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The adjoint group of an Alexander quandle.
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To an abelian group M equipped with an automorphism 7" one can associate
a quandle A(M,T) called its Alexander quandle. It is given by the set M
together with the quandle operation * defined by y xx = Ty + x — Tx. To any
quandle @ one can associate a group Adj(Q) called the adjoint group of Q. Tt
is defined as the abstract group with one generator e, for each x € ) and one
relation ey, = e, 'eye, for each z,y € Q.

It is the purpose of this note to show that the adjoint group of an Alexander
quandle Q(M,T) has an elegant description in terms of M and T, at least if
the quandle is connected, which is the case if 1 — T is invertible. From this
description one gets a similar description of the fundamental group of Q(M,T)
based at 0 € M. This note can be viewed as an exercise inspired by [2], to which
we refer for motivation and definitions.

The adjoint group A = Adj(A(M,T)) acts from the right on M by the
formula p - e, = p x x. This defines a homomorphism p from A to the group G
of quandle automorphisms of A(M,T)). Thus p - egl =T 'pandp- eglex =
p+ x — Tx. From one sees that

p~ealexegley :p+$_TiF+y—Ty:p~ealex+y
Therefore
ealeery =v(z, y)eglezegley (1)
for some y(z,y) € Adj(Q) which acts trivially on M and thus is an element of
K = ker(p). The group K is a central subgroup of A as explained in [2].

From the definition of v(x,y) we see that v(0,y) = 1 and ~(z,0) = 1 for all
z and y. Furthermore the formulas

€y Catytz = V(T Y+ 2)eq eseq eyt
= (2, y + 2)eg eay(y, 2)eg Teyeq e
661€w+y+z =y(z+y, 2)651€m+y€51€z
=v(z +y,2)ep V(w,y)ese teyey e
show that
Y@,y +2)7(y,2) =@ +y,2)y(x,y) forall z,y, 2 € M (2)
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This shows that « is a group 2-cocycle for the group M with values in K.
We will not use this: our purpose is not to show that v is a coboundary, but
to show that it vanishes to a certain degree, by exploiting its relation with 7.
However if v were a coboundary then in particular v(x, y) would be symmetric
in x and y. This is one of the motivations to consider the map A: M x M — K
defined by

Az, y) =y, 2) (2, y) = [eg ey, €5 eal (3)

The defining relation for A shows that egezeq ' = ep-1, or equivalently
exeg’ = eyler, for x € M. So we can rewrite e, i, = Y(z,y)esey e, as
erty = Y(T,y)eg tep-1,€,. In other words

ewey = Y(Tu,v) tegeruy, for all u,v € M (4)
If we substitute this twice in the defining relation we find that
Y(Tu,v) L eperuss = €us = €vlTutv_To
=(Tv,Tu+v —Tv)  eoervsTutv—Tv
This implies that v(Tu,v) = v(Tv,Tu+ v — Tv) for u,v € M, in other words
Yz, y) =Ty, x+y—Ty) for z,y € M (5)

and in particular

Y(Ty,y —Ty) =1fory e M (6)

We now switch to additive notation for K. From (f) and the cocycle relation
we find

FY(’UH 1)) + ’Y(U - TU, u)
=~(Tv,v—Tv+u)+~v(v—Tv,u)
=~(Tv+v —Tv,u) +~v(Tv,v — Tv)

and in particular
/\(uv ’U) = FY(’UH 1)) - ’Y(U, u) = —’}/(1} - T’U, u) (7)

Thus if v were symmetric then A would vanish, and so would ~ since 1 — 7" is
assumed to be invertible.

Now we look at the consequences for A of the cocycle condition for . If we
substitute (@) in the cocycle condition for v we find

MA=T)" a+y), 2) +MA-T) ", y) = MA=T) "z, y+2) +M(1-T) "y, 2)
and putting © = v — Tu, y = v — T'v this yields

AMu+v,2) + ANu,v = Tv) = Mu,v — Tv+ z) + A(v, 2) (8)



On the other hand subtracting two instances of the cocycle condition for ~y

Y(u, v+ 2) + (v, 2) = y(u+v,2) +7(u,v)
’7(27’0 + u) + (v u) = ’7(2 +v,u) + '7(271))

we find
AMu+ v, 2) + AMu,v) = Mu,v+ 2) + A(v, 2) 9)

Substracting ([@) from (&) we find
AMu,v — Tv) — AMu,v) = AMu,v —Tv+ z) — AMu,v + 2) (10)

This means that the right hand side of (I0]) does not depend on z; in particular
it has the same value for z = —v. Thus using the fact that A(u,0) = 0 we can
rewrite (I0) as

Mu, =Tv) = AMu,v — Tv + 2z) — AMu,v + 2) (11)
Substituting a = v + z and b = —T'v this yields
Au, b) = AMu,a+b) — A(u, a) (12)

We have just proved that A is additive in its second coordinate. Since \ is
skew-symmetric it is in fact bi-additive. Thus (7] and the invertibility of 1 — T
imply that v is bi-additive. Moreover using (@) we can simplify () to

Y(z,y) =v(Ty, x) for all 2,y (13)
This motivates the following definition and theorem.

Definition 1. Define 7: M @ M — M ® M by the formula 7(z @ y) = Ty ® .
Define S(M, T) as coker(1—7). Thus « can be viewed as a map from S(T, M) to
K. Finally define F(M,T) as the set Z x M x S(M,T) with the multiplication
given by

(k,z,a)(m,y, B) = (k+m, Tz +y,a+ B+ [Tz @ y])
Theorem 1. The groups Adj(A(M,T)) and F(M,T) are isomorphic.
Proof. We define ¢: Adj(A(M,T)) — F(M,T) by setting ¢(e,) = (1,2,0). To
see that this is well defined we have to check the following:
p(ex)Pleyss) = (1,2,0)(1, Ty + x — Tx,0)
=2,Tx+ Ty+x—Tz),[Te® (Ty +z — Tx)))
=2 Ty+= [Ty@a]) = (1,y,0)(1,2,0) = ¢(ey)d(ex)

which is the case since [Tz ® Ty] = [Ty ® «] and [Tz @ Tz] = [Tz ® x].
We define ¢: F(M,T) — Adj(A(M,T)) by setting 1(k,z, ) = ek Le,y(a)~t.



To see that 1 is a homomorphism we have to check the following:

Yk, z, 0)p(m,y, B) = ef tesv(a) teg e, (B)
= egfleweglealeyv(a)_lv(ﬁ)_l = elgflegleTmmealeyv(a + B)_l
= e§+m_1eTmz+y”Y(me Y y)717(04 + ﬂ)il

=¢Yk+m,T"e+y,a++ [Tz Ry])
which is the case e,eqte, = e.iyy[z @ y] ™! for z = T™x by ().
From v¢(¢4(e;)) = ¥(1,2,0) = e, we see that ¢ = 1. The other composition
requires more work; first we compute
Sl @] ™) = dleriency €)= (Lu+v,0)7(1,4,0)(1,0,0)7(1,,0)
(=1, =Tt 0, [(u+ ) @ (u+ 0)]) (1, u,0)(=1,0,0)(1,,0)
(_15 _Til(u + 1)), [(’U, + ’U) ® (U + ’U)])(l, u+v, [U’ ® 1)]) = (Oa 07 [u ® 1)])

which shows that ¢(y(a)~1) = (0,0, ) for all a. From this we get

¢(1/)(k7 Zz, a)) = (b(egil)(b(ex)(b(’}/(o‘)il) = (k -1,0, O)(lv Zz, O)(Oa 0, a) = (ka €T, a)
so we find that ¢y = 1. O

For any quandle @ there is a unique homomorphism e: Adj(Q) — Z such
that e(ey) = 1 for all x € Q; the kernel is denoted by Adj(Q)°. It is clear
that e(a) = 0 for all a, so e(¢(k,z,a)) = k. Therefore under 3 the sub-
group Adj(A(M,T))° of Adj(A(M,T)) corresponds to the subgroup F(M,T)°
of F(M,T) consisting of the triples (0, x, «). Note that on F(M,T)° the multi-
plication simplifies to

(O,I,Q)(O,y,ﬂ) = (O,x+y,a+ﬂ+[x®y])

For any quandle the fundamental group based at ¢ € Q is defined as m(Q, ¢) =
{g € Adj(Q)° | ¢-g = q}. For these definitions we refer to [2]. In order to
describe this in terms of (M, T) for the case Q@ = A(M,T) we need to translate
the action of Adj(A(M,T)) on M into an action of F(M,T) on M.

One can easily check that 0-¢¥(k,z,a) = © — Tx for all k,  and «. This
implies that 0-(0, 2, &) = 0 if and only if 2 = 0, which means that m (A(M,T),0)
is isomorphic to S(M,T).

Example 1. Let F be a field, let M = F[t]/(t*> + at + b) and let T be multi-
Ipication by the class of . Then T is an automorphism if b # 0 and A(M,T) is
connected if 14+a+b # 0. In this case S(M,T) isomorphic to K/(b*+ab—a—1).
Thus A(M, T) is simply connected if b>+ab—a—1 # 0. The entry for F = Z/(3)
and f(t) = t> —t + 1 in the table on page 49 of [1] is not compatile with this,
but it is a misprint.
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