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AREA MINIMIZERS AND BOUNDARY RIGIDITY OF ALMOST

HYPERBOLIC METRICS

DMITRI BURAGO AND SERGEI IVANOV

Abstract. This paper is a continuation of our paper about boundary rigidity
and filling minimality of metrics close to flat ones. We show that compact
regions close to a hyperbolic one are boundary distance rigid and strict minimal
fillings. We also provide a more invariant view on the approach used in the
above mentioned paper.

1. Introduction and preliminaries

1.1. Minimal surfaces vs. area minimizes: a preliminary discussion. Be-
fore we proceed to the main results of this paper, we begin with a very general
consideration. We want to formulate some open problems followed by a brief dis-
cussion. We begin with the following problem, which sounds extremely naturally,
but we do not know any reference for it.

Let MN be a complete Riemannian manifold and S a compact n-dimensional
surface in M with ∂S 6= ∅. Assume that S is a convex set in the strongest possible
sense, namely for every two points p, q ∈ S, there is a unique shortest path between
p and q inM and this shortest path lies in S. Is it true that S is an area minimizer,
namely that for any other surface S1 such that ∂S1 = ∂S, the n-dimensional area
voln S1 of S1 is greater than that of S?

At first glance, this seems to be a naive question that should be easy. However,
apparently it is not and a solution would imply solutions of some notoriously difficult
problems.

We want to emphasize the difference between minimal surfaces (in the varia-
tional sense), local area minimizers (that is, minimizing the area among all nearby
surfaces) and global area minimizers. In the above question, S is totally geodesic
and hence is a minimal surface. Moreover one can show that (any proper subregion
of) S is a local minimizer (we do not give a proof here since we do not use this
fact). The problem begins when we are looking for global minimality.

We know only two general methods of proving global minimality: constructing
a projection or a calibrating form.

A projection is a map P : M → S such that it is the identity on S and does
not increase n-dimensional areas. This condition is equivalent to saying that the
n-dimensional Jacobian of P is no greater than 1 everywhere on M . (If in addition
this Jacobian is strictly less than 1 outside S, the projection guarantees that S
is a unique area minimizer among the surfaces with the same boundary.) It is
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very unlikely that such a projection exists for all minimizers even if there are no
topological obstructions.

A more general method is constructing a calibration form, that is a closed n-
form ω on M such that the restriction of ω to S is the n-dimensional volume form
of S and the norm of ω is less than 1 outside S. Then by Stokes’ Formula we
immediately solve the problem (for orientable surfaces).

However there is a difficulty with both methods. Imagine that there exists a
surface S2 such that its boundary ∂S2 = 10 · ∂S (that is, ∂S2 covers ∂S 10 times)
and voln S2 < 10 voln S. In this case we say that S is not stably minimizing. Such
a surface can be an area minimizer but none of the above two methods can prove
this. Such phenomena take place in a situation rather close to the one that will
be discussed in this paper. Namely, regions of affine subspaces in normed spaces
can be global minimizers but not stably minimizing surfaces (with respect to the
Holmes-Thompson surface area [10]), see [3] and [4].

1.2. Boundary rigidity and minimal fillings. Now let us present our general
set-up and explain why it is directly related to the above discussion. This paper
is a continuation of [1] and we borrow large parts of introduction and formulations
from there. We hope that we also can give a better and more invariant insight into
what is done in [1], especially due to Proposition 3.6.

Let M = (Mn, g) be a compact Riemannian manifold with boundary ∂M . Its
boundary distance function, denoted by bdM , is the restriction of the Riemannian
distance dM to ∂M × ∂M . The term “boundary rigidity” means that the metric is
uniquely determined by its boundary distance function. More precisely,

Definition 1.1. M is boundary rigid if every compact Riemannian manifold M ′

with the same boundary and the same boundary distance function is isometric to
M via a boundary preserving isometry.

It is easy to construct metrics that are not boundary rigid. For example, consider
a metric on a disc with a “big bump” around a point p, such that the distance from
p to the boundary is greater than the diameter of the boundary. Since no minimal
geodesic between boundary points passes through p, a perturbation of the metric
near p does not change the boundary distance function.

Thus one has to impose restrictions on the metric in order to make the boundary
rigidity problem sensible. One natural restriction is the following: a Riemannian
manifold M is called simple if the boundary ∂M is strictly convex, every two
points x, y ∈ M are connected by a unique geodesic, and geodesics have no con-
jugate points (cf. [14]). A more general condition called SGM (“strong geodesic
minimizing”) was introduced in [6] in order to allow non-convex boundaries. Note
that if M is simple, then it is a topological disc.

The simplicity of M can be seen from the boundary distance function. Indeed,
the convexity of ∂M is equivalent to a (local) inequality between boundary distances
and intrinsic distances of ∂M . And if the boundary is convex, then the unique-
ness of geodesics and the lack of conjugate points is equivalent to smoothness of
the boundary distance function away from the diagonal. Thus if two Riemannian
manifolds have the same boundary and the same boundary distance functions, then
either both are simple or both are not.

Conjecture 1.2 (Michel [14]). All simple manifolds are boundary rigid.
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Pestov and Uhlmann [15] proved this conjecture in dimension 2. In higher di-
mensions, few examples of boundary rigid metrics are known. They are: regions
in R

n [9], in the open hemisphere [14], in symmetric spaces of negative curvature
(follows from the main result of [5]), and in product spaces of the form N×R where
N is a simple (n − 1)-dimensional Riemannian manifold [7]. We refer the reader
to [8] and [15] for a survey of boundary rigidity, other inverse problems, and their
applications.

One of the main results of [1] asserts that if M is sufficiently close to a region
in the Euclidean space, then M is boundary rigid. In this paper we extend this to
metrics close to the hyperbolic one. Namely we prove the following theorem:

Theorem 1.3. If a metric in a region is sufficiently close to a hyperbolic one,
then it is boundary rigid. More precisely, let D ⊂ H

n be a compact region with a
smooth boundary. The there is a Cr-neighborhood (for a suitable r) of the standard
hyperbolic metric on D such that for every metric g from this neighborhood, the
space M = (D, g) is boundary rigid.

Remark. We do not track the number of derivatives required for our arguments to
work. An interested reader can verify that one can take r = 3 for “a suitable r” in
Theorem 1.3. This is worse than in [1] where the metric has to be only C2-close to
the Euclidean one.

The proof of Theorem 1.3 can be made to work for metrics close to the Euclidean
one (in fact, the proof in this case is much easier), an outline of the argument can
be found in [13]. While this approach proves a slightly weaker result than in [1]
(namely C2 is replaced by C3), it provides a better insight into and allows some
simplifications of the methods of [1].

We treat boundary rigidity as the equality case of the minimal filling problem
discussed in [1], [3], and [11].

Definition 1.4. M is a minimal filling if, for every compact Riemannian manifold
M ′ with ∂M ′ = ∂M , the inequality

dM ′ (x, y) ≥ dM (x, y) for all x, y ∈ ∂M

implies
vol(M ′) ≥ vol(M).

We say that M is a strict minimal filling if in addition the equality

vol(M ′) = vol(M)

implies that M and M ′ are isometric via an isometry that is identical on the
boundary.

Conjecture 1.5. Every simple manifold is a strict minimal filling.

If M is simple, then its volume is uniquely determined by its boundary distance
function, namely there is an integral formula expressing vol(M) in terms of bdM
and its first order derivatives (the Santaló formula [16], see also [9]). It is not clear
though whether the formula is monotone in bdM .

However the mere existence of this formula implies that every simple strict min-
imal filling is boundary rigid. Indeed, let M be simple and a strict minimal filling,
and suppose thatM ′ has the same boundary and the same boundary distance func-
tion asM . SinceM ′ has the same boundary distance function as a simple manifold,
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it is also simple, hence vol(M ′) = vol(M) by the Santaló formula. Now the equality
case in Definition 1.4 implies that M ′ and M are isometric.

Our approach to boundary rigidity is to prove a suitable partial case of Conjec-
ture 1.5. In [1] we were able to carry out this plan for metrics close to a Euclidean
one. Now we extend this method to metrics close to a hyperbolic one. Namely, we
prove the following theorem:

Theorem 1.6. If a metric g on a region D ⊂ H
n is sufficiently close to the

hyperbolic one, then (D, g) is a strict minimal filling (and hence is boundary rigid).

1.3. Plan of the proof. We deduce filling minimality of a metric from area mini-
mality of its image in a suitable space. More precisely, given M as in Theorem 1.6,
we do the following:

(i) Construct a distance-preserving map Φ : M → L = L∞(S) where S is a
suitable measure space.

(ii) Define an n-dimensional surface area functional (referred to as the n-volume)
for Lipschitz surfaces in L so that the following holds. First, every 1-Lipschitz map
from a Riemannian manifold to L does not increase n-volumes. Second, the above
map Φ preserves n-volumes.

(iii) Prove that Φ (regarded as a surface in L) is an area minimizer, that is it
has the least n-volume among all Lipschitz surfaces with the same boundary in L.
Moreover, Φ is a unique area-minimizer: every Lipschitz surface in L having the
same boundary and the same n-volume as Φ is contained in the image of Φ (up to
a set of zero area).

If there exist L, Φ and a surface area functional satisfying (i)–(iii), then M
is a strict minimal filling. Indeed, consider a Riemannian n-manifold M ′ such
that ∂M ′ = ∂M and dM ′ ≥ dM on ∂M × ∂M . The latter implies that the map
Φ|∂M ′ → L is 1-Lipschitz (with respect to the distance dM ′ on ∂M ′). It is easy to
see (cf. e.g. [12, Proposition 1.6]) that L = L∞(S) enjoys the following Lipschitz
extension property: for any metric space X , any subset Y ⊂ X and any 1-Lipschitz
map f : Y → L there exists a 1-Lipschitz map f̃ : X → L extending f . Substituting
X =M ′, Y = ∂M ′ and f = Φ|∂M ′ yields a 1-Lipschitz map Φ′ :M ′ → L such that
Φ′|∂M ′ = Φ|∂M . Then by (ii) and (iii) we have

vol(M ′) ≥ vol(Φ′) ≥ vol(Φ) = vol(M),

hence M is a minimal filling. To prove strict filling minimality, observe that the
equality in the above inequality implies that Φ′ preserves n-volumes and the image
of Φ′ is contained in the image of Φ. Thus there is a 1-Lipschitz volume-preserving
map Φ−1 ◦ Φ from M ′ to M . Such a map must be an isometry, thus M is a strict
minimal filling.

Actually our proof contains some extra technical details (in particular, we do
not assume convexity of the boundary and work in some large ball in L rather than
in the entire space). The proof with all these details is contained in Section 2.

For the purpose of proving boundary rigidity only, this strategy should work as
follows. Imagine that for every simple manifold M we construct (in a canonical
way) an isometric embedding ΦM :M → L = L∞(S) with the following properties:

1. The restriction of ΦM to ∂M depends only on the boundary distance function
of M .

2. A notion of n-volume in L is defined so that these isometric embeddings ΦM

preserve n-volumes.
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3. ΦM is a strict area minimizer with respect to this n-volume in L (at least for
the particular manifold M for which we are trying to prove rigidity).

Given such a construction, the boundary rigidity ofM follows immediately from
the fact that the boundary distance function uniquely determines the volume. Our
proof is more complicated than this, since our definition of the n-volume in L
depends on M (still we have that ΦM preserves n-volumes and any competitor
map ΦM ′ does not increase n-volumes).

There are many natural constructions satisfying the first of the above require-
ments. For instance, one could embed M into L∞(∂M) by distance functions: for
x ∈M , let Φ(x) = dM (x, ·)|∂M . We use a slightly different embedding of the same
type where L will be the L∞ of the ideal boundary of Hn rather than that of the
boundary of M .

The surface area functional in L is defined by a suitable Riemannian structure
(that is, a family of L2-compatible scalar products) on L. The strict minimality of
the surface ΦM is proved by constructing a projection from L to this surface that
strictly decreases n-volumes outside the surface. Note that a proof following this
strategy never mentions the competitor manifold M ′ and works exclusively with
our simple manifold M .

A very important observation (Proposition 3.6) is that for a very natural variety
of choices of n-volume forms on L = L∞(S) (induced by certain choices of Rie-
mannian structures on L), ΦM is a minimal surface. This observation explains why
there is a reasonable hope that this strategy could work. The difficult part is to
construct an area-decreasing projection, and this is where we use the assumption
that the metric of M is close to a hyperbolic one.

Remark. To define n-volumes in L we use a somewhat artificial construction when
a class of volumes is defined after we have an embedding of M . There are several
nice notions of n-volumes for surfaces in L∞, which, unlike in our construction, do
not depend on any base embedding or such. Unfortunately, we were not able to use
any of those nice volumes directly.

Acknowledgement. We are grateful to Chris Croke, Bruce Klieiner, Bill Minicozzi,
and Gunther Uhlmann for interesting discussions.

2. Proof of the theorems

The purpose of this section is to deduce the statements of Theorems from Propo-
sition 2.1. This proposition asserts that there exist two maps with certain easy-to
formulate properties. The rest of the paper is a rather technical construction of the
maps along with verification of the properties.

Let g0 denote the standard metric on H
n. Let D ⊂ H

n be a region with a
smooth boundary and g a Riemannian metric on D (assumed to be close to g0|D
in a suitable Cr topology).

Fix a point o ∈ H
n, this point will be referred to as the origin. By Bo(R)

we denote the ball of radius R in H
n centered at o. Fix an R > 0 such that

D ⊂ B(R/5). The metric g can be extended from D to H
n so that the extension

is smooth and coincide with g0 outsides B(R/2). Moreover the extension can be
constructed in such a way that it converges to g0 as g converges to g0|D.
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We denote the extension by the same letter g and denoteM = (Hn, g). Our goal
is to prove that for any region D ⊂ B(R/2) the space (D, g) ⊂ M is a minimal
filling and boundary rigid.

Let S = Sn−1 and L = L∞(S). For r > 0, let B(r) denote the ball of radius r in
L centered at the origin. Let B = B(R) where R is the radius fixed above.

The technical results established in the rest of the paper can be summarized as
the following proposition.

Proposition 2.1. If g is sufficiently close to g0, then there exists a distance-
preserving map Φ : M → L such that Φ(o) = 0 and a Lipschitz map Pσ : B → M
such that the following holds:

1. Pσ ◦ Φ = idM .
2. For every Riemannian n-manifold N and every 1-Lipschitz map f : N → B,

the composition Pσ ◦ f : N → M does not increase n-dimensional (Riemannian)
volumes.

3. If, for N and f as above, the composition Pσ ◦ f : N → M preserves n-
volumes, then f(N) ⊂ Φ(M).

Now we deduce the theorems from this proposition.

Proof of Theorem 1.4. Let g be sufficiently close to g0 so that the maps Φ and Pσ

from Proposition 2.1 exist. Let g′ be a metric on D such that

d(D,g′)(x, y) ≥ d(D,g)(x, y)

for all x, y ∈ ∂D. Denote M ′ = (D, g′). Since (D, g) ⊂ M , we have d(D,g)(x, y) ≥
dM (x, y) for all x, y ∈ D, hence

dM ′(x, y) ≥ dM (x, y)

for all x, y ∈ ∂D. Since Φ is distance-preserving with respect to dM , it follows
that the restriction Φ|∂D is 1-Lipschitz with respect to the metric dM ′ restricted
to ∂D × ∂D. Therefore (cf. [12, Proposition 1.6] or [1, Proposition 4.9]) it admits
a 1-Lipschitz extension Φ′ : M ′ → L. Furthermore this extension can be made so
that Φ′(M ′) ⊂ B by post-composing it with a cut-off map L → L given by

cutoff(ϕ)(s) = min{R/2,max{−R/2, ϕ(s)}}, ϕ ∈ L, s ∈ S.

(The cut-off does not affect points in Φ′(∂M ′) since Φ′|∂M ′ = Φ|∂D and Φ(D) is
contained in an (R/2)-ball centered at the origin.)

Consider a map F = Pσ ◦ Φ′ : M ′ → M . Since Φ′|∂D = Φ∂D, the first assertion
of Proposition 2.1 implies that F |∂M ′ = id∂D, therefore F (M ′) ⊃ D. Then the
second assertion of Proposition 2.1 implies that vol(M ′) ≥ vol(D, g). Thus (D, g)
is a minimal filing.

To prove that (D, g) is a strict minimal filling, suppose that vol(M ′) = vol(D, g).
Then F is volume-preserving, hence by the third assertion of Proposition 2.1 we
have Φ′(M ′) ⊂ Φ(M). Therefore F can be written as F = Φ−1 ◦ Φ′. Since Φ is
distance-preserving and Φ′ is 1-Lipschitz, it follows that F : M ′ → M is 1-Lipschitz.
Since F is 1-Lipschitz and volume-preserving, it follows easily that it is an isometry
(cf. e.g. [1, Lemma 9.1]). Thus (D, g) is a strict minimal filling. �

Proof of Theorem 1.3. Let D and g be as above, and let g′ be a Riemannian metric
on D inducing the same boundary distance function as g. Since (D, g) is a strict
minimal filling, it suffices to show that vol(D, g′) = vol(D, g). If (D, g) had a
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convex boundary, this would follow from the Santaló formula for the volume of
a simple Riemannian metric. Since we do not assume convexity, (D, g) may fail
to be simple. However it is a region in a simple manifold (namely in a large
ball in M) and hence satisfies the SGM (Strong Geodesic Minimizing) condition
introduced by C. Croke [6]. Then Lemma 5.1 from [6] implies the desired equality
vol(D′, g′) = vol(D, g). �

The rest of the paper is organized as follows. In Section 3 we consider a general
class of constructions that work for any simple manifold M (not necessarily almost
hyperbolic). The main result of this section is Proposition 3.6 asserting that an
isometric image ofM in L∞ is a minimal surface (in the variational sense) provided
that the embedding of M and the Riemannian structure on L used to define the
surface area satisfy certain natural conditions.

In Section 4 we construct a distance-preserving map Φ : M → L (possessing all
the nice properties that we need), a Riemannian structure G in B used to define
the surface area, and a (preliminary) projection P : B → M). This map does not
increase n-volumes in the case of the hyperbolic metric (that is, when g = g0). In
the almost hyperbolic case this map can slightly expand n-volumes, the expansion
coefficients are estimated in Sections 5 and 6. Finally, in Section 7 we compose P
with a family of shrinking mapsM →M so that the resulting projection Pσ strictly
decreases n-volumes away from the surface Φ(M). This construction completes the
proof of Proposition 2.1 and the theorems.

3. General computations

In this section we do not use the assumption that our metric is close to the
hyperbolic one; everything here is valid for any Riemannian manifold M = (M, g).

3.1. Set-up and notation. Recall that S = Sn−1 and L = L∞(S). We equip S
with a smooth probability measure; the integral of a function f with respect to this
measure will be written as

∫

S
f(s) ds.

LetM = (M, g) be an n-dimensional Riemannian manifold. We denote by UTM
the unit tangent bundle of M and by UTxM its fiber over x ∈ M . Every sphere
UTxM is equipped with the standard Haar probability measure; the integral of a
function f with respect to this measure is denoted by

∫

UTxM
f(v) dv. Note that

the integration of these measures on fibers with respect to the Riemannian volume
of M yields the standard Liouville measure on UTM .

Definition 3.1. We say that a map Φ :M → L is a special embedding if there is a
family {Φs}s∈S of real-valued functions onM (that will be referred to as coordinate
functions of Φ) such that

(1) For every x ∈ M , the image Φ(x) is a function s 7→ Φs(x) on S (more
precisely, the element of L represented by this function).

(2) The function (x, s) 7→ Φs(x) is smooth on M × S.
(3) Every function Φs :M → R is distance-like, that is, | gradΦs| ≡ 1 on M .
(4) For every x ∈ M , the map s 7→ gradΦs(x) is a diffeomorphism between S

and UTxM .

Notation. We denote the inverse of the above diffeomorphism s 7→ gradΦs(x)
by α. That is, α : UTM → S is a map such that gradΦα(v)(x) = v for all x ∈ M
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and v ∈ UTxM . By αx we denote the restriction of α to UTxM , this map is a
diffeomorphism from UTxM to S.

For every x ∈M , let µx be the push-forward of the normalized Haar measure on
UTxM under the diffeomorphism αx : UTxM → S. Then µx is smooth probability
measure on S. We denote by λ(x, s) the the density of µx at s ∈ S with respect to
the above fixed measure on S.

The second requirement of Definition 3.1 implies the image of Φ lies in the
subspace C∞(S) ⊂ L, Φ is a smooth map (even w.r.t. the C∞ topology in the
target), and its derivative dxΦ : TxM → L is given by

(3.1) dxΦ(v)(s) = dxΦs(v), v ∈ TxM, s ∈ S.

Let v0 ∈ UTxM and T = dxΦ(v0). We rewrite the above identity as

T (s) = dΦs(v0) = 〈gradΦs(x), v0〉 = 〈α−1
x (s), v0〉.

Substituting s = α(v), v ∈ UTxM yields

(3.2) T (α(v)) = 〈v, v0〉 if v0, v ∈ UTxM and T = dxΦ(v0).

As usual, the image of the derivative dxΦ : TxM → L is denoted by TxΦ and
referred to as the tangent space of Φ at x, and the elements of TxΦ are referred to
as the tangent vectors of Φ.

The density function λ : M × S → R is smooth and positive. The definitions
imply that

(3.3)

∫

S

f dµx =

∫

S

f(s)λ(x, s) ds =

∫

UTxM

f(α(v)) dv

for any measurable function f : S → R.

Definition 3.2. By a scalar product on L we mean an L2-compatible scalar prod-
uct, that is, a symmetric bilinear form G on L satisfying

c‖u‖2L2(S) ≤ G(u, u) ≤ C‖u‖2L2(S)

for some positive constants c and C. The norm of a scalar product is defined as
the minimum possible value of C.

A Riemannian metric in a region U ⊂ L is a smooth family G = {Gϕ}ϕ∈U of
scalar products on L. (The smoothness here is that of a map from U ⊂ L∞(S) to
the space of L2-compatible scalar products on L equipped with the above norm.)

Definition 3.3. Let G be a Riemannian metric in a region U ⊂ L containing
Φ(M). We say that G is special with respect to Φ if the following holds:

(1) For every ϕ ∈ U , the scalar product Gϕ has the form

Gϕ(X,Y ) = n

∫

S

X(s)Y (s) dνϕ(s), X, Y ∈ L,

where νϕ is a probability measure on S.
(2) Every measure νϕ has positive density separated away from zero; these den-

sities depend smoothly on ϕ.
(3) If ϕ = Φ(x) for an x ∈M , then νϕ = µx.

Lemma 3.4. If G is a special Riemannian metric on U ⊂ L with respect to Φ,
then Φ is an isometric immersion of M to (U , G).
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Proof. Let x ∈M , ϕ = Φ(x), v0 ∈ UTxM , T = dΦ(v0). Then

Gϕ(T, T ) = n

∫

S

T 2 dµx = n

∫

UTxM

T (α(v))2 dv = n

∫

UTxM

〈v, v0〉2 dv = 1,

hence the result. The first three equalities in this computation follow from Defi-
nition 3.3(3), (3.3) and (3.2), and the last one is a standard computation on the
sphere. �

3.2. Mean curvature.

Definition 3.5. Let G be a Riemannian metric in a region U ⊂ L, Φ : M → U a
smooth surface, x ∈ M , V ∈ L a vector orthogonal to TxΦ with respect to G. We
define a quadratic form on TxΦ, called the second fundamental form with respect
to V and denoted by IIV , as follows.

Let F be a smooth finite-dimensional submanifold of U containing a neighbor-
hood of ϕ = Φ(x) in Φ(M) and such that V is tangent to F at ϕ. Let T ∈ TxΦ.

Construct a smooth vector field T̃ tangent to Φ near ϕ such that T̃ (ϕ) = T . Then
define

II
Φ,x
V (T, T ) = G(∇T T̃ , V )

where ∇ is the Levi-Civita connection of the induced Riemannian metric on F .
The trace of the quadratic form T 7→ IIV (T, T ) (with respect to the Euclidean

structure on TxΦ defined by G = Gϕ) is called the mean curvature with respect to

V and denoted by HΦ,x
V .

It is easy to see (cf. e.g. (3.4) below) that the second fundamental form does not
depend on the choice of the auxiliary submanifold F . The fact that is does not
depend on T̃ follows from the standard (finite-dimensional) Riemannian geometry.

Proposition 3.6. Let Φ : M → L be a special embedding and G is a special
Riemannian metric with respect to Φ. Then for every x ∈ M and every vector
V ∈ L orthogonal to TxΦ (with respect to G) one has

HΦ,x
V = 0.

Proof. We use the notation from Definition 3.5. Extend V and T to commuting
smooth vector fields Ṽ and T̃ tangent to F and defined in a neighborhood of Φ(x)

in F . In addition, T̃ should be tangent to Φ(M). Then

IIV (T, T ) = G(∇T T̃ , V ) = G(T̃ , Ṽ )′T − 1

2
G(T̃ , T̃ )′V

by Riemannian geometry on F . Here the notation like (. . . )′X denotes the derivative
along a vector X ∈ L; this derivative is well-defined whenever the argument is
defined along any smooth curve in L with initial direction X . In our case this
requirement is satisfied since T̃ and Ṽ are defined along F . Differentiating the
above G-products yields

G(T̃ , Ṽ )′T = G′
T (T, V ) +G(T̃ ′

T , V ) + (T, Ṽ ′
T )

and
1

2
G(T̃ , T̃ )′V =

1

2
G′

V (T, T ) +G(T, T̃ ′
V ).

Since T̃ and Ṽ commute, we have Ṽ ′
T = T̃ ′

V , thus

(3.4) IIV (T, T ) = G′
T (T, V ) +G(T̃ ′

T , V )− 1

2
G′

V (T, T ).
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We are going to compute the traces of the three terms of this sum separately. Let
v ∈ UTxM be such that T = dΦ(v). We may assume that the vector field T̃
is chosen so that its trajectory through Φ(x) is the Φ-image of a constant-speed
geodesic γv is M such that γ(0) = x and γ̇v(0) = v. Then the first term in (3.4)
takes the form

G′
T (T, V ) =

d

dt

∣

∣

∣

∣

t=0

GΦ(γv(t))(T, V ) = n · d
dt

∣

∣

∣

∣

t=0

∫

S

T (s)V (s)λ(γv(t), s) ds

= n

∫

S

V (s)T (s)Ls(v) ds

where

(3.5) Ls(v) =
d

dt

∣

∣

∣

∣

t=0

λ(γv(t), s).

(The second identity above follows from the special form of G on Φ(M), cf. Defini-
tion 3.3.) Substituting T = dΦ(v) and using (3.1) yields

G′
T (T, V ) =

∫

S

V (s) · dΦs(v) · Ls(v) ds.

Hence

traceTxΦ

[

T 7→ G′
T (T, V )

]

= n

∫

S

V (s) · traceTxM

[

v 7→ dΦs(v) · Ls(v)
]

ds.

Recall that | gradΦs| ≡ 1 by the 3rd requirement of Definition 3.1. Fix an s ∈ S
and choose an orthonormal basis (v1, . . . , vn) of TxM such that v1 = gradΦs(x).
Then dΦs(v1) = 1 and dΦs(vi) = 0 for all i > 1. Hence

traceTxM

[

v 7→ dΦs(v) · Ls(v)
]

=

n
∑

i=1

dΦs(vi) · Ls(vi) = Ls(v1) = Ls(gradΦs(x)).

Thus

(3.6) traceTxΦ

[

T 7→ G′
T (T, V )

]

= n

∫

S

V (s) · Ls(gradΦs(x)) ds.

Lemma 3.7. For every x ∈M and s ∈ S, one has

Ls(gradΦs(x)) = −λ(x, s) ·∆Φs(x)

where ∆ is the Riemannian Laplace operator on M .

Proof. Consider a map I : M × S → UTM given by I(x, s) = gradΦs(X). Since
Φ is a special map (cf. Definition 3.1(4)), I is a diffeomorphism; its inverse I−1 :
UTM →M × S is given by I−1(v) = (x, α(v)) for v ∈ UTxM .

Consider a vector field W on M × S given by

W (x, s) = (gradΦs(x), 0).

The flow on M × S generated by this vector field is mapped by I to the geodesic
flow on UTM . This follows from the fact that every function Φs is distance-like
(cf. Definition 3.1(3)) and hence the trajectories of its gradient flow are geodesics.

Substituting v = gradΦs(x) into (3.5) yields

Ls(gradΦs(x)) = λ′W (x, s)

where λ′W denotes the derivative of λ along W .
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Let µ denote the standard product measure onM×S, that is, the product of the
Riemannian volume form on M and the standard measure (the one denoted by ds)
on S. Then the measure λµ (that is, the measure with density λ with respect to µ)
is mapped by I to the Liouville measure on UTM . Since the Liouville measure is
preserved by the geodesic flow, the measure λµ is preserved by the flow generated
by W . Hence

divλµW = 0

where div denotes the divergence (with respect to a given measure). On the other
hand,

divλµW = divµW + λ−1λ′W .

Thus

Ls(gradΦs(x)) = λ′W (x, s) = −λ(x, s) · divµW (x, s).

Since W (x, s) = (gradΦs(x), 0) and µ is the product measure, we have

divµW (x, s) = divM gradΦs(x) = ∆Φs(x),

and Lemma 3.7 follows. �

With this lemma, (3.6) takes the form

(3.7) traceTxΦ

[

T 7→ G′
T (T, V )

]

= −n
∫

S

V (s) · λ(x, s) ·∆Φs(x) ds.

Now consider the second term of (3.4). Recall that T = dxΦ(v) and T̃ contains
the velocity field of the geodesic Φ ◦ γv. Hence

T̃ ′
T =

d

dt

∣

∣

∣

∣

t=0

dΦ(γ̇v(t)) =
d2

dt2

∣

∣

∣

∣

t=0

Φ(γ(t)).

The right-hand side is a function on S whose value at s ∈ S equals

d2

dt2
∣

∣

t=0
Φs(γv(t)) = D2Φs(v, v)

where D2 denotes the Hessian w.r.t. the Riemannian metric of M . Hence

G(T̃ ′
T , V ) = n

∫

S

D2Φs(v, v) · V (s) · λ(x, s) ds

(here we use the special form of G at Φ(x), cf. Definition 3.3). Hence

(3.8)

traceTxΦ

[

T 7→ G(T̃ ′
T , V )

]

= n

∫

S

V (s) · λ(x, s) · traceTxM [D2Φs(x)] ds

= n

∫

S

V (s) · λ(x, s) ·∆Φs(x) ds.

Adding together (3.7) and (3.8) yields

(3.9) traceTxΦ

[

T 7→ G′
T (T, V ) +G(T̃ ′

T , V )
]

= 0.

It remains to get rid of the third term in (3.4). Let (T1, . . . , Tn) be an orthonormal
basis of TxΦ. Then

(3.10) trace
[

T 7→ G′
V (T, T )

]

=
n
∑

i=1

G′
V (Ti, Ti) = n

n
∑

i=1

∫

S

Ti(s)
2(ρ′V )(s) ds

where ρ = {ρϕ}ϕ∈U is the density of the measure νϕ from Definition 3.3 regarded
as a function on U (with values in L∞(S)) and ρ′V is its derivative along V .
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Let Ti = dxΦ(vi) where vi ∈ TxM for i = 1, . . . , n. Since Φ is isometric by
Lemma 3.4, (v1, . . . , vn) is an orthonormal basis of TxM . Then by (3.2) we have

∑

Ti(α(v))
2 =

∑

〈v, vi〉2 = |v|2 = 1

for all v ∈ UTxM . Since αx : UTxM → S is surjective, it follows that
∑

Ti(s)
2 = 1

for all s ∈ S. Then (3.10) takes the form

(3.11) trace
[

T 7→ G′
V (T, T )

]

= n

∫

S

(ρ′V )(s) ds = n

(∫

S

ρ

)′

V

= 0

since the integral of ρ is fixed to be 1 (cf. Definition 3.3(2)). Now (3.4), (3.9) and
(3.11) imply that

HΦ,x
V = traceTxΦ(II

Φ,x
V ) = 0− 1

2
· 0 = 0.

This finishes the proof of Proposition 3.6. �

3.3. Jacobians and projections.

Definition 3.8. Let G be a scalar product on L, X an n-dimensional Euclidean
space and L : L → X a linear map bounded with respect to G (or, equivalently, with
respect to the standard L2 scalar product). For an n-dimensional subspace Y ⊂ L,
we denote by JG,Y the Jacobian (that is, the n-dimensional volume expansion
coefficient) of the restriction L|Y where Y is regarded as a Euclidean space whose
scalar product is the restriction of G.

The (n-dimensional) Jacobian of L, denoted by JGL, is the supremum of JG,Y

where Y ranges over all n-dimensional linear subspaces of L.
Obviously JL = 0 if the rank of L is less than n. If the rank equals n, then the

supremum is attained when Y is the orthogonal complement to kerL. It follows
that JGL depends continuously on L and G, moreover this dependence is smooth
on the set where JGL 6= 0.

Definition 3.9. Let G = {Gϕ}ϕ∈U be a Riemannian metric in a region U ⊂ L,
and let P : U → M be an L2-smooth map (see Definition 3.10 below). For an
ϕ ∈ U , we define the n-dimensional Jacobian of P at ϕ, denoted by JGP (ϕ), as the
Jacobian of the derivative dϕP : L → TP (ϕ)M with respect to the scalar product
Gϕ on L and the Riemannian scalar product on TP (ϕ)M .

For an n-dimensional subspace Y ⊂ TϕL = L, we denote by JG,Y P the Jacobian
of the restriction of dϕP to Y .

We will omit G in these notations if the metric is clear from context.

Definition 3.10. We say that a map from a region U ⊂ L to M is L2-smooth if it
is differentiable, its derivative at every point ϕ ∈ U can be extended as a bounded
linear map from L2 to a fiber of TM and this map from L2 in its turn smoothly
depends on ϕ.

Note that the Jacobian of an L2-smooth map is a continuous function and more-
over it is smooth in the complement of its zeros.

Definition 3.11. Let Φ : M → U ⊂ L be a smooth isometric immersion with
respect to a Riemannian metric G on U . We say that a map P : U → M is a
projection if it is L2-smooth and

(1) P ◦ Φ = idM .
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(2) For every x ∈ M , dΦ(x)P (V ) = 0 for every vector V ∈ L orthogonal (with
respect to G) to TxΦ.

Proposition 3.12. Let Φ : M → U ⊂ L be a smooth isometric immersion with
respect to a Riemannian metric G on U and P : U → M a projection in the sense
of Definition 3.11. Then, for every x ∈M and every V ∈ L orthogonal to TxΦ,

dΦ(x)JGP (V ) = HΦ,x
V .

In particular, if Φ is a special embedding and G is a special metric with respect
to Φ, then

dΦ(x)JGP (V ) = 0.

Proof. It suffices to verify this fact for a finite-dimensional Riemannian manifold
F in place of (L, G). Indeed, it suffices to compute the derivative of JP along
a smooth curve γ in U starting at Φ(x) with initial velocity V . At every point
γ(t), there is a unique n-dimensional subspace Y (t) of L where the maximum
in the definition of the Jacobian is attained, and Y (t) depends smoothly on t.
Furthermore, Y (0) is the tangent space of TxΦ. Therefore the derivative of the
Jacobian can be computed within a smooth submanifold F containing (locally)
Φ(M) and γ and such that every subspace Y (t) is tangent to F at γ(t). It is easy
to construct such a submanifold of dimension n+ 1.

In the finite-dimensional case, there exists a smooth variation {Φt}t∈(−ε,ε) of Φ
such that

(1) P ◦ Φt = idM for all t;
(2) d

dt

∣

∣

t=0
Φt(x) = V ;

(3) the image of dxΦt is the subspace realizing the Jacobian of P .
The assumptions on P imply that the variation field d

dt

∣

∣

t=0
Φt is orthogonal to our

surface Φ. Then JΦt(x) = JΦt(x)
−1, hence

dΦ(x)JP (V ) = − d

dt
JΦt(x).

The right-hand side is the first variation of the n-dimensional surface area which is

known to be equal to −HΦ,x
V . �

3.4. Surface area. Let N be a smooth n-dimensional manifold and f : N → L
a Lipschitz map. We say that f is weakly differentiable at p ∈ N if there exists a
linear map dwp f : TpN → L (called the weak derivative of f at x) such that, for

every u ∈ L1(S) the map

x 7→ 〈u, f(x)〉 : N → R

is differentiable at p, and its derivative at p is the linear map

v 7→ 〈u, dwp f〉 : TpN → R.

Here the angle brackets denote the standard pairing between L1(S) and L = L∞(S).
It can be shown (cf. [1, §5] or [12, §3]) that every Lipschitz map f : N → L is

weakly differentiable a.e. on N . Moreover if N is a Riemannian manifold and f is
1-Lipschitz, then dwp f : TpN → L is a 1-Lipschitz linear map for a.e. p ∈ N .

Let G be a Riemannian structure in a region of L containing f(N). For every
x ∈ N where f is differentiable, the weak derivative dwx f determines a pull-back
nonnegative definite quadratic form f∗G(x) := (dwx f)

∗(Gf(x)). This quadratic form
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determines a nonnegative n-volume density on TxN , denoted by d volG f(x). The
n-volume of the surface f with respect to G is defined by

volG(f) =

∫

N

d volG f.

(There is a minor technical detail to show that the density under the integral is
measurable. We leave this as an exercise to the reader. A reader who prefers to skip
this exercise can replace the integral by the upper integral in the above definition).

Lemma 3.13. Let N be an n-dimensional Riemannian manifold and f : N → L
a 1-Lipschitz map. Suppose that G is a special Riemannian metric (with respect to
some Φ, cf. Definition 3.3). Then f does not increase n-volumes, that is,

volG(f) ≤ vol(N).

Proof. This follows from the normalization condition of Definition 3.3(1), namely
that the scalar product Gϕ at ϕ ∈ L has the form

Gϕ(X,Y ) = n

∫

S

X(s)Y (s) dνϕ(s), X, Y ∈ L,

where νϕ is a probability measure on S.
Let x ∈ N and ϕ = f(x). Fix an orthonormal basis e1, . . . , en in TxN and define

Xi = dwx f(ei). Since d
w
x f is 1-Lipschitz, we have

‖dwx f(v)‖L∞ ≤ |v|
for any v ∈ TxN . Substituting v =

∑

viei yields

‖v1X1 + · · ·+ vnXn‖L∞ ≤
√

v21 + · · ·+ v2n

for any v1, . . . , vn ∈ R. This implies that

X1(s)
2 + · · ·+Xn(s)

2 ≤ 1

for a.e. s ∈ S (to see this, substitute Xi(s) for vi in the previous inequality). Now

trace(f∗G(x)) =
∑

Gϕ(Xi, Xi) =
∑

n

∫

S

Xi(s)
2 dνϕ(s) ≤ n

∫

S

dνϕ(s) = n.

Since trace(f∗G(x)) ≤ n, we have det(f∗G(x)) ≤ 1, thus the induced volume
density on TxN is no greater that the Riemannian volume form. �

Lemma 3.14. Let N be an n-dimensional Riemannian manifold, and f : N → L a
1-Lipschitz map. Suppose that G is a special Riemannian metric in a region U ⊂ L
containing f(N) and P : U →M an L2-smooth map (cf. Definition 3.10). Then

vol(P ◦ f) ≤
∫

N

JGP (f(x)) d volN (x).

Here vol(P ◦f) denotes the ordinary n-volume of a Lipschitz map (or, equivalently,
the area of the image with multiplicities).

Proof. The definitions of weak derivative and L2-smoothness imply that P and f
satisfy the chain rule:

dx(P ◦ f) = df(x)P ◦ dwx f
for every x ∈ N where the weak derivative dwx f exists. It follows that the Jacobian
of d(P ◦ f) is bounded above by the product of the Jacobians of df(x)P and dwx f
(with respect to Gf(x)), and the latter Jacobian does not exceed 1 by the previous
lemma. �
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4. The construction

Now we return to the case of an almost hyperbolic metric. Recall that g0 denotes
the standard metric on H

n, o ∈ H
n is a fixed origin. By Bo(r) we denote the ball

of radius r in H
n centered at o. Let S be the ideal boundary of Hn; we identify S

with Sn−1 in a natural way (via the unit tangent space at the origin).
Recall that our metric g is extended from a region D ⊂ Bo(R/5) to the entire Hn

so that g ≡ g0 outside Bo(R/2) and g is close to g0 on H
n. We denoteM = (Hn, g).

To simplify exposition, we do not track the dependence on g and its derivatives
in our constructions. We say that a dependence on g is smooth if for every integer
k > 0 there exists an r > 0 such that this dependence is k times differentiable with
respect to the Cr norm on the space of metrics (more precisely, on a neighborhood
of g0 in the space of metrics).

Since g and g0 coincide outside a compact set, their boundaries at infinity are
canonically identified. For every s ∈ S, let Φs :M → R be the Busemann function
of a geodesic ray starting at o towards s ∈ ∂∞M = S. Define a map Φ :M → L as
in Definition 3.1, that is,

Φ(x)(s) = Φs(x), x ∈M, s ∈ S.

Lemma 4.1. 1. Φx(s) depends smoothly on x, s and g.
2. If g is sufficiently close to g0, then Φ is a special embedding in the sense of

Definition 3.1.

Proof. 1. The lemma becomes obvious once one realizes that in our situation the
Busemann functions, which are usually defined using asymptotic constructions, are
objects that can be defined in terms of a compact region where our metrics may be
non-standard. Namely, rather than using the boundary at infinity, one could the
boundary of the ball Bo(R), then the Busemann functions turn into (normalized
by their values at o) distance function to the horospheres tangent to this sphere,
and these horospheres are the same for g and g0. After this observation the proof
is straightforward.

2. The first three requirements of Definition 3.1 trivially follow from the con-
struction and the first part of the lemma. The last requirement asserting that the
map s 7→ gradΦs(x) is a diffeomorphism between S and UTxM is trivial in the
case g = g0, and then the general case follows from the fact the derivatives of this
map depend continuously on g. �

We use notations introduced in Section 3 for special maps.

Lemma 4.2. If g = g0, then

λ(x, s) =
dµx(s)

dµo(s)
= e−(n−1)Φs(x)

for all x ∈M , s ∈ S.

Proof. This straightforward statement can be found in [5]. �

Denote by B = B(R) the ball of radius R is L with respect to the L∞ norm.

Definition 4.3. We define a “projection” P : B → M as follows. For every ϕ ∈ L,
introduce a vector field Wϕ on M by

Wϕ(x) =

∫

S

en(Φs(x)−ϕ(s)) gradΦs(x) dµx(s)
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and let P (ϕ) be a point x ∈M such that

Wϕ(x) = 0

provided that such a point exists and is unique.

In the case g = g0, the equation says that x is a critical point of a function

Fϕ(x) =

∫

S

e−nϕ(s)eΦs(x)ds.

It is easy to see that Fϕ is convex (and actually strictly quadratically convex) and
grows to infinity as x → ∞, and hence it has only one critical point where the
minimum of Fϕ is attained.

Lemma 4.4. If g is sufficiently close to g0, then:
1. P is well-defined and smooth in a neighborhood of Φ(M) containing B.
2. P (Φ(x)) = x for all x ∈M .
3. P (B) ⊂ Bo(R1) for some radius R1 depending only on n and R.

Remark. We do not yet claim that P is L2-smooth (in the sense of Definition 3.10).
This will be shown later.

Proof of Lemma 4.4. Substituting s = α(v), v ∈ UTxM , we rewrite the equation
Wϕ(x) = 0 as

Wϕ(x) =

∫

UTxM

en(Φα(v)(x)−ϕ(α(v)))v dv = 0.

This equation is trivially satisfied for ϕ = Φ(x), hence the second assertion of the
lemma follows from the first one. This observation and the smoothness of our
equation implies, by the implicit function theorem in L2, that P is well-defined and
smooth in a neighborhood of Φ(M). Here are the details.

Consider a map E : L → L2(S) given by

E(ϕ)(s) = e−nϕ(s).

Note that the set E(B) is compact in L2. Let ϕ ∈ L and ψ = E(ϕ). Then the
equation Wϕ(x) = 0 takes the form

(4.1)

∫

S

ψ(s)enΦs(x) gradΦs(x) dµx(s) = 0.

Since this equation is linear in ψ and is satisfied for ψ = E(Φ(x)), it is equivalent
to

∫

S

(ψ(s)− E ◦ Φ(x)(s))enΦs(x) gradΦs(x) dµx(s) = 0

or, equivalently,
∫

S

(ψ(s) − E ◦ Φ(x)(s))e2nΦs(x)dx(E ◦ Φ)(s) dµx(s) = 0.

This can be interpreted as follows: the vector ψ − E ◦ Φ ∈ L2(S) belongs to the
orthogonal complement to the tangent space Tx(E ◦ Φ) of the surface E ◦ Φ with
respect to the scalar product defined by a measure e2nΦs(x)dµx(s) depending on x.
Since E◦Φ is a smooth surface in L2 and the scalar products depend smoothly on x,
this defines a smooth retraction P̃ from a neighborhood of E(Φ(M)) to E(Φ(M)).

Our projection P can be written as P = (E ◦ Φ)−1 ◦ P̃ ◦ Ẽ provided that P̃ is
well-defined in a neighborhood of E(B) ∪ E(Φ(M)).
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It remains to verify that x = P̃ (ψ) satisfying (4.1) is unique and depends
smoothly on ψ in a neighborhood of E(B) ∪ E(Φ(M)). Since E(B) is compact
and Φ is a smooth perturbation of the similar map for g = g0, the implicit function
theorem tells us that it suffices to verify this fact only in the case g = g0. The
uniqueness for ψ ∈ E(B) is verified above, so it remains to see that the map is
smooth in the L2 sense.

Substituting the formula for the density of µx (Lemma 4.2) into our equation
yields

∫

S

ψ(s)eΨs(x) gradΦs(x) ds = 0,

or, equivalently,

(4.2)

∫

S

ψ(s) dxe
Φs ds = 0.

We interpret this equation as follows: the vector ψ ∈ L2(S) is orthogonal to the tan-
gent space (at the point corresponding to x) of the surface Q in L2(S) parametrized
by the map by x 7→ (s 7→ eΦs(x)) from M = H

n to L2(S).
Now we make an observation that exponents eΦs of Busemann functions Φs on

H
n form a set lying in an (n + 1)-dimensional linear subspace. This follows from

the fact that they satisfy a second order equation. It follows that Q is contained
in an (n + 1)-dimensional linear subspace Z ⊂ L2(S). (In fact, Q is a connected
component of a hyperboloid of signature (n, 1) in Z.) Hence the tangent spaces of
Q are subspaces of Z. Therefore the equation (4.1) for ψ is equivalent to the same

equation for the orthogonal projection of ψ to Q in L2(S). Thus the map P̃ can be
defined as follows: first, the argument ψ is projected orthogonally to Z, then the
resulting point is projected radially to Q, and the resulting point of Q is mapped
back to H

n. The radial projection is well defined (within a suitable open cone)
since no two elements of Q are proportional to each other, and it is smooth since
the resulting map is smooth in a neighborhood of E ◦ Φ(M). �

Notation. For every x ∈M and s ∈ S, define a linear operatorAx,s : TxM → TxM
by

(4.3) Ax,s(ξ) = e−nΦs(x)λ(x, s)−1∇ξTs

where Ts is a vector field on M given by

(4.4) Ts(x) = enΦs(x)λ(x, s) gradΦs(x)

and ∇ξ denotes the Levi-Civita derivative along ξ.
Let ϕ ∈ L and x = P (ϕ). Define a function ρϕ on S by

(4.5) ρϕ(s) = en(Φs(x)−ϕ(s))

and let ρϕ be the same function normalized with respect to the measure µx:

(4.6) ρϕ =
ρ

∫

S
ρ dµx

.

Now define a linear operator Aϕ : TxM → TxM by

(4.7) Aϕ =

∫

S

ρϕ(s)Ax,s dµx(s).



AREA MINIMIZERS AND BOUNDARY RIGIDITY OF ALMOST HYPERBOLIC METRICS 18

Lemma 4.5. Let ϕ ∈ B, x = P (ϕ) and δ ∈ TϕL ≃ L. Then

dϕP (δ) = A−1
ϕ ◦ Eϕ(δ)

where a linear map Eϕ : L → TxM is given by

(4.8) Eϕ(δ) = n

∫

S

δ(s)ρϕ(s) gradΦs(x) dµx(s)

Proof. Let ξ = dϕ(δ). Differentiating the definition of P yields

Dϕ(Wϕ(x))(δ) +Dx(Wϕ(x))(ξ) = 0

where Dϕ and Dx are derivatives with respect to variables ϕ and x where the
latter derivative is computed in normal coordinates centered at x. (It fact, the
second term does not depend on the choice of local coordinates since the vector
field vanishes at x.) Equivalently,

(4.9) Dϕ(Wϕ(x))(δ) +∇ξWϕ = 0.

Substituting the definition of Wϕ yields

Dϕ(Wϕ(x))(δ) = −n
∫

S

δ(s)en(Φs(x)−ϕ(s)) gradΦs(x) dµx(s)

= −n
∫

S

δ(s)ρϕ(s) gradΦs(x) dµx(s)

where the second identity follows from the definition of ρ, cf. (4.5). Observe that

Wϕ(x) =

∫

S

en(Φs(x)−ϕ(s)) gradΦs(x)λ(x, s) ds

=

∫

S

e−nϕ(x)Ts(x) ds,

hence the second term of (4.9) takes the form

∇ξWϕ =

∫

S

e−nϕ(s)∇ξTs(x) ds =

∫

S

e−nϕ(s)λ(x, s)−1∇ξTs(x) dµx

=

∫

S

en(Φs(x)−ϕ(s))Ax,s(ξ) dµx =

∫

S

ρϕ(s)Ax,s(ξ) dµx.

Now (4.9) takes the form

−n
∫

S

δ(s)ρϕ(s) gradΦs(x) dµx(s) +

∫

S

ρϕ(s)Ax,s(ξ) dµx = 0,

or, equivalently,

n

∫

S

δ(s)ρϕ(s) gradΦs(x) dµx(s) =

∫

S

ρϕ(s)Ax,s(ξ) dµx = Aϕ(ξ).

Here we divided by the normalizing constant
∫

S ρ dµx and substituted the definition
of Aϕ, cf. (4.7). Hence

ξ = A−1
ϕ

(

n

∫

S

δ(s)ρϕ(s) gradΦs(x) dµx(s)

)

and the assertion follows. �

Lemma 4.6. If g = g0, then Ax,s = idTxM for all x ∈ M , s ∈ S, and therefore
Aϕ = idTxM for all ϕ ∈ L such that P (ϕ) = x.
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Proof. Substituting λ(x, s) = e−(n−1)Φs(x) (cf. Lemma 4.2) into the definition of
Ax,s yields

Ax,s(ξ) = e−Φs(x)∇ξ(e
Φs gradΦs) = e−Φs(x)∇ξ grad(e

Φs).

A straightforward computation shows that the Hessian of the function eΦs is con-
formal with respect to g, more precisely, D2(eΦs) = eΦ(s) · g (since the second
derivative of eΦs along the “radial” direction from s is that of et at t = Φs(x),
and in orthogonal directions it is equal to the curvature of horospheres). Hence
∇ξ grad(e

Φs) = eΦ(s) · ξ, and the first assertion follows.
Then the second assertion follows from the fact that

∫

S ρϕ dµx = 1. �

Definition 4.7. We introduce a Riemannian metric G on B as follows: for every
ϕ ∈ B, he scalar product Gϕ on TϕL = L is defined by

(4.10) Gϕ(X,Y ) =

∫

S

X(s)Y (s)ρϕ(s) dµx(s), X, Y ∈ L,

where x = P (ϕ).

Lemma 4.8. 1. G is a special metric (cf. Definition 3.3) with respect to Φ.
2. P is a projection (with respect to Φ and G) in the sense of Definition 3.11.

Proof. 1. The first two requirements of Definition 3.3 follow immediately. To verify
the third requirement, recall that P ◦Φ = idM (cf. Lemma 4.4). Hence, for ϕ = Φ(x)
where x ∈M , Formula (4.5) takes the form

ρϕ(s) = en(Φs(P (ϕ))−ϕ(s)) = en(Φ(x)(s)−ϕ(s)) = e0 = 1.

Therefore ρϕ ≡ 1 and the assertion follows.

2. The fact that P is L2-smooth (cf. Definition 3.10) follows from its ordinary
smoothness (cf. Lemma 4.4) and the explicit formula for its derivative (cf. Lemma
4.5). The first requirement of Definition 3.11 follows from Lemma 4.4. To verify
the second one, consider x ∈ M , ϕ = Φ(x) and let δ ∈ L be orthogonal to TxΦ
with respect to Gϕ. By Lemma 4.5 it suffices to verify that Eϕ(δ) = 0. By (4.8)
we have

Eϕ(δ) = n

∫

S

δ(s)ρϕ(s) gradΦs(x) dµx(s) = n

∫

S

δ(s) gradΦs(x) dµx(s)

since ρϕ ≡ 1 for ϕ = Φ(x). A substitution s = α(v), v ∈ UTxM (cf. (3.3)) yields

Eϕ(δ) = n

∫

UTxM

δ(α(v))v dv

since gradΦα(v) = v, cf. the definition of α in Section 3.
On the other hand, the assumption that δ is orthogonal to TxΦ means that for

every v0 ∈ TxM

0 = Gϕ(δ, dxΦ(v0)) =

∫

S

δ(s) · dΦs(v0)ρϕ(s) dµx(s)

=

∫

S

δ(s)〈gradΦs(x), v0〉 dµx(s) =

∫

S

δ(α(v))〈v, v0〉 dv = 〈Eϕ(δ), v0〉.

(Here we again used the fact that ρϕ ≡ 1 and the substitution s = α(v)). Since
〈Eϕ(δ), v0〉 = 0 for all v0 ∈ TxM , we have Eϕ(δ) = 0 and the assertion follows. �
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5. Estimating the Jacobian

Consider the Jacobian JY P (ϕ) = JG,Y P (ϕ) of P with respect to G where ϕ ∈ B
and Y is an n-dimensional subspace of TϕL = L. Lemma 4.5 implies that

JG,Y P (ϕ) = | detAϕ|−1JGϕ
(Eϕ).

Therefore

(5.1) JGP (ϕ) = | detAϕ|−1JGϕ
(Eϕ).

Proposition 5.1. For every ϕ ∈ B the following holds.
1. JGϕ

(Eϕ) ≤ 1.
2. Eϕ is n-Lipschitz with respect to Gϕ.

Proof. 1. We have to prove that J := JGϕ,Y (Eϕ) ≤ 1 for every n-dimensional
subspace Y ⊂ L. Choose an orthonormal basis (δ1, . . . , δn) in Y and an orthonormal
basis (e1, . . . , en) in TxM such that the matrix (aij) of Eϕ|Y with respect to these
bases is upper triangular (that is, aij = 0 for i > j) and aii ≥ 0 for all i. Then

J = | det(aij)| =
n
∏

i=1

aii.

Substituting s = α(v), v ∈ TxM , yields

(5.2) Eϕ(δ) = n

∫

S

δ(s)ρϕ(s) gradΦs(x) dµx(s) = n

∫

UTxM

δ(α(v))ρ(v)v dv

for every δ ∈ L, where
ρ(v) = ρϕ(α(v)).

Note that

(5.3)

∫

UTxM

ρ(v) dv =

∫

S

ρϕ(s) dµx(s) = 1.

Then

aij = 〈Eϕ(δi), ej〉 = n

∫

UTxHn

δi(α(v))〈v, ej〉ρ(v) dv,

hence

(5.4) JY (Eϕ) =

n
∏

i=1

aii ≤
(

1

n

n
∑

i=1

aii

)n

=

(

n
∑

i=1

∫

UTxM

δi(α(v))〈v, ei〉ρ(v) dv
)n

≤
(

1

2

n
∑

i=1

∫

UTxM

δi(α(v))
2ρ(v) dv +

1

2

n
∑

i=1

∫

UTxM

〈v, ei〉2ρ(v) dv
)n

.

where the first inequality is the arithmetic-geometric means inequality and the
second one follows from Cauchy–Schwarz. Since Gϕ(δi, δi) = 1, we have

(5.5)

∫

UTxM

δi(α(v))
2ρ(v) dv =

∫

S

δi(s)
2ρϕ(s) ds =

1

n
Gϕ(δi, δi) =

1

n
,

hence the first term of the sum in the right-hand side of (5.4) equals 1
2 . By (5.3),

(5.6)

n
∑

i=1

∫

UTxM

〈v, ei〉2ρ(v) dv =

∫

UTxM

|v|ρ(v) dv = 1,
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hence the first term of the sum in the right-hand side of (5.4) equals 1
2 . Thus the

right-hand side of (5.4) equals 1, and the assertion follows.
2. The above argument shows that

∑〈Eϕ(δi), ei) ≤ n for every orthonormal
n-frame {δi} in (L, Gϕ) and every orthonormal basis {ei} in TxM . It follows that
〈Eϕ(δ), e) ≤ n for any unit vectors δ ∈ (L, Gϕ) and e ∈ TxM , hence the result. �

Corollary 5.2. If g = g0, then P does not increase n-dimensional areas (with
respect to G). Therefore every compact region in H

n is a minimal filling.

Proof. Recall that JGP (ϕ) = | detAϕ|−1JGϕ
(Eϕ), and in the case g = g0 we have

detAϕ = 1 by Lemma 4.6. Hence JGP (ϕ) ≤ 1 by Proposition 5.1, and the asser-
tions follow. �

Proposition 5.3. There is a positive constant c0 = c0(R, n) > 0 such that for every
g sufficiently close to g0 the following holds: if ϕ ∈ B, Y ⊂ L is an n-dimensional
subspace, δ ∈ Y and Gϕ(δ, δ) = 1, then

JGϕ,Y (Eϕ) ≤ 1− c0‖δ − dΦ(Eϕ(δ))‖2L2(S).

Proof. Choose an orthonormal basis (δ1, . . . , δn) in Y such that δ1 = δ. Then there
exists an orthonormal basis (e1, . . . , en) in TxM such that the matrix (aij) of Eϕ|Y
with respect to these bases is upper triangular. We use notations and formulas
from the proof of Proposition 5.1.

Let m = 1
n

∑

i aii. Then

m =

n
∑

i=1

∫

UTxHn

δi(α(v))〈v, ej〉ρ(v) dv

=
1

2

n
∑

i=1

∫

UTxHn

δi(α(v))
2ρ(v) dv +

1

2

n
∑

i=1

∫

UTxHn

〈v, ei〉2ρ(v) dv

− 1

2

n
∑

i=1

∫

UTxHn

(δi(α(v)) − 〈v, ei〉)2ρ(v) dv

By (5.5) and (5.6), the sum of the first two terms in the right-hand side equals 1
(cf. the proof of Proposition 5.1), hence

(5.7) m = 1− 1

2

n
∑

i=1

∫

UTxHn

(δi(α(v)) − 〈v, ei〉)2ρ(v) dv

Denote ξi = dxΦ(ei). Then, for every v ∈ TxM ,

〈v, ei〉 = 〈gradΦα(v)(x), ei〉 = dxΦα(v)(ei) = ξi(α(v)),

hence
∫

UTxM

(δi(α(v))−〈v, ei〉)2ρ(v) dv =

∫

UTxM

(δi(α(v))−ξi(α(v)))2ρ(v) dv ≥ 2c1‖δi−ξi‖2L2

for some c1 = c1(n,R) > 0. Here we used the fact that ρ and the derivatives of α
are uniformly bounded. Then (5.7) implies that

(5.8) m ≤ 1− c1

n
∑

i=1

‖δi − ξi‖2L2 ≤ 1− c1‖δ1 − ξ1‖2L2.
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Denote J = JGϕ,Y (Eϕ), then J =
∏n

i=1 aii as in the proof of Proposition 5.1.
By the inequality between arithmetic and geometric means,

(5.9) J1/n =





∏

i<j

√
aiiajj





2/n(n−1)

≤ 2

n(n− 1)

∑

i<j

√
aiiajj

=
2

n(n− 1)

∑

i<j

aii + ajj − (
√
aii −√

ajj)
2

2
=

1

n

n
∑

i=1

aii−
1

n(n− 1)

∑

i<j

(
√
aii−√

ajj)
2

= m− 1

n(n− 1)

∑

i<j

(
√
aii −√

ajj)
2 ≤ m− 1

n(n− 1)

n
∑

i=1

(
√
a11 −

√
aii)

2.

Since m = 1
n

∑

aii ≤ 1 by (5.7), we have aii ≤ n for all i. It follows that

|√a11 −
√
aii| ≥

1

2
√
n
|a11 − aii|.

Hence
n
∑

i=1

(
√
a11 −

√
aii)

2 ≥ 1

4n

n
∑

i=1

(a11 − aii)
2 ≥ 1

4
(a11 −m)2

(the last inequality here follows from the fact that
∑

x2i ≥ n
(

1
n

∑

xi)
2 where xi =

a11 − aii, i = 1, . . . , n). This and (5.9) imply

(5.10) J1/n ≤ m− 1

4n(n− 1)
(a11 −m)2.

Since m ≤ 1, we have

m ≤ m+ 1− (m− 1)2

2

(this inequality is equivalent to m2 ≤ m). Plugging this into (5.10) yields

J1/n ≤ m+ 1

2
− 1

2
(m− 1)2 − 1

4n(n− 1)
(a11 −m)2

≤ m+ 1

2
− 1

4n(n− 1)
((m− 1)2 + (a11 −m)2) ≤ m+ 1

2
− 1

8n(n− 1)
(a11 − 1)2

(the last inequality here follows from the obvious one x2 + y2 ≥ 1
2 (x+ y)2 applied

to x = m− 1 and y = a11 −m). By (5.8) we have

m+ 1

2
≤ 1− c1

2
‖δ1 − ξ1‖2L2 ,

therefore
(5.11)

J1/n ≤ 1− c1
2
‖δ1 − ξ1‖2L2 − 1

8n(n− 1)
(a11 − 1)2 ≤ 1− c2(‖δ1 − ξ1‖2L2 + (a11 − 1)2)

where c2 = min{ c1
2 ,

1
8n(n−1)}. Recall that Eϕ(δ) = Eϕ(δ1) = a11e1 by the choice of

our bases, hence

dxΦ(Eϕ(δ)) = a11ξ1.

Therefore

(5.12) ‖δ − dxΦ ◦ Eϕ(δ)‖2L2 = ‖δ − a11ξ1‖2L2 ≤ 2(‖δ − ξ1‖2L2 + (a11 − 1)2‖ξ1‖2L2)
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(this is the inequality ‖x + y‖2 ≤ 2(‖x‖2 + ‖y‖2) applied to vectors x = δ − ξ1
and y = (1 − a11)ξ1 in L2). Recall that ξ1 = dxΦ(e1) is a unit vector in the space
(L, GΦ(x)) ⊂ L2(µx), hence ‖ξ1‖2L2 ≤M for some M =M(n,R) > 0. (Here we use
the fact that the densities of the measures µx are uniformly bounded.) We may
assume that M ≥ 2, then (5.12) implies that

‖δ − dxΦ ◦ Eϕ(δ)‖2L2 ≤M(‖δ1 − ξ1‖2L2 + (a11 − 1)2)

Plugging this into (5.11) yields

J1/n ≤ 1− c2M
−1‖δ − dxΦ ◦Eϕ(δ)‖2L2

hence the result. �

6. Estimating the correction factor

It this section we estimate the correction factor detAϕ in (5.1).

Proposition 6.1. There are positive constants r and C = C(n,R) such that for
every g sufficiently close to g0 and every ϕ ∈ B one has

‖Aϕ − I‖ ≤ C · ‖g − g0‖Cr · ‖ϕ− Φ(P (ϕ))‖L2(S)

where I = idTP(ϕ)M , and

| detAϕ − 1| ≤ C · ‖g − g0‖2Cr · ‖ϕ− Φ(P (ϕ))‖2L2(S).

Proof. Fix ϕ ∈ B and denote p = P (ϕ), I = idTpM . Since ϕ ∈ B, |ϕ(s)| ≤ R for
a.e. s ∈ S, and we may assume that |ϕ(s)| ≤ R for all s ∈ S. Throughout the
argument, we denote by C(n,R) various positive constants depending only on n
and R. By Lemma 4.4, p = P (ϕ) belongs to a ball of radius R1 = C(n,R) centered

at o. Hence |Φs(p)| ≤ C(n,R) and C(n,R)−1 ≤ dµp(s)
ds ≤ C(n,R) for all s ∈ S. We

will use these estimates without explicit reference.
For every t ∈ [0, 1], define ψt, ϕt ∈ L∞(S) by

ψt(s) = 1− t+ t · en(Φs(p)−ϕ(s))

and

ϕt(s) = Φs(p)−
1

n
logψt(s).

Then ψt is linear in t and

ψt(s) = en(Φs(p)−ϕt(s))

for all t ∈ [0, 1]. Note that ϕt is a smooth function of t, ϕ0 = Φ(p) and ϕ1 = ϕ.
Therefore P (ϕt) is defined for all t from a neighborhood of 0 in [0, 1], as well as for
t = 1. We are going to study detAϕt

as a function of t.

Lemma 6.2. P (ϕt) = p for all t such that P (ϕt) is defined.

Proof. By Definition 4.3 of P , the identity P (ϕt) = p is equivalent to
∫

S

ψt(s) gradΦs(p) dµp(s) = 0.

The left-hand side is linear in t and the equality holds for t = 0 and t = 1 (since
P (ϕ0) = P (Φ(p)) = p and P (ϕ1) = P (ϕ) = p). Therefore it holds for all t. �

Lemma 6.3. Aϕ0 = I.
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Proof. Since P ◦ Φ = idM , we have dϕ0P ◦ dpΦ = I. By Lemma 4.5, we have
dϕ0P = A−1

ϕ0
◦ Eϕ0 , hence it suffices to verify that

(6.1) Eϕ0 ◦ dpΦ = I.

Since ϕ0 ∈ Φ(M), we have ρϕ0
≡ 1, and the definition of Eϕ0 , cf. (4.8), takes the

form

Eϕ(δ) = n

∫

S

δ(s) gradΦs(p) dµp(s)

for all δ ∈ L. Substitute δ = dΦ(v0) where v0 ∈ TpM , that is,

δ(s) = dΦs(v0) = 〈gradΦs(p), v0〉.
This yields

Eϕ(dΦs(v0)) = n

∫

S

〈gradΦs(p), v0〉 gradΦs(p) dµp(s) = n

∫

UTpM

〈v, v0〉v dv

where the second identity follows by substituting s = α(v), cf. (3.3). By the
symmetry under rotations, the latter integral is a multiple of v0. To find out
the coefficient, observe that the scalar product of this integral with v0 equals

n

∫

UTpM

〈v, v0〉2 dv = |v0|2.

Thus Eϕ(dΦs(v0)) = v0 and (6.1) follows. �

The definitions imply that Aϕt
is a smooth function of t (in fact, it is a rational

function, see below).

Lemma 6.4. d
dt

∣

∣

t=0
detAϕt

= 0.

Proof. By (5.1) we have

detAϕt
=
JGϕt

(Eϕt
)

JGP (ϕt)

At t = 0, all terms of this formula are equal to 1. Indeed, detAϕ0 = 1 by Lemma
6.3, and the Jacobian of the projection P equals 1 at the surface Φ(M). Since P
is a projection in the sense of Definition 3.11, Proposition 3.12 implies that the
derivative of the denominator at t = 0 equals 0. By Proposition 5.1, the numerator
attains its maximum at t = 0, hence its derivative at t = 0 also equals 0. Therefore
the derivative of the fraction is zero. �

The definitions of Aϕ (cf. (4.5)–(4.7)) and ψt yield that

(6.2) Aϕt
=
A(t)

b(t)

where A(t) is an operator on TpM given by

A(t) =

∫

S

ψt(s)Ap,s dµp(s)

and

b(t) =

∫

S

ψt(s) dµp(s).

Since ψt is linear in t, so are A(t) and b(t). The definition of ψt implies that

C(n,R)−1 ≤ ψt(s) ≤ C(n,R)
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for all s ∈ S, hence

(6.3) C(n,R)−1 ≤ b(t) ≤ C(n,R)

for all t ∈ [0, 1]. We rewrite ψt as

(6.4) ψt(s) = 1 + tδ(s)

where

δ(s) = en(Φs(p)−ϕ(s)) − 1.

Since |Φs(p)− ϕ(s)| ≤ C(n,R), we have

|δ(s)| ≤ C(n,R) · |Φs(p)− ϕ(s)| = C(n,R) · |Φ(p)(s)− ϕ(s)|
for all s ∈ S. Hence

(6.5) ‖δ‖L2 ≤ C(n,R) · ‖Φ(p)− ϕ‖L2 .

Using (6.4), we rewrite b(t) as

(6.6) b(t) =

∫

S

(1 + tδ(s)) dµp(s) = 1 + t

∫

S

δ(s) dµp(s).

In particular, b(0) = 1 and hence A(0) = I by (6.2) Lemma 6.3. Similarly, we
rewrite A(t) as

A(t) =

∫

S

(1 + tδ(s))Ap,s dµp(s) =

∫

S

Ap,s dµp(s) + t

∫

S

δ(s)Ap,s dµp(s).

Substituting t = 0 yields that the first term equals A(0) = I, thus

(6.7) A(t) = I + t

∫

S

δ(s)Ap,s dµp(s) = b(t)I + t∆

where

∆ =

∫

S

δ(s)(Ap,s − I) dµp(s).

(The second identity in (6.7) uses (6.6).) By Cauchy–Schwarz we have

‖∆‖ ≤ C(n,R) · ‖δ‖L2 · ‖Ap,s − I‖L2 ≤ C(n,R) · ‖δ‖L2 · ‖g − g0‖Cr

for some r. The second inequality follows from the fact that Ap,s depends smoothly
on g and equals I if g = g0 (cf. Lemma 4.6). Substituting (6.5) yields

(6.8) ‖∆‖ ≤ C(n,R) · ‖g − g0‖Cr · ‖Φ(p)− ϕ‖L2

By (6.2) and (6.7) we have

Aϕt
= I +

t

b(t)
∆.

In particular, Aϕ = Aϕ1 = I + 1
b(1)∆. Hence

‖Aϕ − I‖ = b(1)−1‖∆‖ ≤ C(n,R) · ‖g − g0‖Cr · ‖Φ(p)− ϕ‖L2

by (6.3) and (6.8), and the first assertion of Proposition 6.1 follows. Furthermore,
since ‖Φ(p)− ϕ‖L2 ≤ C(n,R), we may assume that ‖g − g0‖Cr is so small that

(6.9) ‖Aϕ − I‖ ≤ 1.

By Lemma 6.4,

0 =
d

dt

∣

∣

∣

∣

t=0

detAϕt
=

d

dt

∣

∣

∣

∣

t=0

det

(

I +
t

b(t)
∆

)

= trace∆
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since b(0) = 1. Hence

(6.10) trace(Aϕ − I) = b(1)−1 trace∆ = 0.

We need the following finite-dimensional lemma.

Lemma 6.5. There is a constant C = C(n) > 0 such the following holds. For
every n× n matrix A such that traceA = 0 and ‖A‖ ≤ 1, one has

| det(I +A)− 1| ≤ C‖A‖2

where I is the identity matrix.

Proof. Indeed, the differential of det(I+A) on the subspace {traceA = 0} is zero at
the point A = 0, hence det(I+A)−1 ≤ C1‖A‖2 for some constant C1 and provided
that ‖A‖2 ≤ r for some positive r > 0 (this follows from Taylor the expansion for
det(I + A)). This proves the inequality in the r-neighborhood of A = 0. Since
det(I + A) is bounded on the ball {‖A‖ ≤ 1} (since it is continuous and the ball
is compact), the inequality is trivial for A with r ≤ ‖A‖ ≤ 1, where one can use
max{det(I +A) : ‖A‖ ≤ 1}/r2 for the constant C. �

Now the second assertion of Proposition 6.1 follows from (6.9), (6.10) and Lemma
6.5 applied to A = Aϕ − I. �

Corollary 6.6. If g is sufficiently close to g0, then for every ϕ ∈ B the map dϕP
is 2n-Lipschitz with respect to the metric Gϕ on TϕL = L.

Proof. Recall that dϕP = A−1
ϕ ◦ Eϕ, cf. Lemma 4.5. The first assertion of Propo-

sition 6.1 implies that ‖A−1
ϕ ‖ ≤ 2 provided that ‖g − g0‖Cr is sufficiently small.

Since Eϕ is n-Lipschitz by Proposition 5.1, it follows that dϕP is 2n-Lipschitz. �

7. A compression trick

Define a function h : B → R+ by

h(ϕ) = ‖ϕ− Φ(P (ϕ))‖L2

and let ε(g) = ‖g − g0‖Cr where r is from Proposition 6.1. Assuming that ε(g) is
sufficiently small, we rewrite the assertions of Proposition 6.1 as follows:

‖A−1
ϕ − I‖ ≤ C(n,R)ε(g)h(ϕ)

and

| detA−1
ϕ | ≤ 1 + C(n,R)ε(g)h2(ϕ).

Since dϕP = A−1
ϕ ◦Eϕ (Lemma 4.5) and JGϕ

(Eϕ) ≤ 1 (Proposition 5.1), in follows
that

JϕP ≤ 1 + C(n,R)ε(g)h2(ϕ) ≤ 2

provided that ε(g) is sufficiently small.
Observe that the function h2 is smooth on B and its derivative is given by

dϕh
2(δ) = 2〈ϕ− Φ(P (ϕ)), δ − dΦ(dP (δ))〉L2

for all ϕ ∈ B, δ ∈ TϕL = L. Hence
(7.1) |dϕh2(δ)| ≤ 2h(ϕ)‖δ − dΦ(dP (δ))‖L2 .

For a constant c > 0 define Fc : L∞(S) → Hn × R+ by Fc(ϕ) = (P (ϕ), ch(ϕ)).
Note that Fc is smooth on B \ Φ(M).
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Lemma 7.1. For every R > 0, there exists a c1 = c1(n,R) > 0 such that for every
positive c < c1 and every ϕ ∈ B \ Φ(M), the n-dimensional Jacobian of Fc at ϕ
with respect to G is bounded above by

1 + C(n,R)ε(g)h2(ϕ).

Proof. Let Y be an n-dimensional subspace of TϕL equipped with our scalar prod-
uct Gϕ. Denote the n-dimensional Jacobian of dFc|Y by J . Choose an orthonormal
basis (δ1, . . . , δn) in Y such that dϕh(δi) = 0 for i ≥ 2. Then choose an orthonor-
mal basis e1, . . . , en in TP (ϕ)M as in the proof of Proposition 5.3, namely so that
the matrix (aij) of dϕP |Y w.r.t. these bases is upper triangular and its diagonal
elements aii are nonnegative. Then

J =
√

a211 + t2 ·
n
∏

i=2

aii

where

t = dϕ(ch)(δ1) =
c

2h(ϕ)
dϕh

2(δ1).

By 7.1 we have

(7.2) |t| ≤ c · ‖δ1 − dΦ ◦ dϕP (δ1)‖L2

By Corollary 6.6 we have

(7.3) aii ≤ |dϕP (δi)| ≤ 2n

for all i, hence

‖δ1 − dΦ ◦ dϕP (δ1)‖L2 = ‖δ1 − a11dΦ(e1)‖L2 ≤ C(n,R).

Therefore we may assume that c1 is so small that (7.2) implies that |t| < (2n)−n.
Consider two cases.

Case 1: a11 < (2n)−n. Then
√

a211 + t2 ≤
√
2(2n)−n, hence

J =
√

a211 + t2 ·
n
∏

i=2

aii ≤
√
2(2n)−n

n
∏

i=2

aii ≤
√
2(2n)−1 < 1.

Here the second inequality follows from (7.3).
Case 2: a11 ≥ (2n)−n. Then

J =
√

a211 + t2·
n
∏

i=2

aii ≤
(

a11 +
t2

2a11

) n
∏

i=2

aii = JY P

(

1 +
t2

2a211

)

≤ JY P+(2n)2nt2.

Here we used that JY P =
∏

i aii and JY P ≤ 2. Since dϕP = A−1
ϕ ◦ Eϕ (Lemma

4.5), we have

JY P = detA−1
ϕ JY (Eϕ) ≤ JY (Eϕ) + C(n,R)ε(g)h2(ϕ).

For the first term we use the estimate

JY (Eϕ) ≤ 1− c0‖δ1 − dΦ ◦ Eϕ(δ1)‖2L2

from Proposition 5.3, thus

(7.4) J ≤ 1− c0‖δ1 − dΦ ◦ Eϕ(δ1)‖2L2 + (2n)2nt2 + C(n,R)ε(g)h2(ϕ)

By (7.2) and the triangle inequality in L2,

|t| ≤ c(‖δ1 − dΦ ◦ Eϕ(δ1)‖L2 + ‖dΦ ◦ (dϕP − Eϕ)(δ1)‖L2)



AREA MINIMIZERS AND BOUNDARY RIGIDITY OF ALMOST HYPERBOLIC METRICS 28

We estimate the second term using Proposition 6.1:

|(dϕP − Eϕ)(δ1)| = |(A−1 − I) ◦ Eϕ(δ1)| ≤ C(n,R)ε(g)h(ϕ)

since |Eϕ(δ1)| ≤ n, cf. Proposition 5.1. Therefore

|t| ≤ c‖δ1 − dΦ ◦ Eϕ(δ1)‖L2 + C(n,R)ε(g)h(ϕ),

hence

t2 ≤ 2c2‖δ1 − dΦ ◦ Eϕ(δ1)‖2L2 + 2(C(n,R)ε(g)h(ϕ))2

Substituting this into (7.4) yields

J ≤ 1− (c0 − 2(2n)2nc2)‖δ1 − dΦ ◦ Eϕ(δ1)‖2L2 + C(n,R)ε(g)h2(ϕ)

We may assume that c1 is chosen so small that c0 − 2(2n)2nc21 ≥ 0, then

J ≤ 1 + C(n,R)ε(g)h2(ϕ)

and the lemma follows. �

For t ∈ [0, 1] define a “homothety” At :M →M by

At(x) = expo(t · exp−1
o (x).

Clearly At is a smooth map and it is t-Lipschitz due to nonpositive curvature ofM .
For a small σ > 0, define a map Qσ :M × R+ by

Qσ(x, h) = A(1+σh2)−1(x).

Lemma 7.2. If x ∈M is such that distM (o, x) < (4σ)−1/2, then the n-dimensional
Jacobian of Qσ at (x, h) is no greater than (1 + σh2)−1.

Proof. Due to the Rauch Comparison Theorem, the n-dimensional Jacobian of Qσ

does not exceed that of the similar map for Rn, namely

(x, h) 7→ (1 + σh2)−1x, x ∈ R
n, h ∈ R+.

The latter equals

(1 + σh2)−(n+1)
√

(1 + σh2)2 + (2σh|x|)2.
If |x| does not exceed (4σ)−1/2, one easily sees that the expression under the square
root is no greater than (1 + σh2)3, hence the result. �

Now define Pσ : B → M by

Pσ(ϕ) = Qσ(P (ϕ), σh(ϕ)) = A(1+σ3h2(ϕ))−1(P (ϕ))

where P and h are the same as above. Note that the second formula implies that
Pσ is smooth.

Proposition 7.3. For every R > 0 there exist σ > 0, c > 0 and ε > 0 such that
the n-dimensional Jacobian J(ϕ) := JGPσ(ϕ) of Pσ with respect to G at any point
ϕ ∈ B satisfies

J(ϕ) ≤ 1− c · h2(ϕ).
provided that ε(g) = ‖g − g0‖Cr < ε.
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Proof. Choose σ so that σ < c1(n,R) from Lemma 7.1 and (4σ)−1/2 > diam(P (B)).
For a point ϕ ∈ Φ(M), we have dϕQσ = dϕP since dϕh

2 = 0, and therefore
J(ϕ) = JGP (ϕ) = 1.

Now consider a point ϕ /∈ Φ(M). The map Pσ is a composition of the map
Fσ : B → M × R+ whose Jacobian is estimated in Lemma 7.1 and the map Qσ

whose Jacobian is estimated in Lemma 7.2. These estimates yield

J ≤ 1 + C(n,R)ε(g)h2(ϕ)

1 + σ(σh(ϕ))2
≤ 1− 2c · h2(ϕ) + C(n,R)ε(g)h2(ϕ)

for a suitable c = c(σ, n,R). Choosing ε < c
C(n,R) yields the desired inequality. �

Now we are in position to complete the proof of Proposition 2.1. Let ε and σ be
as in Proposition 7.3. Assuming that ‖g−g0‖Cr < ε, consider the map Pσ : B →M
constructed above. By Lemma 3.14, for any Riemannian n-manifold N and any
1-Lipschitz map f : N → B we have

vol(Pσ ◦ f) ≤
∫

N

JGPσ(f(x)) d volN (x).

Then the inequality for J from Proposition 7.3 implies that vol(Pσ ◦ f) ≤ vol(N).
Moreover in the case of equality we have h(ϕ) = 0 for all ϕ ∈ f(N), hence f(N) ⊂
Φ(M). Thus the map Pσ possesses the properties claimed in Proposition 2.1.
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