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Abstract

In this paper, we will obtain some weighted strong type and weak

type estimates of Bochner-Riesz operators T
(n−1)/2
R on the weighted

Morrey spaces Lp,κ(w) for 1 ≤ p < ∞ and 0 < κ < 1. We will also
prove that the commutator formed by a BMO(Rn) function b(x) and
T δ
R(δ ≥ (n−1)/2) is a bounded operator on the weighted Morrey spaces

Lp,κ(w) for 1 < p < ∞ and 0 < κ < 1.
MSC(2000) 42B15; 42B35
Keywords: Bochner-Riesz operators; weighted Morrey spaces; commu-
tator; Ap weights

1. Introduction

The Bochner-Riesz operators of order δ > 0 in R
n(n ≥ 2) are defined

initially for Schwartz functions in terms of Fourier transforms by

(

T δ
Rf

)

ˆ(ξ) =
(

1−
|ξ|2

R2

)δ

+
f̂(ξ),

where f̂ denotes the Fourier transform of f . The associated maximal Bochner-
Riesz operator is defined by

T δ
∗ f(x) = sup

R>0
|T δ

Rf(x)|.

These operators were first introduced by Bochner [2] in connection with
summation of multiple Fourier series and played an important role in har-
monic analysis. Let b be a locally integrable function on R

n, for any given
R > 0, the commutator of b and T δ

R is defined as follows

[b, T δ
R]f(x) = b(x)T δ

Rf(x)− T δ
R(bf)(x).

∗E-mail address: wanghua@pku.edu.cn.
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The classical Morrey spaces Lp,λ were first introduced by Morrey in [9]
to study the local behavior of solutions to second order elliptic partial dif-
ferential equations. Recently, Komori and Shirai [7] considered the weighted
version of Morrey spaces Lp,κ(w) and studied the boundedness of some clas-
sical operators on these spaces.

The main purpose of this paper is to discuss the weighted boundedness
of maximal Bochner-Riesz operator and commutator [b, T δ

R] on the weighted
Morrey spaces Lp,κ(w) for 1 < p < ∞ and 0 < κ < 1, where the symbol
b belongs to BMO. We will also give the weighted weak type estimate of
Bochner-Riesz operators on these spaces Lp,κ(w) when p = 1 and 0 < κ < 1.
Our main results are stated as follows.

Theorem 1. Let δ = (n − 1)/2, 1 < p < ∞, 0 < κ < 1 and w ∈ Ap. Then
there exists a constant C > 0 independent of f such that

‖T δ
∗ (f)‖Lp,κ(w) ≤ C‖f‖Lp,κ(w).

Theorem 2. Let δ = (n− 1)/2, p = 1, 0 < κ < 1 and w ∈ A1. Then for
any given R > 0, all λ > 0 and any ball B, there exists a constant C > 0
independent of f such that

w({x ∈ B : T δ
Rf(x) > λ}) ≤

C

λ
· ‖f‖L1,κ(w)w(B)κ.

Theorem 3. Let δ ≥ (n− 1)/2, 1 < p < ∞, 0 < κ < 1 and w ∈ Ap.
Suppose that b ∈ BMO, then there exists a constant C independent of f
such that

∥

∥[b, T δ
R]f

∥

∥

Lp,κ(w)
≤ C‖f‖Lp,κ(w).

2. Definitions and Notations

First let us recall some standard definitions and notations of weight
classes. A weight w is a locally integrable function on R

n which takes values
in (0,∞) almost everywhere, B = B(x0, r) denotes the ball with the center
x0 and radius r. Given a ball B and λ > 0, λB denotes the ball with the
same center as B whose radius is λ times that of B. For a given weight
function w, we denote the Lebesgue measure of B by |B| and the weighted
measure of B by w(B), where w(B) =

∫

B w(x) dx.
We shall give the definitions of two weight classes as follows.

Definition 1 ([10]). A weight function w is in the Muckenhoupt class Ap

with 1 < p < ∞ if for every ball B in R
n, there exists a positive constant C

which is independent of B such that
(

1

|B|

∫

B
w(x) dx

)(

1

|B|

∫

B
w(x)

− 1

p−1 dx

)p−1

≤ C.
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When p = 1, w ∈ A1, if

1

|B|

∫

B
w(x) dx ≤ C ess inf

x∈B
w(x).

Definition 2 ([4]). A weight function w belongs to the reverse Hölder class
RHr if there exist two constants r > 1 and C > 0 such that the following
reverse Hölder inequality

(

1

|B|

∫

B
w(x)r dx

)1/r

≤ C

(

1

|B|

∫

B
w(x) dx

)

holds for every ball B in R
n.

It is well known that if w ∈ Ap with 1 < p < ∞, then w ∈ Ar for all
r > p, and w ∈ Aq for some 1 < q < p. If w ∈ Ap with 1 ≤ p < ∞, then
there exists r > 1 such that w ∈ RHr.

We state the following results that we will use frequently in the sequel.

Lemma A ([4]). Let w ∈ Ap, p ≥ 1. Then, for any ball B, there exists an
absolute constant C such that

w(2B) ≤ Cw(B).

In general, for any λ > 1, we have

w(λB) ≤ Cλnpw(B),

where C does not depend on B nor on λ.

Lemma B ([5]). Let w ∈ RHr with r > 1. Then there exists a constant C
such that

w(E)

w(B)
≤ C

(

|E|

|B|

)(r−1)/r

for any measurable subset E of a ball B.

A locally integrable function b is said to be in BMO(Rn) if

‖b‖∗ = sup
B

1

|B|

∫

B
|b(x)− bB| dx < ∞,

where bB = 1
|B|

∫

B b(y) dy and the supremum is taken over all balls B in R
n.
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Theorem C ([3,6]). Assume that b ∈ BMO(Rn). Then for any 1 ≤ p < ∞,
we have

sup
B

(

1

|B|

∫

B

∣

∣b(x)− bB
∣

∣

p
dx

)1/p

≤ C‖b‖∗.

Next we shall define the weighted Morrey space and give some results
relevant to this paper. For further details, we refer the readers to [7].

Definition 3. Let 1 ≤ p < ∞, 0 < κ < 1 and w be a weight function. Then
the weighted Morrey space is defined by

Lp,κ(w) = {f ∈ Lp
loc(w) : ‖f‖Lp,κ(w) < ∞},

where

‖f‖Lp,κ(w) = sup
B

(

1

w(B)κ

∫

B
|f(x)|pw(x) dx

)1/p

and the supremum is taken over all balls B in R
n.

In [7], the authors proved the following result.

Theorem D. If 1 < p < ∞, 0 < κ < 1 and w ∈ Ap, then the Hardy-
Littlewood maximal operator M is bounded on Lp,κ(w).
If p = 1, 0 < κ < 1 and w ∈ A1, then for all λ > 0 and any ball B, we have

w({x ∈ B : Mf(x) > λ}) ≤
C

λ
· ‖f‖L1,κ(w)w(B)κ.

We are going to conclude this section by giving two important results
concerning the boundedness of Bochner-Riesz operators on the weighted Lp

spaces. Given a Muckenhoupt’s weight function w on R
n, for 1 ≤ p < ∞,

we denote by Lp
w(Rn) the space of all functions satisfying

‖f‖Lp
w(Rn) =

(
∫

Rn

|f(x)|pw(x) dx

)1/p

< ∞.

Theorem E ([11]). Let 1 < p < ∞, w ∈ Ap. Then there exists a constant
C > 0 such that

‖T
(n−1)/2
∗ (f)‖Lp

w
≤ C‖f‖Lp

w
.

Theorem F ([13]). Let w ∈ A1. Then there exists a constant C such that

w
(

{x ∈ R
n : |T

(n−1)/2
1 f(x)| > λ}

)

≤
C

λ

∫

Rn

|f(y)|w(y) dy.
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Throughout this article, we will use C to denote a positive constant,
which is independent of the main parameters and not necessarily the same
at each occurrence. By A ∼ B, we mean that there exists a constant C > 1
such that 1

C ≤ A
B ≤ C. Moreover, we will denote the conjugate exponent of

r > 1 by r′ = r/(r − 1).
3. Proofs of Theorems 1 and 2

The Bochner-Riesz operators can be expressed as convolution operators

T δ
Rf(x) = (f ∗ φ1/R)(x),

where φ(x) = [(1 − | · |2)δ+]ˆ(x). It is well known that the kernel φ can be
represented as(see [8,12])

φ(x) = π−δΓ(δ + 1)|x|−(n
2
+δ)Jn

2
+δ(2π|x|),

where Jµ(t) is the Bessel function

Jµ(t) =
( t2)

µ

Γ(µ+ 1
2 )Γ(

1
2)

∫ 1

−1
eits(1− s2)µ−

1

2 ds.

From the asymptotic properties of the Bessel function, we can deduce that
Jn

2
+δ(t) ≤ Ct

n
2
+δ when 0 < t ≤ 1 and Jn

2
+δ(t) ≤ Ct−

1

2 when t > 1.
Therefore, for δ ≥ (n− 1)/2, we have

∣

∣φ(x)
∣

∣ ≤
C

(1 + |x|)
n+1

2
+δ

. (1)

Before proving our main theorems, we point out the following two facts.
(i) When δ > (n− 1)/2, it is well known that(see [8,12])

T δ
∗ (f)(x) ≤ C ·M(f)(x).

Then for this case, the conclusion of Theorems 1 and 2 follows immediately
from Theorem D.
(ii) Let ft(x) = t−nf(x/t). Then for any fixed R > 0, it is easy to verify

that T
(n−1)/2
R f(x) = (φ ∗ fR)1/R(x). Hence, by Theorem F, we can get

w
(

{x ∈ R
n : |T

(n−1)/2
R f(x)| > λ}

)

≤
C

λ

∫

Rn

|f(y)|w(y) dy. (2)

On the other hand, E. M. Stein(see [12]) showed that when n ≥ 2, then
there exists a function f ∈ L1 such that

lim sup
R→∞

∣

∣T
(n−1)/2
R f(x)

∣

∣ = +∞ almost everywhere.
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Therefore the above inequality (2) can’t hold for the maximal Bochner-

Riesz operator T
(n−1)/2
∗ . Moreover, the corresponding result of Theorem 2

for T
(n−1)/2
∗ is also unknown.

Proof of Theorem 1. Fix a ball B = B(x0, rB) ⊆ R
n and decompose f =

f1 + f2, where f1 = fχ
2B
, χ

2B
denotes the characteristic function of 2B.

Since T δ
∗ (δ = (n− 1)/2) is a sublinear operator, then we have

1

w(B)κ/p

(

∫

B
|T δ

∗ f(x)|
pw(x) dx

)1/p

≤
1

w(B)κ/p

(

∫

B
|T δ

∗ f1(x)|
pw(x) dx

)1/p

+
1

w(B)κ/p

(

∫

B
|T δ

∗ f2(x)|
pw(x) dx

)1/p

= I1 + I2.

Theorem E and Lemma A imply

I1 ≤ C ·
1

w(B)κ/p

(

∫

2B
|f(x)|pw(x) dx

)1/p

≤ C‖f‖Lp,κ(w)
w(2B)κ/p

w(B)κ/p

≤ C‖f‖Lp,κ(w).

(3)

We now turn to estimate the term I2. Note that when δ = (n−1)/2, then by
the estimate (1), we have |φ(x)| ≤ C

|x|n . We also observe that when x ∈ B,

y ∈ (2B)c, then |y − x| ∼ |y − x0|. Hence

T δ
∗ f2(x) = sup

R>0

∣

∣f2 ∗ φ1/R(x)
∣

∣

≤ C · sup
R>0

∫

(2B)c

Rn

(R|x− y|)n

∣

∣f(y)
∣

∣ dy

≤ C ·
∞
∑

j=1

1

|2j+1B|

∫

2j+1B

∣

∣f(y)
∣

∣ dy.

(4)

It follows from Hölder’s inequality and the condition Ap that

∫

2j+1B
|f(y)| dy ≤

(

∫

2j+1B
|f(y)|pw(y) dy

)1/p(
∫

2j+1B
w(y)−p′/p

)1/p′

≤ C‖f‖Lp,κ(w) · |2
j+1B|w(2j+1B)(k−1)/p.

(5)
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Substituting the above inequality (5) into (4), we thus obtain

T δ
∗ f2(x) ≤ C‖f‖Lp,κ(w)

∞
∑

j=1

w(2j+1B)(k−1)/p.

Consequently

I2 ≤ C‖f‖Lp,κ(w)

∞
∑

j=1

w(B)(1−κ)/p

w(2j+1B)(1−κ)/p
.

Since w ∈ Ap, then there exists r > 1 such that w ∈ RHr. By using Lemma
B, we can get

w(B)

w(2j+1B)
≤ C

(

|B|

|2j+1B|

)(r−1)/r

.

Therefore

I2 ≤ C‖f‖Lp,κ(w)

∞
∑

j=1

( 1

2jn

)(1−κ)(r−1)/pr

≤ C‖f‖Lp,κ(w),

(6)

where the last series is convergent since (1− κ)(r − 1)/pr > 0. Combining
the previous estimate (3) with (6) and taking the supremum over all balls
B ⊆ R

n, we complete the proof of Theorem 1.

Proof of Theorem 2. For any given λ > 0, we write

w
(

{x ∈ B : |T δ
Rf(x)| > λ}

)

≤w
(

{x ∈ B : |T δ
Rf1(x)| > λ/2}

)

+ w
(

{x ∈ B : |T δ
Rf2(x)| > λ/2}

)

= I ′1 + I ′2.

Lemma A and the inequality (2) yield

I ′1 ≤
C

λ

∫

2B
|f(y)|w(y) dy

≤
C

λ
· ‖f‖L1,κ(w)w(2B)κ

≤
C

λ
· ‖f‖L1,κ(w)w(B)κ.

(7)

It follows from the inequality (4) and the condition A1 that

∣

∣T δ
Rf2(x)

∣

∣ ≤ C ·

∞
∑

j=1

1

|2j+1B|

∫

2j+1B

∣

∣f(y)
∣

∣ dy

7



≤ C ·

∞
∑

j=1

1

w(2j+1B)

∫

2j+1B

∣

∣f(y)
∣

∣w(y) dy

≤ C‖f‖L1,κ(w)

∞
∑

j=1

1

w(2j+1B)1−κ

= C‖f‖L1,κ(w) ·
1

w(B)1−κ

∞
∑

j=1

w(B)1−κ

w(2j+1B)1−κ
.

Since w ∈ A1, then w ∈ RHr∗ with r∗ > 1. By Lemma B again, we obtain

w(B)

w(2j+1B)
≤ C

(

|B|

|2j+1B|

)(r∗−1)/r∗

.

Hence

∣

∣T δ
Rf2(x)

∣

∣ ≤ C‖f‖L1,κ(w) ·
1

w(B)1−κ

∞
∑

j=1

( 1

2jn

)(1−κ)(r∗−1)/r∗

≤ C‖f‖L1,κ(w) ·
1

w(B)1−κ
,

(8)

where in the last inequality we have used the fact that (1−κ)(r∗−1)/r∗ > 0.
If {x ∈ B : |T δ

Rf2(x)| > λ/2} = Ø, then the inequality

I ′2 ≤
C

λ
· ‖f‖L1,κ(w)w(B)κ

holds trivially.
If {x ∈ B : |T δ

Rf2(x)| > λ/2} 6= Ø, then by the inequality (8), we have

λ ≤ C‖f‖L1,κ(w) ·
1

w(B)1−κ
,

which is equivalent to

w(B) ≤
C

λ
· ‖f‖L1,κ(w)w(B)κ.

Therefore

I ′2 ≤ w(B) ≤
C

λ
· ‖f‖L1,κ(w)w(B)κ. (9)

Combining the inequality (9) with (7), we finish the proof of Theorem 2.

4. Proof of Theorem 3

8



Proof. As in the proof of Theorem 1, for any given R > 0, we write

1

w(B)κ/p

(

∫

B

∣

∣[b, T δ
R]f(x)

∣

∣

p
w(x) dx

)1/p

≤
1

w(B)κ/p

(

∫

B

∣

∣[b, T δ
R]f1(x)

∣

∣

p
w(x) dx

)1/p

+
1

w(B)κ/p

(

∫

B

∣

∣[b, T δ
R]f2(x)

∣

∣

p
w(x) dx

)1/p

= J1 + J2.

By Theorem E and the previous pointwise inequality T δ
∗ (f)(x) ≤ C·M(f)(x),

δ > (n − 1)/2, we have that for δ ≥ (n − 1)/2, T δ
R is bounded on Lp

w pro-
vided that 1 < p < ∞ and w ∈ Ap. Then by the well-known boundedness
criterion for the commutators of linear operators, which was obtained by
Alvarez, Bagby, Kurtz and Pérez(see [1]), we see that [b, T δ

R] is also bounded
on Lp

w for all 1 < p < ∞ and w ∈ Ap. This together with Lemma A imply

J1 ≤ C‖b‖∗ ·
1

w(B)κ/p

(

∫

2B
|f(x)|pw(x) dx

)1/p

≤ C‖b‖∗‖f‖Lp,κ(w)
w(2B)κ/p

w(B)κ/p

≤ C‖b‖∗‖f‖Lp,κ(w).

(10)

We turn to deal with the term J2. When δ ≥ (n − 1)/2, by the estimate
(1), we thus have |φ(x)| ≤ C

(1+|x|)n . As before, we also get |y − x| ∼ |y − x0|

when x ∈ B and y ∈ (2B)c. Hence

∣

∣[b, T δ
R]f2(x)

∣

∣ =
∣

∣

∣

∫

(2B)c

(

b(x)− b(y)
)

φ1/R(x− y)f(y) dy
∣

∣

∣

≤C
∣

∣b(x)− bB
∣

∣ ·

∫

(2B)c

|f(y)|

|y − x0|n
dy

+ C

∫

(2B)c

|b(y)− bB||f(y)|

|y − x0|n
dy

=I+II.

It follows immediately from the inequality (5) that

I ≤ C
∣

∣b(x)− bB
∣

∣ ·
∞
∑

j=1

1

|2j+1B|

∫

2j+1B

∣

∣f(y)
∣

∣ dy

≤ C‖f‖Lp,κ(w)

∣

∣b(x)− bB
∣

∣ ·

∞
∑

j=1

w(2j+1B)(k−1)/p.
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Consequently

1

w(B)κ/p

(

∫

B
Ip w(x) dx

)1/p

≤C‖f‖Lp,κ(w)
1

w(B)κ/p
·

∞
∑

j=1

w(2j+1B)(k−1)/p ·
(

∫

B

∣

∣b(x)− bB
∣

∣

p
w(x) dx

)1/p

=C‖f‖Lp,κ(w)

∞
∑

j=1

w(B)(1−κ)/p

w(2j+1B)(1−κ)/p
·
( 1

w(B)

∫

B

∣

∣b(x)− bB
∣

∣

p
w(x) dx

)1/p
.

Using the same arguments as in the proof of Theorem 1, we can see that
the above summation is bounded by a constant. Hence

1

w(B)κ/p

(

∫

B
Ip w(x) dx

)1/p
≤ C‖f‖Lp,κ(w)

( 1

w(B)

∫

B

∣

∣b(x)−bB
∣

∣

p
w(x) dx

)1/p
.

Since w ∈ Ap, as before, there exists a number r > 1 such that w ∈ RHr.
Then, by the reverse Hölder’s inequality and Theorem C, we thus get

( 1

w(B)

∫

B

∣

∣b(x)− bB
∣

∣

p
w(x) dx

)1/p

≤C ·
1

w(B)1/p

(

∫

B

∣

∣b(x)− bB
∣

∣

pr′
dx

)1/pr′(
∫

B
w(x)r dx

)1/pr

≤C ·
( 1

|B|

∫

B

∣

∣b(x)− bB
∣

∣

pr′
dx

)1/pr′

≤C‖b‖∗.

(11)

So we have

1

w(B)κ/p

(

∫

B
Ip w(x) dx

)1/p
≤ C‖b‖∗‖f‖Lp,κ(w). (12)

On the other hand

II ≤C

∞
∑

j=1

1

|2j+1B|

∫

2j+1B
|b(y)− bB||f(y)| dy

≤C
∞
∑

j=1

1

|2j+1B|

∫

2j+1B
|b(y)− b2j+1B||f(y)| dy

+C

∞
∑

j=1

1

|2j+1B|

∫

2j+1B
|b2j+1B − bB||f(y)| dy

=III+IV.
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By using Hölder’s inequality, we thus obtain
∫

2j+1B
|b(y)− b2j+1B ||f(y)| dy (13)

≤
(

∫

2j+1B

∣

∣b(y)− b2j+1B

∣

∣

p′
w−p′/p(y) dy

)1/p′(
∫

2j+1B

∣

∣f(y)
∣

∣

p
w(y) dy

)1/p

≤C‖f‖Lp,κ(w)w(2
j+1B)κ/p

(

∫

2j+1B

∣

∣b(y)− b2j+1B

∣

∣

p′
w−p′/p(y) dy

)1/p′

.

Set v(y) = w−p′/p(y) = w1−p′(y). Then we have v ∈ Ap′ because w ∈ Ap(see
[3]). Following along the same lines as in the proof of (11), we can get

( 1

v(2j+1B)

∫

2j+1B

∣

∣b(y)− b2j+1B

∣

∣

p′
v(y) dy

)1/p′

≤ C‖b‖∗. (14)

Substituting the above inequality (14) into (13), we thus have
∫

2j+1B
|b(y)− b2j+1B||f(y)| dy ≤ C‖b‖∗‖f‖Lp,κ(w) · w(2

j+1B)κ/pv(2j+1B)1/p
′

≤ C‖b‖∗‖f‖Lp,κ(w) · |2
j+1B|w(2j+1B)(κ−1)/p.

Hence

1

w(B)κ/p

(

∫

B
IIIp w(x) dx

)1/p
≤ C‖b‖∗‖f‖Lp,κ(w)

∞
∑

j=1

w(B)(1−κ)/p

w(2j+1B)(1−κ)/p

≤ C‖b‖∗‖f‖Lp,κ(w). (15)

Finally, let’s deal with the term IV. Since b ∈ BMO(Rn), then a simple
calculation shows that

|b2j+1B − bB | ≤ C · j‖b‖∗.

Again, it follows from the inequality (5) that

IV ≤ C‖b‖∗

∞
∑

j=1

j ·
1

|2j+1B|

∫

2j+1B

∣

∣f(y)
∣

∣ dy

≤ C‖b‖∗‖f‖Lp,κ(w)

∞
∑

j=1

j · w(2j+1B)(κ−1)/p.

Therefore

1

w(B)κ/p

(

∫

B
IVpw(x) dx

)1/p
≤ C‖b‖∗‖f‖Lp,κ(w)

∞
∑

j=1

j ·
w(B)(1−κ)/p

w(2j+1B)(1−κ)/p
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≤ C‖b‖∗‖f‖Lp,κ(w)

∞
∑

j=1

j

2jnθ

≤ C‖b‖∗‖f‖Lp,κ(w),

(16)

where w ∈ RHr and θ = (1− κ)(r− 1)/pr. Summarizing the estimates (15)
and (16) derived above, we thus obtain

1

w(B)κ/p

(

∫

B
IIp w(x) dx

)1/p
≤ C‖b‖∗‖f‖Lp,κ(w). (17)

Combining the inequalities (10), (12) with the above inequality (17) and
taking the supremum over all balls B ⊆ R

n, we finally conclude the proof of
Theorem 3.
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