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NORMALITY OF ADJOINTABLE MODULE MAPS

K. SHARIFI

Abstract. Normality of bounded and unbounded adjointable operators are discussed.

Suppose T is an adjointable operator between Hilbert C*-modules which has polar decom-

position, then T is normal if and only if there exists a unitary operator U which commutes

with T and T ∗ such that T = U T ∗. Kaplansky’s theorem for normality of the product of

bounded operators is also reformulated in the framework of Hilbert C*-modules.

1. Introduction and preliminary.

Normal operators may be regarded as a generalization of a selfadjoint operator T in which

T ∗ need not be exactly T but commutes with T . They form an attractive and important

class of operators which play a vital role in operator theory, especially, in spectral theory.

In this note we will study bounded and unbounded normal module maps between Hilbert

C*-modules which have polar decomposition. Indeed, for adjointable operator T between

Hilbert C*-modules which has polar decomposition, we demonstrate that T is normal if and

only if there exists a unitary operator U such that T = U T ∗. In this situation, U T ⊆ T U

and U T ∗ ⊆ T ∗ U (compare [8, page 109] and [2, page 155]).

Suppose T, S are bounded adjointable operators between Hilbert C*-modules. Suppose T

has polar decomposition and T and TS are normal operators. Then we show that ST is a

normal operator if and only if S commutes with |T |. This fact has been proved by Kaplansky

[9] in the case of Hilbert spaces.

Throughout the present paper we assume A to be an arbitrary C*-algebra. We deal with

bounded and unbounded operators at the same time we simply denote bounded operators

by capital letters and unbounded operators by small letters. We use the notations Dom(.),

Ker(.) and Ran(.) for domain, kernel and range of operators, respectively.

Hilbert C*-modules are essentially objects like Hilbert spaces, except that inner product,

instead of being complex-valued, takes its values in a C*-algebra. Although Hilbert C*-

modules behave like Hilbert spaces in some ways, some fundamental Hilbert space properties

like Pythagoras’ equality, self-duality, and even decomposition into orthogonal complements
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do not hold. A (right) pre-Hilbert C*-module over a C*-algebra A is a right A-module X

equipped with an A-valued inner product 〈·, ·〉 : X × X → A , (x, y) 7→ 〈x, y〉, which is

A-linear in the second variable y and has the properties:

〈x, y〉 = 〈y, x〉∗, 〈x, x〉 ≥ 0 with equality only when x = 0.

A pre-Hilbert A-module X is called a Hilbert A-module if X is a Banach space with respect

to the norm ‖x‖ = ‖〈x, x〉‖1/2. A Hilbert A-submodule W of a Hilbert A-module X is an

orthogonal summand if W ⊕W⊥ = X , where W⊥ denotes the orthogonal complement of W

in X . We denote by L(X) the C*-algebra of all adjointable operators on X , i.e., all A-linear

maps T : X → X such that there exists T ∗ : X → X with the property 〈Tx, y〉 = 〈x, T ∗y〉

for all x, y ∈ X . A bounded adjointable operator V ∈ L(X) is called a partial isometry if

V V∗V = V. For the basic theory of Hilbert C*-modules we refer to the books [11, 15] and

the papers [4, 13]

An unbounded regular operator on a Hilbert C*-module is an analogue of a closed operator

on a Hilbert space. Let us quickly recall the definition. A densely defined closed A-linear

map t : Dom(t) ⊆ X → X is called regular if it is adjointable and the operator 1 + t∗t has a

dense range. We denote the set of all regular operators on X by R(X). Recall that a densely

defined operator t : Dom(t) ⊆ X → X is regular if and only if its graph is orthogonally

complemented in X ⊕ X (see e.g. [5, Corollary 3.2]). If t is regular then t∗ is regular and

t = t∗∗, moreover t∗t is regular and selfadjoint. Define Qt = (1+ t∗t)−1/2 and Ft = tQt, then

Ran(Qt) = Dom(t), 0 ≤ Qt = (1 − F ∗

t Ft)
1/2 ≤ 1 in L(X) and Ft ∈ L(X) [11, (10.4)]. The

bounded operator Ft is called the bounded transform of regular operator t. According to

[11, Theorem 10.4], the map t → Ft defines an adjoint-preserving bijection

R(X) → {F ∈ L(X) : ‖F‖ ≤ 1 and Ran(1− F ∗F ) is dense in X}.

Very often there are interesting relationships between regular operators and their bounded

transforms. In fact, for a regular operator t, some properties transfer to its bounded trans-

form Ft, and vice versa. Suppose t ∈ R(X) is a regular operator, then t is called normal

iff Dom(t) = Dom(t∗) and 〈tx, tx〉 = 〈t∗x, t∗x〉 for all x ∈ Dom(t). t is called selfadjoint iff

t∗ = t and t is called positive iff t is normal and 〈tx, x〉 ≥ 0 for all x ∈ Dom(t). Remarkably,

a regular operator t is normal (resp., selfadjoint, positive) iff its bounded transform Ft is

normal (resp., selfadjoint, positive). Moreover, both t and Ft have the same range and the

same kernel. If t ∈ R(X) then Ker(t) = Ker(|t|) and Ran(t∗) = Ran(|t|) , cf. [5, 10]. If

t ∈ R(X) is a normal operator then Ker(t) = Ker(t∗) and Ran(t) = Ran(t∗).
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A bounded adjointable operator T has polar decomposition if and only if Ran(T ) and

Ran(|T |) are orthogonal direct summands [15, Theorem 15.3.7]. The result has been gen-

eralized in Theorem 3.1 of [6] for regular operators. Indeed, for t ∈ R(X) the following

conditions are equivalent:

• t has a unique polar decomposition t = V|t|, where V ∈ L(X) is a partial isometry

for which Ker(V) = Ker(t).

• X = Ker(|t|)⊕ Ran(|t|) and X = Ker(t∗)⊕Ran(t).

• The adjoint operator t∗ has polar decomposition t∗ = V∗|t∗|.

• The bounded transform Ft has polar decomposition Ft = V|Ft|.

In this situation, V∗V|t| = |t|, V∗t = |t| and VV∗t = t, moreover, we haveKer(V∗) = Ker(t∗),

Ran(V) = Ran(t) and Ran(V∗) = Ran(t∗).

The above facts and Proposition 2.2 of [5] show that each regular operator with closed

range has polar decomposition.

Recall that an arbitrary C*-algebra of compact operatorsA is a c0-direct sum of elementary

C*-algebras K(Hi) of all compact operators acting on Hilbert spaces Hi, i ∈ I, cf. [1,

Theorem 1.4.5]. If A is an arbitrary C*-algebra of compact operators then for every Hilbert

A-modules X , every densely defined closed operator t : Dom(t) ⊆ X → X is automatically

regular and has polar decomposition, cf. [5, 6].

The stated results also hold for bounded adjointable operators, since L(X) is a subset of

R(X). The space R(X) from a topological point of view are studied in [12, 14].

2. Normality

Proposition 2.1. Suppose T ∈ L(X) admits the polar decomposition T = V|T | and S ∈

L(X) is an arbitrary operator which commutes with T and T ∗. Then V and |T | commute

with S and S∗.

Proof. It follows from the hypothesis that (T ∗T )S = S(T ∗T ) which implies |T |S = S|T |, or

equivalently |T |S∗ = S∗|T |. Using the commutativity of S with T and |T |, we get

(SV − VS)|T | = SV|T | − V|T |S = ST − TS = 0.

That is, SV − VS acts as zero operator on Ran(|T |). If x ∈ Ker(|T |) = Ker(V) then

|T |x = Vx = 0, consequently |T |Sx = S|T |x = 0. Then Sx ∈ Ker(|T |) = Ker(V),

therefore, SV − VS acts as zero operator on Ker(|T |) too. We obtain

SV − VS = 0 on X = Ker(|T |)⊕ Ran(|T |).
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The statement S∗V − VS∗ = 0 on X = Ker(|T |) ⊕ Ran(|T |) can be deduced from the

commutativity of S with T ∗ and |T | in the same way. �

Corollary 2.2. Suppose T ∈ L(X) is a normal operator which admits the polar decomposi-

tion T = V|T | then V and |T | commute with the operators T, T ∗,V and V∗. In particular, V

is a unitary operator on Ran(T ) = Ran(T ∗).

The results follow from Proposition 2.1, Proposition 3.7 of [11] and the fact that VV∗T =

V∗VT = T .

Corollary 2.3. Suppose T ∈ L(X) admits the polar decomposition T = V|T |. Then T is a

normal operator if and only if there exists a unitary operator U ∈ L(X) commuting with |T |

such that T = UT ∗. In this situation, U also commutes with T and T ∗.

Proof. Suppose T is a normal operator then Ker(T ) = Ker(T ∗) and Ran(T ) = Ran(T ∗).

For every x ∈ X = Ker(T )⊕ Ran(T ∗) we define

Ux =







0 if x ∈ Ker(T )

Vx if x ∈ Ran(T ∗),

Wx =







0 if x ∈ Ker(T ∗)

V∗x if x ∈ Ran(T ).

Then 〈Ux, y〉 = 〈x,Wy〉 for all x, y ∈ X , that is, W = U∗. Corollary 2.2 implies that

U U∗ = U∗ U = 1 on X and T = U|T |. Commutativity of U with T , T ∗ and |T | follows from

the commutativity of V with T , T ∗ and |T |.

Conversely, suppose T = U|T | for a unitary operator U ∈ L(X) which commutes with |T |.

Then T ∗ = |T | U∗ and so T T ∗ = U |T | |T | U∗ = |T | U |T | U∗ = T ∗T . �

Corollary 2.4. Suppose T ∈ L(X) admits the polar decomposition T = V|T |. Then T is a

normal operator if and only if there exists a unitary operator U ∈ L(X) such that T = UT ∗.

In this situation, U commutes with T and T ∗.

Proof. Suppose T is a normal operator then |T | = |T ∗| = VT ∗ and so T = V|T | = V|T ∗| =

V2T ∗. For x ∈ X we define

Ux =







0 if x ∈ Ker(T )

V2x if x ∈ Ran(T ∗).



NORMALITY OF ADJOINTABLE MODULE MAPS 5

As in the proof of Corollary 2.3, U is unitary and T = UT ∗. Commutativity of U with T

and T ∗ follows from the commutativity of V with T and T ∗.

Conversely, suppose T = UT ∗ for a unitary operator U ∈ L(X). Then T ∗ = (UT ∗)∗ = T U∗

and so T ∗T = T U∗ U T ∗ = T T ∗. �

If the normal operator T ∈ L(X) has closed range, one can find shorter proof for the

above result.

Theorem 2.5. Suppose t ∈ R(X) admits the polar decomposition t = V|t|. Then t is a

normal operator if and only if there exists a unitary operator U ∈ L(X) such that t = Ut∗.

In this situation, tU = U t and t∗ U = U t∗ on Dom(t) = Dom(t∗).

Proof. Recall that t admits the polar decomposition t = V|t| if and only if its bounded

transform Ft admits the polar decomposition Ft = V|Ft|, furthermore, t is a normal operator

if and only if its bounded transform Ft is a normal operator.

Suppose t is a normal operator then there exists a unitary operator U ∈ L(X) such that

tQt = Ft = UF ∗

t = UFt∗ = U t∗Qt∗ = U t∗Qt. Since Qt : X → Ran(Qt) = Dom(t) is

invertible, we obtain t = Ut∗.

Conversely, suppose t = Ut∗ for a unitary operator U ∈ L(X). Then, in view of Remark

2.1 of [6], we have t∗ = (Ut∗)∗ = t∗∗ U∗ = tU∗ on Dom(t∗) and so t∗t = tU∗ U t∗ = t t∗.

According to Corollary 2.4 and the first paragraph of the proof, the unitary operator U

commutes with Ft and F ∗

t . Thus for every polynomial p we have U p(F ∗

t Ft) = p(F ∗

t Ft)U and

so for every continuous function p ∈ C[0, 1] we have U p(F ∗

t Ft) = p(F ∗

t Ft)U . In particular,

U (1 − F ∗

t Ft)
1/2 = (1 − F ∗

t Ft)
1/2 U which implies U Qt = Qt U . This fact together with

the equality Ft U = UFt imply that tU Qt = tQt U = U tQt. Again by invertibility of the

map Qt : X → Ran(Qt) = Dom(t) we obtain tU = U t on Dom(t). To demonstrate the

second equality we have U∗ t = U∗ U t∗ = t∗ which yields t∗ U = (U∗ t)∗ = t∗∗ = t = U t∗ on

Dom(t∗). �

The preceding theorem can also be reformulated in terms of densely defined closed oper-

ators on Hilbert C*-modules over C*-algebras of compact operators, or in terms of densely

defined closed operators on Hilbert spaces.

Corollary 2.6. Suppose t ∈ R(X) has closed range. Then t is a normal operator if and only

if there exists a unitary operator U ∈ L(X) such that t = Ut∗. In this situation, tU = U t

and t∗ U = U t∗ on Dom(t) = Dom(t∗).

The proof immediately follows from Theorem 2.5, Proposition 2.2 of [5] and Theorem 3.1

of [6].
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Consider two normal operators T and S on a Hilbert space it is known that, in general,

TS is not normal. Historical notes and several versions of the problem are investigated in

[7]. Kaplansky has shown that it may be possible that TS is normal while ST is not. Indeed,

he has shown that if T and TS are normal, then ST is normal if and only if S commutes

with |T |, cf. [9]. We reformulate his result for bounded adjointable operator on Hilbert

C*-modules. For this aim we need the Fuglede-Putnam theorem for bounded adjointable

operators on Hilbert C*-modules. Using Theorem 4.1.4.1 of [3] for the unital C*-algebra

L(X), we obtain:

Theorem 2.7. (Fuglede-Putnam) Assume that T, S and A are bounded adjointable op-

erator in L(X). Suppose T and S are normal and TA = AS, then T ∗A = AS∗.

Theorem 2.8. Let T, S ∈ L(X) be such that T and TS are normal and T has polar decom-

position. ST is normal if and only if S commutes with |T |.

Proof. Suppose ST and T are normal operators and A = TS and B = ST , then AT = TB.

In view of the Theorem 2.7, A∗T = TB∗, that is, S∗T ∗T = T T ∗S∗, and taking into account

the normality of T , we find S∗ commutes with T ∗T . Therefore, S∗|T | = |T |S∗ and so S

commutes with |T | by the Fuglede-Putnam theorem.

Conversely, suppose S commutes with |T |. Then the normal operator T has a representa-

tion T = U |T | in which U ∈ L(X) is unitary and commutes with |T |. Therefore,

U∗ TS U = U∗ U |T |S U = S|T | U = S U |T | = ST.

The operator ST is normal as an operator which is unitary equivalent with the normal

operator TS. �
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