The adjoint group of an Alexander quandle.

F.J.-B.J. Clauwens

November 9, 2010

To an abelian group M equipped with an automorphism T one can associate a quandle A(M,T) called its Alexander quandle. It is given by the set Mtogether with the quandle operation * defined by y * x = Ty + x - Tx. To any quandle Q one can associate a group $\operatorname{Adj}(Q)$ called the *adjoint group* of Q. It is defined as the abstract group with one generator e_x for each $x \in Q$ and one relation $e_{y*x} = e_x^{-1}e_ye_x$ for each $x, y \in Q$.

It is the purpose of this note to show that the adjoint group of an Alexander quandle Q(M,T) has an elegant description in terms of M and T, at least if the quandle is connected, which is the case if 1 - T is invertible. From this description one gets a similar description of the *fundamental group* of Q(M,T)based at $0 \in M$. This note can be viewed as an exercise inspired by [2], to which we refer for motivation and definitions.

The adjoint group $A = \operatorname{Adj}(A(M,T))$ acts from the right on M by the formula $p \cdot e_x = p * x$. This defines a homomorphism ρ from A to the group G of quandle automorphisms of A(M,T). Thus $p \cdot e_0^{-1} = T^{-1}p$ and $p \cdot e_0^{-1}e_x = p + x - Tx$. From one sees that

$$p \cdot e_0^{-1} e_x e_0^{-1} e_y = p + x - Tx + y - Ty = p \cdot e_0^{-1} e_{x+y}$$

Therefore

$$e_0^{-1}e_{x+y} = \gamma(x,y)e_0^{-1}e_xe_0^{-1}e_y \tag{1}$$

for some $\gamma(x, y) \in \operatorname{Adj}(Q)$ which acts trivially on M and thus is an element of $K = \ker(\rho)$. The group K is a central subgroup of A as explained in [2].

From the definition of $\gamma(x, y)$ we see that $\gamma(0, y) = 1$ and $\gamma(x, 0) = 1$ for all x and y. Furthermore the formulas

$$e_0^{-1}e_{x+y+z} = \gamma(x, y+z)e_0^{-1}e_xe_0^{-1}e_{y+z}$$

= $\gamma(x, y+z)e_0^{-1}e_x\gamma(y, z)e_0^{-1}e_ye_0^{-1}e_z$
 $e_0^{-1}e_{x+y+z} = \gamma(x+y, z)e_0^{-1}e_{x+y}e_0^{-1}e_z$
= $\gamma(x+y, z)e_0^{-1}\gamma(x, y)e_xe_0^{-1}e_ye_0^{-1}e_z$

show that

$$\gamma(x, y+z)\gamma(y, z) = \gamma(x+y, z)\gamma(x, y) \text{ for all } x, y, z \in M$$
(2)

This shows that γ is a group 2-cocycle for the group M with values in K. We will not use this: our purpose is not to show that γ is a coboundary, but to show that it vanishes to a certain degree, by exploiting its relation with T. However if γ were a coboundary then in particular $\gamma(x, y)$ would be symmetric in x and y. This is one of the motivations to consider the map $\lambda \colon M \times M \to K$ defined by

$$\lambda(x,y) = \gamma(y,x)^{-1}\gamma(x,y) = [e_0^{-1}e_y, e_0^{-1}e_x]$$
(3)

The defining relation for A shows that $e_0 e_x e_0^{-1} = e_{T^{-1}x}$ or equivalently $e_x e_0^{-1} = e_0^{-1} e_{T^{-1}x}$ for $x \in M$. So we can rewrite $e_{x+y} = \gamma(x,y) e_x e_0^{-1} e_y$ as $e_{x+y} = \gamma(x,y) e_0^{-1} e_{T^{-1}x} e_y$. In other words

$$e_u e_v = \gamma (Tu, v)^{-1} e_0 e_{Tu+v} \text{ for all } u, v \in M$$
(4)

If we substitute this twice in the defining relation we find that

$$\gamma(Tu, v)^{-1} e_0 e_{Tu+v} = e_u e_v = e_v e_{Tu+v-Tv} = \gamma(Tv, Tu + v - Tv)^{-1} e_0 e_{Tv+Tu+v-Tv}$$

This implies that $\gamma(Tu, v) = \gamma(Tv, Tu + v - Tv)$ for $u, v \in M$, in other words

$$\gamma(x,y) = \gamma(Ty, x+y-Ty) \text{ for } x, y \in M$$
(5)

and in particular

$$\gamma(Ty, y - Ty) = 1 \text{ for } y \in M \tag{6}$$

We now switch to additive notation for K. From (5) and the cocycle relation we find

$$\gamma(u, v) + \gamma(v - Tv, u)$$

= $\gamma(Tv, v - Tv + u) + \gamma(v - Tv, u)$
= $\gamma(Tv + v - Tv, u) + \gamma(Tv, v - Tv)$

and in particular

$$\lambda(u, v) = \gamma(u, v) - \gamma(v, u) = -\gamma(v - Tv, u)$$
⁽⁷⁾

Thus if γ were symmetric then λ would vanish, and so would γ since 1 - T is assumed to be invertible.

Now we look at the consequences for λ of the cocycle condition for γ . If we substitute (7) in the cocycle condition for γ we find

$$\lambda((1-T)^{-1}(x+y), z) + \lambda((1-T)^{-1}x, y) = \lambda((1-T)^{-1}x, y+z) + \lambda((1-T)^{-1}y, z)$$

and putting x = u - Tu, y = v - Tv this yields

$$\lambda(u+v,z) + \lambda(u,v-Tv) = \lambda(u,v-Tv+z) + \lambda(v,z)$$
(8)

On the other hand subtracting two instances of the cocycle condition for γ

$$\begin{split} \gamma(u,v+z) + \gamma(v,z) &= \gamma(u+v,z) + \gamma(u,v) \\ \gamma(z,v+u) + \gamma(v,u) &= \gamma(z+v,u) + \gamma(z,v) \end{split}$$

we find

$$\lambda(u+v,z) + \lambda(u,v) = \lambda(u,v+z) + \lambda(v,z)$$
(9)

Substracting (9) from (8) we find

$$\lambda(u, v - Tv) - \lambda(u, v) = \lambda(u, v - Tv + z) - \lambda(u, v + z)$$
(10)

This means that the right hand side of (10) does not depend on z; in particular it has the same value for z = -v. Thus using the fact that $\lambda(u, 0) = 0$ we can rewrite (10) as

$$\lambda(u, -Tv) = \lambda(u, v - Tv + z) - \lambda(u, v + z)$$
(11)

Substituting a = v + z and b = -Tv this yields

$$\lambda(u,b) = \lambda(u,a+b) - \lambda(u,a) \tag{12}$$

We have just proved that λ is additive in its second coordinate. Since λ is skew-symmetric it is in fact bi-additive. Thus (7) and the invertibility of 1 - T imply that γ is bi-additive. Moreover using (6) we can simplify (5) to

$$\gamma(x,y) = \gamma(Ty,x) \text{ for all } x,y \tag{13}$$

This motivates the following definition and theorem.

Definition 1. Define $\tau: M \otimes M \to M \otimes M$ by the formula $\tau(x \otimes y) = Ty \otimes x$. Define S(M,T) as coker $(1-\tau)$. Thus γ can be viewed as a map from S(T,M) to K. Finally define F(M,T) as the set $\mathbf{Z} \times M \times S(M,T)$ with the multiplication given by

$$(k, x, \alpha)(m, y, \beta) = (k + m, T^m x + y, \alpha + \beta + [T^m x \otimes y])$$

Theorem 1. The groups $\operatorname{Adj}(A(M,T))$ and F(M,T) are isomorphic.

Proof. We define ϕ : Adj $(A(M,T)) \to F(M,T)$ by setting $\phi(e_x) = (1, x, 0)$. To see that this is well defined we have to check the following:

$$\phi(e_x)\phi(e_{y*x}) = (1, x, 0)(1, Ty + x - Tx, 0)$$

= (2, Tx + (Ty + x - Tx), [Tx \otimes (Ty + x - Tx)])
= (2, Ty + x, [Ty \otimes x]) = (1, y, 0)(1, x, 0) = \phi(e_y)\phi(e_x)

which is the case since $[Tx \otimes Ty] = [Ty \otimes x]$ and $[Tx \otimes Tx] = [Tx \otimes x]$. We define $\psi \colon F(M,T) \to \operatorname{Adj}(A(M,T))$ by setting $\psi(k,x,\alpha) = e_0^{k-1} e_x \gamma(\alpha)^{-1}$. To see that ψ is a homomorphism we have to check the following:

$$\begin{split} \psi(k, x, \alpha)\psi(m, y, \beta) &= e_0^{k-1}e_x\gamma(\alpha)^{-1}e_0^{m-1}e_y\gamma(\beta)^{-1} \\ &= e_0^{k-1}e_xe_0^me_0^{-1}e_y\gamma(\alpha)^{-1}\gamma(\beta)^{-1} = e_0^{k-1}e_0^me_{T^mx}e_0^{-1}e_y\gamma(\alpha+\beta)^{-1} \\ &= e_0^{k+m-1}e_{T^mx+y}\gamma(T^mx\otimes y)^{-1}\gamma(\alpha+\beta)^{-1} \\ &= \psi(k+m, T^mx+y, \alpha+\beta+[T^mx\otimes y]) \end{split}$$

which is the case $e_z e_0^{-1} e_y = e_{z+y} \gamma [z \otimes y]^{-1}$ for $z = T^m x$ by (1). From $\psi(\phi(e_x)) = \psi(1, x, 0) = e_x$ we see that $\psi \phi = 1$. The other composition requires more work; first we compute

$$\begin{split} \phi(\gamma[u\otimes v]^{-1}) &= \phi(e_{u+v}^{-1}e_u e_0^{-1}e_v) = (1, u+v, 0)^{-1}(1, u, 0)(1, 0, 0)^{-1}(1, v, 0) \\ &= (-1, -T^{-1}(u+v), [(u+v)\otimes (u+v)])(1, u, 0)(-1, 0, 0)(1, v, 0) \\ &= (-1, -T^{-1}(u+v), [(u+v)\otimes (u+v)])(1, u+v, [u\otimes v]) = (0, 0, [u\otimes v]) \end{split}$$

which shows that $\phi(\gamma(\alpha)^{-1}) = (0, 0, \alpha)$ for all α . From this we get

$$\phi(\psi(k, x, \alpha)) = \phi(e_0^{k-1})\phi(e_x)\phi(\gamma(\alpha)^{-1}) = (k-1, 0, 0)(1, x, 0)(0, 0, \alpha) = (k, x, \alpha)$$
so we find that $\phi\psi = 1$.

For any quandle Q there is a unique homomorphism ϵ : $\operatorname{Adj}(Q) \to \mathbb{Z}$ such that $\epsilon(e_x) = 1$ for all $x \in Q$; the kernel is denoted by $\operatorname{Adj}(Q)^o$. It is clear that $\epsilon(\alpha) = 0$ for all α , so $\epsilon(\psi(k, x, \alpha)) = k$. Therefore under ψ the subgroup $\operatorname{Adj}(A(M, T))^o$ of $\operatorname{Adj}(A(M, T))$ corresponds to the subgroup $F(M, T)^o$ of F(M, T) consisting of the triples $(0, x, \alpha)$. Note that on $F(M, T)^o$ the multiplication simplifies to

$$(0, x, \alpha)(0, y, \beta) = (0, x + y, \alpha + \beta + [x \otimes y])$$

For any quandle the fundamental group based at $q \in Q$ is defined as $\pi_1(Q,q) = \{g \in \operatorname{Adj}(Q)^o \mid q \cdot g = q\}$. For these definitions we refer to [2]. In order to describe this in terms of (M,T) for the case Q = A(M,T) we need to translate the action of $\operatorname{Adj}(A(M,T))$ on M into an action of F(M,T) on M.

One can easily check that $0 \cdot \psi(k, x, \alpha) = x - Tx$ for all k, x and α . This implies that $0 \cdot (0, x, \alpha) = 0$ if and only if x = 0, which means that $\pi_1(A(M, T), 0)$ is isomorphic to S(M, T).

Example 1. Let **F** be a field, let $M = \mathbf{F}[t]/(t^2 + at + b)$ and let *T* be multilpication by the class of *t*. Then *T* is an automorphism if $b \neq 0$ and A(M,T) is connected if $1+a+b\neq 0$. In this case S(M,T) isomorphic to $K/(b^2+ab-a-1)$. Thus A(M,T) is simply connected if $b^2+ab-a-1\neq 0$. The entry for $\mathbf{F} = \mathbf{Z}/(3)$ and $f(t) = t^2 - t + 1$ in the table on page 49 of [1] is not compatile with this, but it is a misprint.

References

- J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, Quandle cohomology and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355 No. 10 (2003), 3947-3989.
 Also math.GT/9903135.
- [2] M. Eisermann, Quandle coverings and their Galois correspondence, http://www-fourier.ujf-grenoble.fr/~eiserm or math.GT/0612459.