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The adjoint group of an Alexander quandle.

F.J.-B.J. Clauwens

November 9, 2010

To an abelian groupM equipped with an automorphism T one can associate
a quandle A(M,T ) called its Alexander quandle. It is given by the set M
together with the quandle operation ∗ defined by y ∗ x = Ty + x− Tx. To any
quandle Q one can associate a group Adj(Q) called the adjoint group of Q. It
is defined as the abstract group with one generator ex for each x ∈ Q and one
relation ey∗x = e−1

x eyex for each x, y ∈ Q.
It is the purpose of this note to show that the adjoint group of an Alexander

quandle Q(M,T ) has an elegant description in terms of M and T , at least if
the quandle is connected, which is the case if 1 − T is invertible. From this
description one gets a similar description of the fundamental group of Q(M,T )
based at 0 ∈M . This note can be viewed as an exercise inspired by [2], to which
we refer for motivation and definitions.

The adjoint group A = Adj(A(M,T )) acts from the right on M by the
formula p · ex = p ∗ x. This defines a homomorphism ρ from A to the group G
of quandle automorphisms of A(M,T )). Thus p · e−1

0
= T−1p and p · e−1

0
ex =

p+ x− Tx. From one sees that

p · e−1

0 exe
−1

0 ey = p+ x− Tx+ y − Ty = p · e−1

0 ex+y

Therefore
e−1

0 ex+y = γ(x, y)e−1

0 exe
−1

0 ey (1)

for some γ(x, y) ∈ Adj(Q) which acts trivially on M and thus is an element of
K = ker(ρ). The group K is a central subgroup of A as explained in [2].

From the definition of γ(x, y) we see that γ(0, y) = 1 and γ(x, 0) = 1 for all
x and y. Furthermore the formulas

e−1

0 ex+y+z = γ(x, y + z)e−1

0 exe
−1

0 ey+z

= γ(x, y + z)e−1

0 exγ(y, z)e
−1

0 eye
−1

0 ez

e−1

0
ex+y+z = γ(x+ y, z)e−1

0
ex+ye

−1

0
ez

= γ(x+ y, z)e−1

0
γ(x, y)exe

−1

0
eye

−1

0
ez

show that

γ(x, y + z)γ(y, z) = γ(x+ y, z)γ(x, y) for all x, y, z ∈M (2)
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This shows that γ is a group 2-cocycle for the group M with values in K.
We will not use this: our purpose is not to show that γ is a coboundary, but
to show that it vanishes to a certain degree, by exploiting its relation with T .
However if γ were a coboundary then in particular γ(x, y) would be symmetric
in x and y. This is one of the motivations to consider the map λ : M ×M → K
defined by

λ(x, y) = γ(y, x)−1γ(x, y) = [e−1

0 ey, e
−1

0 ex] (3)

The defining relation for A shows that e0exe
−1

0 = eT−1x or equivalently
exe

−1

0 = e−1

0 eT−1x for x ∈ M . So we can rewrite ex+y = γ(x, y)exe
−1

0 ey as
ex+y = γ(x, y)e−1

0 eT−1xey. In other words

euev = γ(Tu, v)−1e0eTu+v for all u, v ∈M (4)

If we substitute this twice in the defining relation we find that

γ(Tu, v)−1e0eTu+v = euev = eveTu+v−Tv

= γ(Tv, Tu+ v − Tv)−1e0eTv+Tu+v−Tv

This implies that γ(Tu, v) = γ(Tv, Tu+ v − Tv) for u, v ∈M , in other words

γ(x, y) = γ(Ty, x+ y − Ty) for x, y ∈M (5)

and in particular
γ(Ty, y − Ty) = 1 for y ∈M (6)

We now switch to additive notation for K. From (5) and the cocycle relation
we find

γ(u, v) + γ(v − Tv, u)

= γ(Tv, v − Tv + u) + γ(v − Tv, u)

= γ(Tv + v − Tv, u) + γ(Tv, v − Tv)

and in particular

λ(u, v) = γ(u, v)− γ(v, u) = −γ(v − Tv, u) (7)

Thus if γ were symmetric then λ would vanish, and so would γ since 1 − T is
assumed to be invertible.

Now we look at the consequences for λ of the cocycle condition for γ. If we
substitute (7) in the cocycle condition for γ we find

λ((1−T )−1(x+y), z)+λ((1−T )−1x, y) = λ((1−T )−1x, y+z)+λ((1−T )−1y, z)

and putting x = u− Tu, y = v − Tv this yields

λ(u + v, z) + λ(u, v − Tv) = λ(u, v − Tv + z) + λ(v, z) (8)
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On the other hand subtracting two instances of the cocycle condition for γ

γ(u, v + z) + γ(v, z) = γ(u+ v, z) + γ(u, v)

γ(z, v + u) + γ(v, u) = γ(z + v, u) + γ(z, v)

we find
λ(u+ v, z) + λ(u, v) = λ(u, v + z) + λ(v, z) (9)

Substracting (9) from (8) we find

λ(u, v − Tv)− λ(u, v) = λ(u, v − Tv + z)− λ(u, v + z) (10)

This means that the right hand side of (10) does not depend on z; in particular
it has the same value for z = −v. Thus using the fact that λ(u, 0) = 0 we can
rewrite (10) as

λ(u,−Tv) = λ(u, v − Tv + z)− λ(u, v + z) (11)

Substituting a = v + z and b = −Tv this yields

λ(u, b) = λ(u, a+ b)− λ(u, a) (12)

We have just proved that λ is additive in its second coordinate. Since λ is
skew-symmetric it is in fact bi-additive. Thus (7) and the invertibility of 1− T
imply that γ is bi-additive. Moreover using (6) we can simplify (5) to

γ(x, y) = γ(Ty, x) for all x, y (13)

This motivates the following definition and theorem.

Definition 1. Define τ : M ⊗M →M ⊗M by the formula τ(x⊗ y) = Ty⊗ x.
Define S(M,T ) as coker(1−τ). Thus γ can be viewed as a map from S(T,M) to
K. Finally define F (M,T ) as the set Z×M × S(M,T ) with the multiplication
given by

(k, x, α)(m, y, β) = (k +m,Tmx+ y, α+ β + [Tmx⊗ y])

Theorem 1. The groups Adj(A(M,T )) and F (M,T ) are isomorphic.

Proof. We define φ : Adj(A(M,T )) → F (M,T ) by setting φ(ex) = (1, x, 0). To
see that this is well defined we have to check the following:

φ(ex)φ(ey∗x) = (1, x, 0)(1, T y + x− Tx, 0)

= (2, T x+ (Ty + x− Tx), [Tx⊗ (Ty + x− Tx)])

= (2, T y + x, [Ty ⊗ x]) = (1, y, 0)(1, x, 0) = φ(ey)φ(ex)

which is the case since [Tx⊗ Ty] = [Ty ⊗ x] and [Tx⊗ Tx] = [Tx⊗ x].
We define ψ : F (M,T ) → Adj(A(M,T )) by setting ψ(k, x, α) = ek−1

0 exγ(α)
−1.
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To see that ψ is a homomorphism we have to check the following:

ψ(k, x, α)ψ(m, y, β) = ek−1

0
exγ(α)

−1em−1

0
eyγ(β)

−1

= ek−1

0 exe
m
0 e

−1

0 eyγ(α)
−1γ(β)−1 = ek−1

0 em0 eTmxe
−1

0 eyγ(α+ β)−1

= ek+m−1

0 eTmx+yγ(T
mx⊗ y)−1γ(α+ β)−1

= ψ(k +m,Tmx+ y, α+ β + [Tmx⊗ y])

which is the case eze
−1

0 ey = ez+yγ[z ⊗ y]−1 for z = Tmx by (1).
From ψ(φ(ex)) = ψ(1, x, 0) = ex we see that ψφ = 1. The other composition
requires more work; first we compute

φ(γ[u ⊗ v]−1) = φ(e−1
u+veue

−1

0 ev) = (1, u+ v, 0)−1(1, u, 0)(1, 0, 0)−1(1, v, 0)

= (−1,−T−1(u+ v), [(u + v)⊗ (u+ v)])(1, u, 0)(−1, 0, 0)(1, v, 0)

= (−1,−T−1(u+ v), [(u + v)⊗ (u+ v)])(1, u + v, [u⊗ v]) = (0, 0, [u⊗ v])

which shows that φ(γ(α)−1) = (0, 0, α) for all α. From this we get

φ(ψ(k, x, α)) = φ(ek−1

0 )φ(ex)φ(γ(α)
−1) = (k− 1, 0, 0)(1, x, 0)(0, 0, α) = (k, x, α)

so we find that φψ = 1.

For any quandle Q there is a unique homomorphism ǫ : Adj(Q) → Z such
that ǫ(ex) = 1 for all x ∈ Q; the kernel is denoted by Adj(Q)o. It is clear
that ǫ(α) = 0 for all α, so ǫ(ψ(k, x, α)) = k. Therefore under ψ the sub-
group Adj(A(M,T ))o of Adj(A(M,T )) corresponds to the subgroup F (M,T )o

of F (M,T ) consisting of the triples (0, x, α). Note that on F (M,T )o the multi-
plication simplifies to

(0, x, α)(0, y, β) = (0, x+ y, α+ β + [x⊗ y])

For any quandle the fundamental group based at q ∈ Q is defined as π1(Q, q) =
{g ∈ Adj(Q)o | q · g = q}. For these definitions we refer to [2]. In order to
describe this in terms of (M,T ) for the case Q = A(M,T ) we need to translate
the action of Adj(A(M,T )) on M into an action of F (M,T ) on M .

One can easily check that 0 · ψ(k, x, α) = x − Tx for all k, x and α. This
implies that 0·(0, x, α) = 0 if and only if x = 0, which means that π1(A(M,T ), 0)
is isomorphic to S(M,T ).

Example 1. Let F be a field, let M = F[t]/(t2 + at + b) and let T be multi-
lpication by the class of t. Then T is an automorphism if b 6= 0 and A(M,T ) is
connected if 1+a+b 6= 0. In this case S(M,T ) isomorphic to K/(b2+ab−a−1).
Thus A(M,T ) is simply connected if b2+ab−a−1 6= 0. The entry for F = Z/(3)
and f(t) = t2 − t + 1 in the table on page 49 of [1] is not compatile with this,
but it is a misprint.
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