sum-rate and price of anarchy of tH@? system Is non—decr_easmg (non-increasing) as the uncer
system for the high interference and low interference cased@inty bound increases iff k € {1,..., N},

Theorem 4. For the two-user two-frequency anti-symmetric (Fo1(k) — €)(Fi2(k) —€) > 1 (38)

system described above, we have the following results: 4
Proof: Using [20, Corollary 3.1], we find that the sum of

hhﬁe rates of the two users in the frequericis quasi-convex
: : only if Fy(k)Fi2(k) > 1/4. Let C be the minimum number
chanr_1e| uncertalr_lty boun2d INCTEAsES. of frequencies occupied by any user. When there are only
« Low interference: Whem= > map, the sum-rate de- . ,cors and a large number of frequenci@ss 1. If the
creases and the price of anarchy increases as the changg dition Fyy (k) Fya(k) > 1(1+ 510)? is satisfied for some
uncertainty bound increases. C > 2 for all frequenciesk € {1,...,N} (thus satisfying
Proof: See AppendiX L. m Foi(k)Fi2(k) > 1/4), then the Pareto optimal solution is
We can see that even for such a simple system, the glob®MA [20, Theorem 3.3]. This needs to be satisfied for the
behaviour of the robust-optimization equilibrium appetys Worst-case channel coefficients which leadd{d (38). Thes, t
be quite complex. This indicates that the global properti€§lution moving closer to FDMA will improve the sum-rate
of the robust-optimization equilibrium for larger systenss Of the system. From Lemnid 2, the robust equilibrium moves
quite Strong'y dependent on the level of interference in ﬂﬁéﬁser. to FDMA as .Uncertainty increases and thus will result
system, which is seen in the following results with asymiptot!n @n improvement in sum-rate.
number of frequencies. However, the underlying nature ef th The Pareto optimal solution under this condition (which
algorithm for the two-frequency case is that the RE movés FDMA) is constant under varying uncertainty bounds as
towards the FDMA solution as the uncertainty bound increasgUch an uncertainty in the interference coefficiefits(k) and

« High interference: Whew? < «a(1 — p), the sum-rate
increases and the price of anarchy decreases as t

(from (G8)). F5 (k) does not affect the FDMA solution where there is no
interference. Thus, an increase in sum-rate will resultrin a
decrease in price of anarchy. |

B. Large Number of Frequencied/(— o) Remarkl. For the special case of frequency-flat systems, at

the equilibrium, all users have equal power allocation 1o al
frequencies and this is not dependent on the uncertainty in
J(k) & —p1(k)pa(k), (36) the CSI. This leads to no change in the extent of partitioning

We considerJ(k), defined as



and thus sum-rate and price of anarchy are not affected

uncertainty. 6
Remark2. The results of this section are not just limited to th:
robust-optimization equilibrium for the system presertiede. 5.5
When the uncertainty = 0, the framework presented here cai

be used to analyse the behaviour of the Nash equilibriumeof t % 5
iterative waterfilling algorithm as a function of the interénce £
coefficients. 34°
Remark3. The modified waterfilling operation if_(IL6) can alsc 4
be used as a pricing mechanism to achieve improved sum-t
performance in a system with no uncertainty wherés a 3.5
design parameter, with all the analytical results preseheze

still being valid. 0.8

0.75

07 0.05
VIl. SIMULATION RESULTS Interference, o 0.1

. . . . Uncertainty, €
In this section, we present some simulation results to stua, y

the impact of channel uncertainty on the RE by compariri Sum-rate of the system under high interference vs. taingr and
it with the ideal scenario of NE under perfect CSI. Figlire erference.

shows the simulation results for the two user and two fri
guency scenario and Figure 3 shows the results for a two u
case withN = 8 frequencies.

In Figure[2&, we can see the sum-rate at high interferer
in the system shown in Figufé 1 as a function of interferen: 26
and uncertainty. The flat region corresponds to the su
rate at Pareto optimal solution (FDMA) and the edge ¢
the surface corresponds to the sufficient conditior{id (#9).
can be seen that the Nash equilibrium (uncertaiatys 0)
moves closer to the Pareto optimal solution as the intenfere
increases. It is also evident that the sum-rate increasea fc
fixed interference as uncertainty increases, as expeoted fr 2
Theorem[#. In Figuré_2b, we can see the sum-rate at I
interference as a function of interference and uncertain 0
As expected from Theorefd 4, the sum-rate decreases as 0.2
uncertainty increases. Interference, o 0.4 0.15 0.1

The simulation parameters for a system with a larg Uncertainty, ¢
numb_er for frequencies are presented in Fiddre 3. We Stu&}/Sum-rate of the system under low interference vs. uaiteyt and interfer-
three important aspects, namely the percentage of convegge ence.
the total information rate observed at the receivers and the

additional number of frequencies with zero power alloasio 9. 2: Simulation results for the anti-symmetric system in

at the RE when compared to the NE against the percentag{l&ureﬂ' .Not.e that the zero uncertainty corresponds to the
. ash equilibrium
uncertaintys.

In Figure[34, the sum-rate at the Nash equilibrium is when
the uncertainty is zero. We see that the total informatio;igb

2.8

24

Sum-rate

2.2

0.05 0

rate at the NE under perfect CSI is less than the rate tfrfequenmes, which demonfrt]rates thet bettgr par_tlttgnr?h
the RE under imperfect CSI and that the gap in performan ¢ Irequency space among the users 1o reduce interierence.

increases as the uncertainty increases. Under imperfelgt déence, this leads to the higher information rates as obderve
the power allocation using the BEn (@) and [2B) has In I_:igure[?,}a. The simulation results suggest thgt s<_:hemes
higher total information rate as uncertainty increasess Th similar tq the tRE can move hgl(;]se_r tl(:)DiAa'ge:co o_pttlm?hty for
because the users are more cautious about using frequen@&es'max'mlza lon games, which 1S or interierence

with significant interference, thus reducing the total antaf coPstFrf’:uneest]:ystem%[]ZO]. that as th (aifi
interference in the system. n Figur , we observe that as the uncertainiycreases,

In Figure3b, we observe that the total number of channé&e average number of iteration for convergence increases.

each user occupies at the RE decreases when compared with> ex_pect_ed from _Lemnﬁ 1, as the modulus_ of t_he block-
contraction in [Zb) increases as the uncertainty increases

the NE. This implies that the users are using smaller number. ™ . . : .
P g bﬁus indicates that the step size of each iteration reduses a

1(I8) and[(ZB) are in terms of absolute uncertaintyhile the simulations uncertainty 'ncr.easesj leading to slower Convergencle'
use relative uncertainty. They are equivalent to one another. From these simulations we can see that the analytical sesult



derived in Sectiod_ VI for very large number of frequencies
are also true for as few a& = 8 frequencies. From the
simulation results and the theoretical analysis, we caclode
that the robust-optimization equilibrium moves towards an
FDMA solution as the uncertainty bound increases for any
number of frequencies.

w

ysgm

VIII. CONCLUSIONS

In this paper, we have presented a novel approach for rate-
maximization games under bounded channel state informatio
uncertainty. We have introduced a distribution-free rotios
mulation for the rate-maximization game. The solution tg th
i ‘ ‘ ‘ ‘ game has been shown to be a modified waterfilling operation.
0 10 Peﬁgemage O?‘fmcenaim‘)‘,o 50 The robust-optimization equilibrium (RE) for this game has

been presented and sufficient conditions for its existence,
unigueness and asymptotic convergence of the algorithm to
the RE have been derived. The set of channel coefficients for
which there exists a guaranteed unique equilibrium has been
shown to shrink as the uncertainty bound is increased. or th
two-user case, the effect of uncertainty on the social dutpu
of the system has been analysed. We show that the RE moves
towards an FDMA solution as the uncertainty bound increases
when the number of frequencies in the system becomes asymp-
totically large. Thus, an interesting effect of improveran
sum-rate as the uncertainty bound increases is observed. In
summary, for systems with significant interference, boande
channel uncertainty leads to an improved sum-rate but at
the cost of guaranteed convergence. This framework can be
extended to MIMO rate-maximization games, cognitive radio

0 10 20 30 a0 50 with various interference constraints and other noncaatjper
Percentage of uncertainty games

Sum-rgote of s
~

36

(a) Sum-rate of the system vs. uncertaidty

no of channels / user
i o 3
N foe) “P 0

Avg

N
@

(b) Average number of channels occupied per user vs. umugra
APPENDIX

3 ; ‘ : : A. Proof of Lemma&ll
Given the waterfilling mappin®WF (-) defined as
RWEF(p) = (RWF4(p—q))gen = P+ P, (39)

where P £ P; x --- x Pg, with P, and RWF,(p_,)
respectively defined i {9) and {19), the block-maximum norm

iterations
N
q

N)
<

o is defined as[32]
< || RWFq(py )|
Z w N alPq)||y
|| RWE (D) |2 100 = Py W, - (40)
10-
wherew £ [w1, ..., wg]T > 0 is any positive weight vector.

The vector weighted maximum norm is given hy][29]

10 20 30 40 50
Percentage of uncertainty

o(.ﬂ

! émaxw, w>0, xecR®? (41)

% s £ max 0

(c) Average number of iterations vs. uncertaiidty

Fig. 3: Simulation results for a system with= 0.1, Q = 2 The matrix weighted maximum norm is given ly [29]

users andV = 8 frequencies over 1000 runs. Channel gains 1<

H,g(k) ~ CN(0,1) for r # g, Hyg(k) ~ CN'(0,4). Channel  [|A[[% 0 £ max— > " [[Alglw,, A €RO*?. (42)
uncertainty model: nominal valué’ (k) = F3*(k)(1 + R

erg(k)) With e.q(k) ~ U(—5,3), § < 1. The simulations  The mappingRWF(:) is said to be a block-contractn
are limited to channels which satisfy the sufficiency candit with modulusa with respect to the norrﬂ . if there
in (29). Note that the zero uncertainty corresponds to th&hNa

equilibrium 2The mappingT is called a block-contraction with modulus € [0, 1) if
it is a contraction in the block-maximum norm with modukug32].

‘ ‘;jblock
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existsa € [0, 1) such thatyp®,p? e P,
| RWF (p™")) _RWF(p(Q))H;block < af }p(l) -p® | };block’

wherep(® = (pff), .pd ) fori=1,2.

. T
Given £ = ||/, (1), z#quuv)@j
for 4 = 1,2, for each ¢ € Q, let
Af, 2 Hf(l) fq@)H and p_ (k) 2
1), -, a1 (6)®, D (), ..., p(k)V]. Then,
r 273
N
Afy= > | [Dop)® = > p2(k)@ (44)
k=1 r#q r#q
- N .12
= (Hpq<k><”|\2—|\pq(k><2>||2)] (45)
Lk=1
TN 17
< ZHp_q<k><l>—p_q<k><2>H2] (46)
Lk=1
= [ 20 Sy (R + p2(0)
—2p, (k) Vp, (k) )r (47)
273
:{ ) ] . (48)
r#q 2

where [46) follows from[[29, Lemma 5.1.2]. Now, define for

eachq € Q,
erwr, 2 ||RWF, (pL) - RWF, (p%)]| . (49)
e = ‘ pi —p?|| (50)
Then, using[(I9) in[{49)rwr, can be written as
ERWF, = { -0y — Z#q Frqu«l) — eqfq(l):| -
q
- |: —0q— Zr;ﬁq Fqu$”2) - quq(z):| (51)
Pqllg
S ZT?ﬁq Frqu“l) + qu(l)
— 2t Frqu) quq(z)H2 (2)
=D Fy (pﬁl) - pﬁz)) + ¢ (fél) - féz))
r#q 2
<[ (b 0) | e - 1
r#q 2
1 2
|| Zare (o),
| (1) :
+ € |2rsq ||Pr — P (55)
<0 (maxic Fry(h)) ||pt = pf
- -1
2
+ €q Zr;ﬁq (1) - p$‘2) ‘ (56)

5 (L, 0[S A @0
r#q r#q
<3 (187 )y + € )er (58)

T#q

v p,g ),pq € P, andV ¢ € Q, where: [G2) follows from
the nonexpansive property of the waterfilling projectib®,[3
Lemma 3]; [B#) follows from the triangle inequality [29[.5p
follows from (48); [56) and[(37) follow from the definition$ o
F,, ande, respectively from[(20) and(50); and{58) follows
from the definition ofS™%* in (28) and Jensen’s inequality
[286].

The set of inequalities il (58) can be written in vector form
as

0 <erwr < (Smaw + E)e (59)

whereE is is defined in[(24) and the vectosgwr ande are
defined as

T
ERWF £ [eprl, ey eRWFQ] , ande = [81. ey eQ]T (60)

Using the vector and matrix weighted maximum norms from
(@) and [4R) respectively (59) can be written as

< [[8™ +Eel|X
< |lsm +ElS

[lerwe ||

oo, vec oo, vec

oo, mat H Hoovcc’( )

V¥ w > 0. Using the block-maximum norni_(4#0), we get
|| RWF (p")) — RWF (p!

H HOOVCC

p!?

) ’ ’2 ,block —

ptt —

62
< [jsme + B[ :

oo, mat ‘2 block

vp®@ ,p@ e P, with E and S as defined in[{24) and_(P5)
respectively. It is clear thaRWF(-) is a block contraction
when|[[S™ + B[ .. <1 |

B. Proof of Theorerhl2

From [33], every concave gaE1dnas at least one robust
equilibrium. For the gamé/™°P:

1) The set of feasible strategy profileB, of each player
q is compact and convex.

2) The payoff function of each playerin (I3) is contin-
uous inp € P and concave ip, € P,.

Thus, the gamé&/*°® has at least one robust equilibrium.
From Lemmal[l, the waterfilling mappinBWF(-) is a
block-contraction if [2]7) is satisfied for some > 0. Thus,
the RE of game/™" is unique (using[31, Theorem 1]). Since
Smer + K is a nonnegative matrix, there exists a positive vector
w such that
||Smaz + E||gvo,mat < 1 (63)

Using [32, Corollary 6.1] and the triangle inequality [28is
is satisfied when
IS™ (1% mat + IEIE mae <1 = p(8™") <1 - p(E)
(64)

3A game is said to be concave if the payoff functions are camemd the
sets of admissible strategies are compact and convex.
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C. Proof of Theoreriil4 equilibrium at zero uncertaintge = 0).

The social optimal solution for this system at high interfer
ence is frequency division multiplexing [20]. In other werd
the frequency space is fully partitioned at the social optim
solution. The sum-rate at the social optimal solution fag th
given system at high interferencg;, is given by

Letp; (1) = p. Hence, by symmetry; (2) = pa(1) = 1—p,
p2(2) = p and uy = ue = p. Consider the interior operating
points of the robust waterfilling operat®&WF,(-) where it is
linear. Eliminatingy from (32) and[(3B), we get

l—a—c¢

- > 0.5. 65 " 1
P 20— (m+1)a/2—¢€) — (65) S =210g(1+§). (74)
The gradient ofp with respect to is The price of anarchy at high interferend®A, is
dp (m—-1a 1
£ = 0. 66 log (1 +
de A0 —(m+Daj2—e2 (66) PoA = log ( ( =) ) (75)
ma2
Thus, the RE moves towards the FDMA solution as the dP N ¢
uncertainty bound increases. Since 42 > 0, we haved oA < 0.
The signal-to-interference-plus-noise ratio (SINR) foet Case 2 Low interfefénce scenarlotr; the low inter-
two users in the two frequency bins is given by ference scenario, i.e. whemap < o7, the signal-to-
interference+noise ratio SINR for the two users in the two
SINR; (1) = SINR2(2) = m , frequency bins can be approximately written as
= _
67) P
1—p ( SINR; (1) = SINR2(2) ~
SINR;(2) = SINRy(1) = ———— . o2’
1®) = SN = o T (76)
and the sum-rate of the system is SINR:(2) = SINRs(1) ~ o2

%_)) + 2log (1—|—

1—p ) The sum-rate of the system at low interference can be approx-
o2 + of

o2 4+ map imated as
(68) —p L p—p
Case 1: High interference scenaritn the high interference S ~ 2log ((1 t3 )( 5—)) = 2log (1+ 2t ).
scenario,c? < a(l — p). Let £ = p/a(l — p). Then, the (77)
SINR for the two users in the two frequency bins can bidow,
approximated as ﬁ B (1 . 1 . D _pz)_l (1-2p) dp
_r =¢, de o2 o2 o2 de
a(l —p) (69) At low interference, the system behaves similar to a pdralle
SINR; (2) = SINRy (1) ~ 1-p _ 12 ) Gaussian channel system. The social optimal solution & thi
map  mas§ scenario is the waterfilling solution and leads to equal powe
The sum-rate of the system at high interference can B#ocation to both bins. The sum-rate at the social optimal
approximated as solution for the given system at low interferenég, is given
L)) = 2log (14— > 1
oﬂg)) = 2log ( +W+§+W2§/’2)-) S* =4log (1—!— 9 2) (79)

Our aim is to analyse the behaviour of the sum-rsitas 1h€ Price of anarchy at low mterferendéoA Is
the uncertaintye increases. To this end, we show that the 4log (1 + 5%) log (1 + L+ 40_4)
gradient of the sum-rate with respecktis positive. Aslog(z) PoA = 2l0g (1 + & + M) " 1+ L+ )
increases monotonically with, we consider & o? o? & (80)
d 1 1 .d¢ (1—p)2\dé Note that, at low interferencepap < 1. From [65), we
&(5 + )=(1- ma2§2)de (1 - )E’ getp = 0.5. Thus thePoA is close to unity. Sincéff <0,
(71) we have-L PoA > 0. [ |

SéQIOg(l—i—

<0. (78)
SINR; (1) = SINR,(2) ~

S~ 2log ((14€)(1+

ma3¢ mp>2

and (1 — %) > 0 sincep > 0.5 andm > 1. Now,

d¢ 1 dp
de a(l—-p)2de’
From [€6), [71) and(72), we get n
nk) = (wm—0® = (Fa+amk) , (@1
ds
1 0. (73) N
‘ pak) = (=0 = (Fa+om®) , (62
Thus, we see that the sum-rate of the system increases as
the uncertainty increases. This also shows that the robustvith S pi(k) = Son_ pa(k) = 1.
optimization equilibrium achieves a higher sum-rate in the Let D;, D, andD,; be the sets of frequencies exclusively
presence of channel uncertainfy > 0) than the Nash used by user 1, user 2 and by both respectively:ané |D;|

D. Proof of Lemma&l2

(72) From [16), the power allocations for the two users at the
robust-optimization equilibrium in thé-th frequency are
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andn, £ |D,| be the number of frequencies exclusively used - _ [W(§ A)X 12] _ (95)
by user 1 and user 2 respectively at the equilibrium. Then, Y(5A)X 1,

from (81) and [(8R), we have, (k) = p1 — of andpz(k) = Due to the nature of the waterfilling functiom; and ns
0V ke Dy andpi(k) = 0 andpa(k) = p2 —0f ¥ k € are non-decreasing piecewise-constant functions:.oThe
D,. The power remaining for allocation to the frequencies igphove derivative exists only in the regions where and
Do = {k1,...,kot} by user 1 and user 2 i —nip1) and p, are constant. From[84, Proposition 2.8.7] and using
(1 — nap2) respectively. A~ =Diag(A;},..., A "), we get

This separation of the frequency-space into exclusive-use A;I _ AﬁleEI —AZIZAEI
and overlapped-use frequencies allows us to analyse the SY%7 ' . ' " o
. : o . = : : (96)
tem without the nonlinear operatign)*. Thus, we can write : :
i i int i AVZALY Al —ANZA
the power allocations at the fixed point in the overlappeg-us R T kot — ko B,

frequency-space as a system of linear equations, X — [A];lz o A;:l Z}T, (97)
pi(k) + (Fau(k) + €)pa(k) = —0® = 0, ke€Dy(83) Y =—[ZA. -+ ZA;'], (98)
(F12(k) + 6)p1(/€) +p2(k) — p2 — o? = 0, keDy(84) - 1 Z Fo1(i) + ¢

) _ ST e
Srep, pr(k) +ni(p —0?) = 1, (85) 7L K€Dy Ai e, B (99)
Yokep,, P2(k) +na(uz —0®) = 1. (86) A Z Fia(i) + € _— Z 1
. . . Az ! Az
Writing these in matrix form we get, k€D, K€Dy
Ak1 0 —Ig_ p(kl) 0o whereA; £ det(Al) =1- (Fgl(i) + E) (Fu (Z) + E),
' : — | (87) AL+ ) (ne+> A~
0 Ay, —ILo| |p(kor) 02 ( K FAI(),)J(F keDOZFAI().H (100)
12 12 D ] M 12 - (ZkGDoL 21Ai ) (ZkGDoL 12A1. ) )
where and
R 1 Fyi(i)+e
al 1 Fo(k)+e alnt O Al — A, A 101
Ak [Fu(k) +e 1] D= 0 mnol’ (88) ’ —Lzﬁ)ﬂ + (1oh)
p(k) 2 [plgg} and ul [”1] . Thus, from [Q2) and(35), we get
D2 2 T
Let P=Xl,=[A'Z1, ... A Z1,] , (102)
Ay, 0 (1, and
AL . B2 | |, C(li_P _ _W(CL_A)X’ (103)
0 Ay, -1, (©9) o OF -
[p(k1) > ALZATIGA'Z1, — A 'GA 71,
C £ [IQ - IQ] and P £ . i=k1
[P (Fot) = : (104)
. kol
so that we can writd (87) as ZAl;lz ZA-'GA 71, —A;ZOILGA;Z:LZb
A B||P 0 i=k1
C D 1, (90) i i
H 2 where
We can solve this system to get = % = [(1) (1)] Vi=1,...,N. (105)
€
-1
Bj = [‘é g] LO} , (91) Therefore, fork = k1, ..., ko,
2
T —
_ [W X} m _ [Xlﬂ ©2) p(k) = [pi(k) pa(k)]" = A;'Z1, (106
Y Z||1: 715 |’ and
where . , d / T
A B W X p'(k) = —p(k) = [ (k) ph(k)] (107)
c b| “|y z| (93) e
Using [32, Fact 10.12.9] and differentiatiig [91) with resp = A'ZY A'GA'Z1, - A'GA'Z1,
to ¢, we get i=k1

(108)

d[P]_ A Bl '[L£A o][A B] '[o (04)
de ||~ |C D 0 o/|C D 1, Consider the extent of partitioning(k) at any frequency.



For frequencies wheré(k) = 0, at least one of the users has|[z]
zero power allocation and that will not change with change in
uncertainty. Thust: J(k) = 0 for k € Dy UD;. Also, in cases 5
whenn; or ny change due to some frequericgropping from
the setD,;, J(k) increases from some negative value to zero.
Let us now consider the extent of partitioning for fre- 141
guencies where both users have non-zero power allocation.
Differentiating the extent of partitioning for frequenky D,;  [5]
with respect toe, we get

d d [6]
&J(k) = d—(—pl(k)l?z(k)) (109)
= —pi(k)p2(k) + pr(k)pay(k)  (110) 7]
= —p(k)"Gp'(k) (111)
., [8]
~ —(a7'z712) G(-A;'GAL'ZL o]
+A; 1221 . 1GA;1212) (112)
= 17z"A; "G ( ZY 'l ATIGAT'GTA, RO
+I)GA,;1212 (113) [y
Let qr 2 GA;'Z1,. UsingG” = G~!' = G, GA;'G =
A;7 andGA,G = Al we get [12]
d T —1 -1 —1 =T AT
= J(k) = af (Ak SZYR ATIA; Ak) Q193]
(114)
Let M, = Y12 AT'A;TAT andQp = A ' - A 'ZM. (14
When n, = o(N) (i.e., whenlimy_,, 5 = 0), we

have the total number of frequencies, + no = O(N).
Since A;'A;TAl = O(1) for eachi and k, we have
My = O(ny) andZ = O(1/N). Thus,

[15]

lim A;'ZM; =0 (115) [16]
N—oo
which means that
Jim QurQf =A+AT -0 (116)
—00

from TheoreniR. Thus we get’ Q;,x > 0 vx € R?*! as its [18§]
symmetric parQ;, + QY is positive definite[[35]. Hence, we

get L J(k) > 0 when N — oo, with equality whenJ (k) =
0. B [19]
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