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ABSTRACT. We consider continuous-spin models on the d-dimensional hypercubic lat-
tice with the spins σx a priori uniformly distributed over the unit sphere in Rn (with n ≥ 2)
and the interaction energy having two parts: a short-range part, represented by a poten-
tial Φ, and a long-range antiferromagnetic part λ|x− y|−sσx · σy for some exponent s > d
and λ ≥ 0. We assume that Φ is twice continuously differentiable, finite range and in-
variant under rigid rotations of all spins. For d ≥ 1, s ∈ (d, d + 2] and any λ > 0, we then
show that the expectation of each σx vanishes in all translation-invariant Gibbs states.
In particular, the spontaneous magnetization is zero and block-spin averages vanish in
all Gibbs states. This contrasts the situation of λ = 0 where the ferromagnetic nearest-
neighbor systems in d ≥ 3 exhibit strong magnetic order at sufficiently low temperatures.
Our theorem extends an earlier result of A. van Enter ruling out magnetized states with
uniformly positive two-point correlation functions.

1. INTRODUCTION

In the last couple of years, there has been renewed interest by mathematicians in the
behavior of lattice models with spins interacting via long-range (e.g., dipole-dipole) in-
teractions. This has partially been motivated by advances in quasi two-dimensional
physics, but much of it derives from the theoretical challenge that these systems seem
to pose to existing methods of proof. Indeed, long-range interactions are generally quite
hard to handle and most of the techniques that control nearest-neighbor systems are of
little use when short-range and long-range forces are mixed together.

For definiteness of further discussion, let us consider the system of O(n)-spins σx,
with x ∈ Zd and σx being a priori uniformly distributed over the unit sphere in Rn. The
interaction between the spins is described by the Hamiltonian

H (σ) := −J ∑
〈x,y〉

σx · σy + ∑
x,y

λ

|x− y|s σx · σy. (1.1)

Here the first sum goes over pairs of nearest neighbors in Zd, the long-range coupling
strength obeys λ ≥ 0 and the interaction is summable by the assumption s > d. The
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equation (1.1) defines the model with scalar long-range interaction; to get the dipole
model one needs to change the second summand into ∑d

i,j=1 Kxy(i, j)σi
xσ

j
y where−Kxy(i, j)

is the second partial derivative of the Coulomb potential at x − y with respect to xi
and xj. An intriguing feature of the dipole model is that the sign of the interaction, and
its strength, depend sensitively on the orientation of the spins with respect to the vector
connecting their spatial positions.

A key question concerning the model (1.1) is the existence of stripe states, i.e., Gibbs
measures supported on configurations with alternating stripes of spins oriented in dif-
ferent directions. For certain 1D and 2D systems, existence of such states has been es-
tablished mathematically in the papers by Giuliani, Lebowitz and Lieb [10–12], albeit
only at zero temperature. Currently there seem to be no rigorous results concerning the
stripe order at positive temperatures. Notwithstanding, Giuliani [9] recently completed
an argument building on earlier work of Fröhlich, Simon and Spencer [6] and Fröhlich
and Spencer [7] that establishes the existence of an orientational long-range order in the
dipole-dipole system — albeit without the nearest-neighbor term.

The aim of this paper is to resolve a simpler question: the existence/absence of mag-
netic order. Our principal result is that, for the model in (1.1) with n ≥ 2 and exponents
s ∈ (d, d + 2], as soon as λ > 0, the expectation of σx vanishes in all translation-invariant
states at all positive temperatures. A consequence of this is that the spontaneous magne-
tization — defined by the derivative of the pressure with respect to the external field —
vanishes as well, and so do the block-spin averages in all (translation-invariant or not)
Gibbs states. This is somewhat surprising because when λ = 0 and d ≥ 3 (and J > 0)
the system shows a strong magnetic order at low temperatures (Fröhlich, Simon and
Spencer [6]). Our theorem provides novel information even in dimensions d = 1 and 2
because the Mermin-Wagner theorem does not apply to the whole range of exponents s
we wish to consider.

The problem of magnetic order in model (1.1) has quite a long history. To our knowl-
edge, it first appears in studies by van Enter [3,4] on the “instability” of phase diagrams
(and validity of the Gibbs-phase rule) under “irrelevant” perturbations. Specifically,
in [4] it was shown that certain natural magnetically-ordered states in short-range ferro-
magnetic spin systems are destabilized — in the sense of failing to minimize the Gibbs
variational problem — by adding the above long-range antiferromagnetic interaction
with exponents d < s < d + 2. The subtle point is that the assumption made in [4] on
the purported magnetized state µ is that of clustering; explicitly,

Eµ(σ0 · σx)− Eµ(σ0) · Eµ(σx) −→
|x|→∞

0. (1.2)

Along with the assumption of translation invariance and non-vanishing value of Eµ(σx),
this permits one to assume a uniform positive lower bound on Eµ(σx · σy) for any x and y
that are sufficiently far apart.

Unfortunately, the uniform positivity of Eµ(σx · σy) is exactly what one should not
expect in these kinds of systems. Indeed, if a typical configuration in such a state has a
stripe structure — with “positively” oriented stripes slightly wider than the “negatively”
oriented ones, in order to achieve non-zero magnetization — then the sign of Eµ(σx · σy)
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will vary depending on where x and y land relative to the stripe boundaries. Ruling out
such cases along the argument of [4] would require making further assumptions on how
Eµ(σx · σy) changes as x and y vary. And this would still not exclude the possibility of
other structures — e.g., the bubble states or aperiodically modulated states.

Our approach overcomes these difficulties by working solely under the assumption
of ergodicity with respect to spatial translations. Conceptually, we build on an earlier
paper by Biskup, Chayes and Kivelson [2] showing that no magnetic order exists (at any
temperature) in the Ising-spin version of the model once λ > 0 and s ∈ (d, d + 1]. In
fact, the method would establish the same result also for O(n) spins for all s ≤ d + 1.
Notwithstanding, as is also shown in [2], the proof cannot extend beyond this range
because the Ising-spin version of (1.1) exhibits magnetic order at low temperatures as
soon as s > d + 1 and λ � J. The argument of [2] is based on a flip of all spins in
a large box and a careful accounting of the change in energy caused thereby. A key
technical challenge here is to find a way to achieve the same effect via a continuous —
i.e., Mermin-Wagner like — deformation.

The rest of this note is organized as follows: In the next section (Section 2) we develop
the necessary foundation for the statement of our main result. In Section 3, we give the
main steps of the proof while deferring the technical claims to Sections 4 and 5.

2. STATEMENT OF THE RESULT

Consider the d-dimensional hypercubic lattice Zd and let Sn−1 denote the unit sphere
in Rn. We will consider spin configurations σ := (σx)x∈Zd taking values in the product
space Ω := (Sn−1)Zd

. Let τx be the shift by x on Ω, which is defined by

(τxσ)z := σx+z, z ∈ Zd. (2.1)

Let SO(n) denote the group of real orthogonal n × n-matrices with unit determinant.
For each R ∈ SO(n), let (Rσ)x := Rσx denote the global (rigid) rotation of the spin
configuration σ by matrix R. The definition of our model will require two objects: A
function Φ : Ω → R representing the short-range interaction and a kernel (Kxy)xy∈Zd

representing the coupling constants for the long-range interaction.

Assumptions 2.1 (1) Suppose that there is r ∈ N such that Φ : Ω → R depends only on
{σx : x ∈ Λr}. Moreover, assume σ 7→ Φ(σ) is C2 (as a function on a smooth manifold) and

Φ ◦ R = Φ, R ∈ SO(n). (2.2)

(2) For any x, y we have Kxy ≥ 0 and Kxy = K0,y−x. Moreover, there is an s > d such that

lim
|x|→∞

|x|sK0x ∈ (0, ∞). (2.3)

(In particular, the limit exists.)

Let r be as in Assumption 2.1(1) above and, for each N ∈N, consider the block

ΛN := [−N, N]d ∩Zd. (2.4)
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The Hamiltonian HN in ΛN is then defined by

HN(σ) := ∑
x∈ΛN+r

Φ ◦ τx(σ) + λ ∑
x,y : x 6=y

{x,y}∩ΛN 6=∅

Kxy σx · σy. (2.5)

The conditions (1) and (2) ensure that the interaction is well-defined, shift-invariant —
and so it will make sense to talk about translation invariant and ergodic Gibbs measures
— and also invariant under simultaneous rotations of all spins, i.e., HN(Rσ) = HN(σ).
The model (1.1) is clearly a special case of (2.5).

We will need to invoke the formalism of infinite-volume Gibbs measures for which
we refer the reader to the standard treatments by Georgii [8] or Simon [14]. We will
only mention the features that are relevant for our problem. Let ν denote the uniform
probability (Haar) measure on Sn−1. The above Hamiltonian defines a finite-volume
Gibbs specification γN with boundary condition σ̄ ∈ Ω via

γN(dσ|σ̄) :=
1

ZN(σ̄)
e−βHN(σ) ∏

x∈ΛN

ν(dσx) ∏
z 6∈ΛN

δσ̄z(dσz). (2.6)

Here β ≥ 0 denotes the inverse temperature and ZN(σ̄) is the partition function. We say
that a probability measure µ over Ω is a Gibbs measure, if for all events A and all N ≥ 1,

Eµ(γN(A|·)) = µ(A). (2.7)

Here Eµ denotes expectation with respect to µ. We say that a measure µ is translation
invariant if µ ◦ τx = µ for all x ∈ Zd. The measure is ergodic if µ(A) = 0 or 1 for all
events A such that τx(A) = A for all x ∈ Zd.

In order to define the notion of the spontaneous magnetization, pick a unit vector
ê ∈ Rn and consider the function f : Rn → R defined by

f (h) := lim
N→∞

sup
σ̄

1
Nd log

∫
∏

x∈ΛN

ν(dσx) exp
{
−βHN(σ) + ∑

x∈ΛN

h · σx

}
, (2.8)

where σx is (implicitly) fixed to σ̄x for any x 6∈ ΛN inside HN(σ). The limit exists by
subadditivity arguments and is convex as a function of h. In addition, by the invariance
of HN and the measure ν with respect to rotations, f is independent of the choice of ê.
The convexity of f ensures the existence of the right derivative

m? :=
d

dh+
f (h)

∣∣∣
h=0

, (2.9)

which by symmetry ê ↔ −ê is positive. We will call m? the spontaneous magnetization.
As is well known (see, e.g., Theorem 2.3(3) of [1]), for each unit vector ê there is a

translation-invariant (and, in fact, ergodic) Gibbs measure µ such that Eµ(σx) = m?ê.
Note that, in light of our remarks from Section 1, we are not assuming that µ is extremal,
which would mean that µ(A) = 0 or 1 for any event A that does not depend on the state
of any finite number of σx’s.

Our main result is now the following:
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Theorem 2.2 Suppose d ≥ 1 and s ∈ (d, d + 2] and consider a model satisfying Assump-
tions 2.1. Then for any λ > 0 and any inverse temperature β ≥ 0,

Eµσx = 0, x ∈ Zd, (2.10)

holds for every translation-invariant Gibbs measure µ. In particular, the spontaneous magneti-
zation vanishes, m? = 0, and h 7→ f (h) is continuously differentiable at h = 0.

This statement is restricted to translation-invariant Gibbs measures. But a version of
this conclusion is possible for all Gibbs measures:

Corollary 2.3 Under the conditions of Theorem 2.2, if µ is any Gibbs measure, then

lim
N→∞

1
|ΛN | ∑

x∈ΛN

σx = 0, µ-a.s., (2.11)

i.e., block-averages of the spins tend to zero in almost every sample from µ.

Note that these results do not preclude other types of long-range order (e.g., stripe
states or an orientational order). A few additional remarks are in order:

Remarks 2.4 (1) As it not hard to check, the proof we constructed would work even if
we assumed that σ 7→ Φ(σ) — as a function on (Sn−1)Λr — has a Lipschitz-continuous
derivative. However, we suspect that the theorem actually holds when Φ is just contin-
uous (and perhaps even less). This is based on a similar observation that was made in
the context of the Mermin-Wagner theorem by Ioffe, Shlosman and Velenik [13].

(2) We required that Kxy is asymptotic to |x− y|−s, but it would suffice to assume that
x 7→ K0x is regularly varying with exponent s that obeys s < d + 2. However, in the
boundary case s = d + 2 the slowly varying part becomes crucial for the result.

(3) Our proofs parallels (and in d = 1 actually uses) the proof of the Mermin-Wagner
theorem. (This theorem states that, under precisely defined conditions, every Gibbs state
for the model retains full invariance with respect to global rotations R ∈ SO(n).) An
interesting question is whether the introduction of antialigning long-range forces could
restore global SO(n) symmetry even in the situations where the original reasoning for
the Mermin-Wagner theorem no longer applies.

3. MAIN STEPS OF THE PROOF

Suppose n ≥ 2 and fix a potential Φ and constants λ > 0 and β > 0. We will assume
that m? > 0 and derive a contradiction. Let êi denote the i-th coordinate vector in Rn

and let µ denote a translation-invariant Gibbs measure for which we have

Eµ(σx) = m?ê1, x ∈ Zd. (3.1)

As already mentioned, this measure exists by Theorem 2.3(3) of [1].
Now we pick two length scales L and a taking values in D := {2k : k ∈N}with L > a,

and consider a deformation of the spin configuration inside ΛL that reverts the orien-
tation of the first two components of the spin everywhere inside ΛL−a. Explicitly, let
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R ∈ SO(n) be the rotation such that Rêi = −êi for i = 1, 2 while Rêi = êi for i > 2. We
can view R as the endpoint of a continuous trajectory of maps

Rθ :=


cos θ sin θ 0 · · · 0
− sin θ cos θ 0 · · · 0

0 0 1 · · · 0
...

. . . . . . . . .
...

0 0 0 · · · 1

 (3.2)

as θ varies from 0 to π or from 0 to −π. Next we define the “deformation angles”

θx :=

{
πa−1 dist(x, Λc

L), if x 6∈ ΛL−a,
π, if x ∈ ΛL−a,

(3.3)

where dist(x, y) is the `1-distance on Zd. These permit us to define the global inhomoge-
neous rotations R± on the configuration space by

(R±σ)x := R±θx σx, x ∈ Zd. (3.4)

Notice that (R±σ)x = (Rσ)x for x ∈ ΛL−a while (R±σ)x = σx for x ∈ Λc
L.

We will now use these rotations to express quantitatively the assumption of differen-
tiability of the map Φ. Abusing the notation slightly, let Rt

x denote the inhomogeneous
rotation of σ such that (Rt

xσ)z = σz when z 6= x and (Rt
xσ)x = Rtσx. The map t 7→ Φ(Rt

xσ)
is differentiable and the corresponding derivative is

DxΦ(σ) :=
d
dt

Φ(Rt
xσ)
∣∣∣
t=0

, (3.5)

and, similarly, DxDyΦ(σ) := Dx(DyΦ)(σ). We also write

‖Φ′′‖ := sup
v∈`2(Zd)
‖v‖2=1

sup
σ

∣∣∣∣∑
z,z′

vzvz′DzDz′Φ(σ)

∣∣∣∣. (3.6)

to denote a natural norm of the second derivative of Φ. Notice that, while the derivatives
are defined using a specific one-parameter subgroup θ 7→ Rθ of SO(n), the rotation
invariance of Φ makes the specific choice of the subgroup immaterial.

Suppose now that N > L + r and L > a. The entire argument is centered around the
probability distribution of the energy defect,

∆L,a(σ) := 2HN(σ)−HN(R
+σ)−HN(R

−σ), (3.7)

which is independent of N as long as N > L + r. The reasons for consideration of
both R+ and R− — inspired by some proofs of the Mermin-Wagner theorem (cf Fröhlich
and Pfister [5]) and employed also by van Enter [4] — will become very apparent from
the proof of a uniform bound on ∆L,a:

Lemma 3.1 For all L > a and all σ ∈ Ω,∣∣∆L,a(σ)
∣∣ ≤ UL,a, (3.8)
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where
UL,a := ‖Φ′′‖ ∑

x∈Zd
∑

y∈Λr

(θx+y − θx)
2 +|λ| ∑

x,y : x 6=y
Kxy (θx − θy)

2. (3.9)

Proof. We will first deal with the long-range part of the interaction. Let ϕx denote the
polar angle for the projection of σx to the subspace in Rn spanned by ê1 and ê2, and let sx
denote the projection of σx to the subspace of Rn spanned by êi, i = 3, . . . , n. Then

σx · σy = sx · sy +
√

1− s2
x

√
1− s2

y cos(ϕx − ϕy). (3.10)

Moreover, since the rotation of the spins occurs only in the ê1, ê2-plane, sx is not changed
when Rθ is applied to σx. Therefore,∣∣2σx · σy − (R+σ)x · (R+σ)y − (R−σ)x · (R−σ)y

∣∣
≤
∣∣2 cos(ϕx − ϕy)− cos(ϕx − ϕy + θx − θy)

− cos(ϕx − ϕy − θx + θy)
∣∣. (3.11)

It is now easy to check that the right hand side is smaller than (θx − θy)2. Using this for
all long-range terms in ∆L,a, we get the second term in (3.9).

In order to control the short-range contribution to ∆L,a, note that for each x, we can
use invariance of Φ under SO(n) to write the corresponding term in the interaction as

2Φ ◦ τx(σ)−Φ ◦ τx
(
R−θxR+σ

)
−Φ ◦ τx

(
RθxR−σ

)
. (3.12)

Abbreviate ϑz := θz − θx and, for t ∈ [−1, 1], let St denote the composition of the
maps Rtϑz

z for all z. Then R−θxR+ = S1 and RθxR− = S−1 and, for Ψ := Φ ◦ τx,

2Ψ(σ)−Ψ(S1σ)−Ψ(S−1σ) = −
∫ 1

0
dt
∫ t

−t
du ∑

z,z′
ϑzϑz′DzDz′Ψ(Suσ). (3.13)

The integrand is now bounded via∣∣∣∣∑
z,z′

ϑzϑz′DzDz′Ψ(Stσ)

∣∣∣∣ ≤ ‖Φ′′‖ ∑
z∈Λr

ϑ2
x+z, (3.14)

where we used that DzDz′Ψ(Stσ) = 0 unless z− x, z′ − x ∈ Λr. The integral over s and t
then gives a factor of one; the claim then follows by summing the result over x. �

Our next observation will be concerned with the leading-order growth of UL,a.

Proposition 3.2 Assume λ > 0. For each value of the ratio ‖Φ′′‖/λ > 0 there is a con-
stant c ∈ (0, 1) such that if c−1 ≤ a ≤ cL, then

cλIL,a ≤ UL,a ≤ c−1λIL,a, (3.15)

where

IL,a := Ld−1

{
ad+1−s, if s < d + 2,
a−1 log a, if s = d + 2.

(3.16)
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The proof of these bounds is relatively straightforward but, in order to stay focused
on the main line of argument, we defer it to Section 4. The quantity IL,a will play the
role of the benchmark scale for all arguments that are to follow. Our next step is the
connection between the above energy defect and positive magnetization:

Proposition 3.3 Suppose m? > 0 and let µ be an ergodic Gibbs measure satisfying (2.9). For
each κ > 0 there is c′ ∈ (0, 1) such that if a, L ∈ D obey 1/c′ < a ≤ c′L, then

Eµ

(
∆L,a(σ)

)
≥ c′(m2

? − κ) IL,a. (3.17)

Again, to keep the main argument free of lengthy technical interruptions, we post-
pone the proof to Section 5. This estimate enters the main argument via:

Lemma 3.4 Fix λ > 0 and let c ∈ (0, 1) be the constant from Proposition 3.2. Suppose
that c−1 ≤ a ≤ cL. Then for each ζ ∈ [0, cλ),

µ(∆L,a ≥ ζIL,a) ≥
Eµ(∆L,a)− ζIL,a

(cλ− ζ)IL,a
. (3.18)

Proof. The absolute bound from Lemma 3.1 tells us

Eµ(∆L,a) ≤ µ(∆L,a ≥ ζIL,a)
[
UL,a − ζIL,a

]
+ ζIL,a. (3.19)

Using (3.15) and ζ < cλ, the claim now easily follows. �

The last essential ingredient we will need is the following fact:

Lemma 3.5 For each L > a, any event A depending only on {σx : x ∈ ΛL−a}, any Gibbs
measure µ and any t ∈ R we have

µ
(

A ∩ {∆L,a ≥ t}
)
≤ e−

1
2 βtµ

(
R(A)

)
(3.20)

Proof. Let N > L + r and abbreviate At := A ∩ {∆L,a ≥ t}. Then for any σ ∈ At,

e−βHN(σ) ≤ e−
1
2 βt e−

1
2 βHN(R

+σ)− 1
2 βHN(R

−σ) (3.21)

It follows that

γN(At|σ̄) ≤
e−

1
2 βt

ZN(σ̄)

∫
At

∏
x∈ΛN

ν(dσx) e−
1
2 βHN(R

+σ)− 1
2 βHN(R

−σ) (3.22)

where we think of all σx with x 6∈ ΛN as fixed to σ̄x. Using the Cauchy-Schwarz inequal-
ity and At ⊂ A, the last integral is bounded by the product(∫

A
∏

x∈ΛN

ν(dσx) e−βHN(R
+σ)

)1/2(∫
A

∏
x∈ΛN

ν(dσx) e−βHN(R
−σ)

)1/2

. (3.23)

But R± alter only the spins inside ΛL and since the product measure is R±-invariant,
both integrals are equal to ZN(σ̄)γL(R(A)|σ̄). As R±(A) = R(A),

γN(At|σ̄) ≤ e−
1
2 βtγL(R(A)|σ̄), σ̄ ∈ Ω. (3.24)

The claim is now proved by taking expectation with respect to µ. �
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Now we are ready to begin the actual proof of our main result. Somewhat surpris-
ingly, we will have to deal separately with two distinct cases:

CASE 1: d ≥ 2 & d < s ≤ d + 2.
CASE 2: d = 1 & 1 < s ≤ 3.

What makes these cases different is seen from the following remark:

Lemma 3.6 Assume L, a ∈ D and suppose first CASE 1. Then there is a way to take L, a→ ∞
so that L/a → ∞ and IL,a → ∞. On the other hand, in CASE 2, for any fixed value of a > 1
the quantity IL,a remains bounded in the limit L→ ∞.

Proof. This is directly verified from the formula (3.16). �

Proof of Theorem 2.2, CASE 1. Suppose s and d are as stated above, and let λ > 0.
Suppose m? > 0 and note that we must have β > 0. Let µ be a translation-invariant
Gibbs measure obeying (2.10) and let c be as in Proposition 3.2. Pick κ ∈ (0, m2

?) and
let c′ ∈ (0, 1) be as in Proposition 3.3. Set c′′ := min{c, c′} and suppose L, a ∈ D are such
that 1/c′′ ≤ a ≤ c′′L for the rest of the argument.

Fix ζ such that 0 < ζ < c′(m2
? − κ) and ζ < cλ. Proposition 3.3 and Lemma 3.4 yield

µ(∆L,a ≥ ζIL,a) ≥
c′(m2

? − κ)− ζ

cλ− ζ
> 0. (3.25)

But this cannot hold uniformly in L and a because Lemma 3.5 and the fact that, by
Lemma 3.6, IL,a → ∞ when L, a → ∞ along appropriate sequences — still subject to
the aforementioned restrictions — allow us to make the left-hand side arbitrarily small.
Hence m? = 0 as claimed.

The conclusion m? = 0 implies that the derivative in (2.9) vanishes and since h 7→ f (h)
is even, f is thus continuously differentiable at h = 0. That this implies (2.10) is the
consequence of standard thermodynamic arguments (see, e.g., [1, Theorem 2.5(2)]). �

Proof of Theorem 2.2, CASE 2. Here we will follow the proof of the Mermin-Wagner ar-
gument to show that every extremal Gibbs measure µ is actually R invariant. Let A be
any event that depends only on {σx : x ∈ ΛL−a}. Since IL,a is bounded, so is ∆L,a, say,
∆L,a ≥ t for some t ∈ R. Then Lemma 3.5 gives

µ(A) ≤ e
1
2 βtµ

(
R(A)

)
. (3.26)

As this now extends to all events A, the fact that µ is extremal forces µ = µ ◦ R. In
particular, m? = 0 and all other consequences follow as in CASE 1. �

Proof of Corollary 2.3. This is also quite standard, but we will for completeness sketch the
main argument. Fix δ > 0 and pick a unit vector ê ∈ Rn. By the exponential Chebyshev
inequality, for any h > 0,

µ
(

∑
x∈ΛN

σx · ê > δ|ΛN |
)
≤ e−hδ|ΛN |Eµ

(
exp

{
h ∑

x∈ΛN

σx · ê
})

. (3.27)
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Invoking (2.7), the definition (2.8) then yields

lim sup
N→∞

1
Nd log µ

(
∑

x∈ΛN

σx · ê > δ|ΛN |
)
≤ f (h)− hδ. (3.28)

But f (h) = o(h) as h ↓ 0 by the fact that m? = 0 and so f (h) − hδ < 0 once h is
sufficiently small. The probability in (3.27) thus decays exponentially in |ΛN | and so the
corresponding event occurs only for finitely many N, µ-a.s. As this holds for all δ > 0
and all ê, the claim follows. �

4. ESTIMATES ON INTERACTION STRENGTH

In this section we will analyze the various contributions to the quantity UL,a that serves
as the uniform upper bound on the energy defect. To keep our notations succinct, we
will write this quantity as

UL,a = ‖Φ′′‖Q+ + |λ|Q−, (4.1)
where

Q+ := ∑
x∈Zd

∑
y∈Λr

|θx+y − θx|2 (4.2)

and
Q− := ∑

x,y : x 6=y
Kxy|θx − θy|2. (4.3)

Then we have the following estimates:

Lemma 4.1 There is c1 ∈ (1, ∞) such that for all L, a with c1 ≤ a ≤ c−1
1 L,

Q+ ≤ c1Ld−1a−1. (4.4)

Lemma 4.2 Let s ∈ (d, d + 2]. There is c2 ∈ (0, 1) such that for all L, a with c−1
2 ≤ a ≤ c2L,

c2IL,a ≤ Q− ≤ c−1
2 IL,a, (4.5)

with IL,a as in (3.16).

Let us first conclude the proof of the desired asymptotic for UL,a:
Proof of Proposition 3.2. Notice that for all s ≤ d + 2 the ratio Ld−1a−1/IL,a tends to zero
in the limit when L, a → ∞ with a/L → 0 and so we can easily arrange that Q+/Q− is
arbitrarily small by making a and L/a large enough. The claim follows. �

It remains to prove the two lemmas above:
Proof of Lemma 4.1. We have |θx+y− θx| ≤ ra−1 for x ∈ ΛL+r \ΛL−r−a while the difference
is zero in other cases. So the sum is at most of order r2(2r + a)Ld−1a−2. As r is fixed, this
readily yields the claim. �

Proof of Lemma 4.2. To make expressions simple, let us agree to write f � g if the ratios
f /g and g/ f are bounded by universal constants depending only on d and s. We will as-
sume that Kxy � |x− y|−s because all finite-range deviations from this can be estimated
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by a term similar to Q+. Abbreviate

RN :=
{

z = (z1, . . . , zd−1) ∈ Zd−1 \ {0} : |zi| ≤ N
}

. (4.6)

We will consider quantities Q1, . . . , Q4 that collect the essential contributions from the
sum constituting Q−. To understand the notation, let x ∈ ΛL and y 6∈ ΛL−a — the other
situations when θx − θy 6= 0 are reduce to this by interchanging x and y. Now fix a face
of ΛL−a, let u (roughly) correspond to the distance of x to this face and let t denote the
corresponding distance of y. Finally let z stand for the projection of y− x to the plane
corresponding to this face.

There are four types of contributions we will need to distinguish. First those when x ∈
ΛL−a and y ∈ ΛL \ΛL−a. This boils down to the quantity

Q1 :=
L

∑
u=0

a

∑
t=1

∑
z∈Zd−1

(t/a)2

[(u + t)2 + |z|2]s/2 . (4.7)

Next we will take the cases when x ∈ ΛL−a but y ∈ Λc
L. This will require estimating

Q2 :=
L

∑
u=0

∑
t>a

∑
z∈Zd−1

1
[(u + t)2 + |z|2]s/2 . (4.8)

The third instance to consider is when both x and y lie in ΛL \ΛL−a. For this we need

Q3 :=
a

∑
u=0

a

∑
t=u+1

∑
z∈RN

( t−u
a

)2

[(t− u)2 + |z|2]s/2 , (4.9)

where we will use N := L in the proof of the lower bound in (4.5) and N := ∞ (and
thus R∞ := Zd−1) for the upper bound. And, finally, we also need to worry about the
situations when x ∈ ΛL \ΛL−a and y ∈ Λc

L. This will require checking

Q4 :=
a

∑
u=0

∑
t≥0

∑
z∈Zd

(u/a)2

[(u + t)2 + |z|2]s/2 . (4.10)

We will now proceed to derive the asymptotic for all four terms.
We claim that, for any integer v with 1 ≤ v ≤ 2L, we have

∑
z∈RL

1
[v2 + |z|2]s/2 � ∑

z∈Zd−1

1
[v2 + |z|2]s/2 � vd−1−s. (4.11)

This permits us to write

Q1 � a−2
L

∑
u=0

a

∑
t=1

t2(u + t)d−1−s � ad+1−s, (4.12)

where we first summed over s assuming s > d and then summed over t assuming that
d + 2− s ≥ 0. Similarly we get

Q2 �
L

∑
u=0

∑
t>a

(u + t)d−1−s �


ad+1−s, if s > d + 1,
log
( L+a

a

)
, if s = d + 1,

(L + a)d+1−s, if s < d + 1.
(4.13)
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Here we first summed over t and then distinguished the three possibilities depending
on whether the remaining sum is divergent, logarithmically divergent and convergent.

For the remaining two terms we get the following: The fact that RL and Zd−1 are
interchangeable when absolute constants do not matter, we get

Q3 � a−2
a

∑
u=0

a

∑
t=u+1

(t− u)d+1−s �
{

ad+1−s, if s < d + 2,
a−1 log a, if s = d + 2,

(4.14)

where we only paid attention to the cases when d < s ≤ d + 2. Finally we get

Q4 � a−2
a

∑
u=0

∑
t≥0

u2(u + t)d−s−1 � ad+1−s, (4.15)

where we again focussed on s < d + 3.
Obviously, Q3 is the dominant term for all s ∈ (d, d + 2]. Since all terms contributing

to Q− are positive, we can now estimate

cQ3 ≤ Q− ≤ c−1(Q1 + Q2 + Q3 + Q4) (4.16)

where c = c(d) ∈ (0, 1). Hereby the claim follows. �

5. EXPECTED ENERGY DEFECT

Our final task is to establish Proposition 3.3. Fix L, a ∈ D with L > a and recall the
notation R± for the inhomogeneous rotations from (3.4). For any x, y let

∆xy(σ) := 2σx · σy − (R+σ)x · (R+σ)y − (R−σ)x · (R−σ)y (5.1)

denote the term corresponding to these vertices from the long-range part of the energy
defect ∆L,a. Abbreviate

K̃xy := 4 sin2
(

θx − θy

2

)
Kxy (5.2)

and let P12 denote the orthogonal projection of Rn onto the linear span of ê1, ê2. We
begin with a variation on Lemma 4.4 from [2]:

Lemma 5.1 Suppose Assumption 2.1(2). For an integer ` ≥ 1, let V1 and V2 be two disjoint
translates of Λ`. For each ε > 0 there is δ > 0 such that if dist(V1, V2) ≥ `/δ and `/a < δ,
then for all σ ∈ Ω,∣∣∣∣ ∑

x∈V1

∑
y∈V2

Kxy∆xy(σ)−m1(σ) ·m2(σ) ∑
x∈V1

∑
y∈V2

K̃xy

∣∣∣∣ ≤ ε ∑
x∈V1

∑
y∈V2

K̃xy, (5.3)

where mi(σ) := |Λ`|−1 ∑x∈Vi
P12σx is the P12-projection of the spin average in Vi.

Proof. As is easy to check from (3.2), we have

∆xy(σ) = 4 sin2
(

θx − θy

2

)
(σx · P12σy) (5.4)
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and so Kxy∆xy(σ) = K̃xy(σx · P12σy). Now pick x0 ∈ V1 and y0 ∈ V2. Assumption 2.1(2)
ensures that, for each ε > 0 there is δ > 0 such that if

|x− y| ≥ δ−1 max{|x− x0|, |y− y0|}, (5.5)

then ∣∣Kxy − Kx0y0

∣∣ ≤ εKx0y0 , x ∈ V1, y ∈ V2. (5.6)

Since |θx − θx0 | ≤ a−1|x− x0| ≤ `/a < δ, a similar bound holds also for K̃xy. The claim is
now proved as in [2, Lemma 2.2]. �

Proof of Proposition 3.3. Consider a translation-invariant, ergodic Gibbs measure µ satis-
fying (2.9). For any ε > 0, let

E` :=
{

σ :
∣∣∣ ∑

x∈Λ`

σx −m?ê1|Λ`|
∣∣∣ < ε|Λ`|

}
. (5.7)

By the Spatial Ergodic Theorem, there exists `0 = `0(ε) such that for ` ≥ `0 we have
µ(E`) ≥ 1− ε. Thus, if ` ≥ `0 and V1 and V2 are disjoint translates of Λ`, then∣∣∣Eµ

(
m1(σ) · P12m2(σ)

)
−m2

?

∣∣∣ < 5ε. (5.8)

Assuming that dist(V1, V2) ≥ `/δ and `/a < δ, Lemma 5.1 shows

Eµ

(
∑

x∈V1

∑
y∈V2

Kxy∆xy(σ)

)
≥ (m2

? − 6ε) ∑
x∈V1

∑
y∈V2

K̃xy. (5.9)

Now consider a fixed partition of Zd into blocks of side `. Summing (5.9) over the blocks
in the partition, and applying (5.4) one more time we get

Eµ

(
∆L,a

)
≥ (m2

? − 6ε) ∑
x,y

|x−y|≥2`/δ

K̃xy − ∑
x,y

|x−y|≤2`/δ

K̃xy

≥ (m2
? − 6ε) ∑

x,y : x 6=y
K̃xy − 2 ∑

x,y
|x−y|≤2`/δ

K̃xy,
(5.10)

where we used 0 < m2
? − 6ε < 1. It remains to bound the terms on the right-hand side.

Using K̃xy ≥ (4/π2)|θx − θy|2Kxy and Lemma 4.1, the first sum is at least a constant
times IL,a. For the second sum we note that for all contributing x, y we have

K̃xy ≤ Kxy|θx − θy|2 ≤ c1

(
`

δa

)2

, (5.11)

where c1 := sup K0,x. Moreover, K̃xy is zero unless at least one of x and y lies in the
annulus ΛL \ΛL−a. This implies

∑
x,y

|x−y|≤2`/δ

K̃xy ≤ c2Ld−1 `d+2

δd+2a
(5.12)



14 M. BISKUP AND N. CRAWFORD

for some c2 proportional to c1 above. If a is so large that one can find ` � δ[ε log a]
1

d+2

with ` ≥ `0, then the right hand side is at most εLd−1a−1 log a. As this is much smaller
than IL,a for all s ∈ (d, d + 2], the claim follows. �
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