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Abstract

In this paper, we will obtain some weighted strong type and weak

type estimates of Bochner-Riesz operators T};il)/ % on the weighted

Morrey spaces LP"(w) for 1 < p < oo and 0 < k < 1. We will also
prove that the commutator formed by a BMO(R") function b(x) and
T%(86 > (n—1)/2) is a bounded operator on the weighted Morrey spaces
LPr(w) for 1 <p<ooand 0 <k < 1.
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1. Introduction
The Bochner-Riesz operators of order § > 0 in R™(n > 2) are defined
initially for Schwartz functions in terms of Fourier transforms by

2 A
) © = (1-55) 7o,

where f denotes the Fourier transform of f. The associated maximal Bochner-
Riesz operator is defined by

T f(x) = sup [T} f (z)|.
R>0

These operators were first introduced by Bochner [2] in connection with
summation of multiple Fourier series and played an important role in har-
monic analysis. Let b be a locally integrable function on R", for any given
R > 0, the commutator of b and T}‘; is defined as follows

b, %1 f () = b(2)Thf (x) = TR(S) ().
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The classical Morrey spaces £P* were first introduced by Morrey in [9]
to study the local behavior of solutions to second order elliptic partial dif-
ferential equations. Recently, Komori and Shirai [7] considered the weighted
version of Morrey spaces LP*(w) and studied the boundedness of some clas-
sical operators on these spaces.

The main purpose of this paper is to discuss the weighted boundedness
of maximal Bochner-Riesz operator and commutator [b, T}‘;] on the weighted
Morrey spaces LP*(w) for 1 < p < oo and 0 < k < 1, where the symbol
b belongs to BMO. We will also give the weighted weak type estimate of
Bochner-Riesz operators on these spaces LP*(w) when p=1and 0 < k < 1.
Our main results are stated as follows.

Theorem 1. Let d = (n—1)/2, 1 <p<o0,0<k<1andwe Ay. Then
there exists a constant C' > 0 independent of f such that

T2 ()l Losw) < CllF I Lo (w)-

Theorem 2. Let 6 = (n—1)/2, p=1,0< k<1 and w € Ay. Then for
any given R > 0, all A > 0 and any ball B, there exists a constant C' > 0
independent of f such that

w(fa € B Th1) > M) < 5 -1 sanuu(B)"

Theorem 3. Let § > (n—1)/2, 1 < p <00, 0 < Kk <1 andw € A,
Suppose that b € BMQO, then there exists a constant C' independent of f
such that

H[b’ T}%]fHLp,n(w) < C||f||LPv“(w)'

2. Definitions and Notations

First let us recall some standard definitions and notations of weight
classes. A weight w is a locally integrable function on R™ which takes values
in (0,00) almost everywhere, B = B(xq, ) denotes the ball with the center
xo and radius r. Given a ball B and A > 0, AB denotes the ball with the
same center as B whose radius is A times that of B. For a given weight
function w, we denote the Lebesgue measure of B by |B| and the weighted
measure of B by w(B), where w(B) = [ w(z) dz.

We shall give the definitions of two weight classes as follows.

Definition 1 ([10]). A weight function w is in the Muckenhoupt class Ay
with 1 < p < oo if for every ball B in R™, there exists a positive constant C
which is independent of B such that

<ﬁ/3w($) dm) <ﬁ/3w(x)_ﬁ d:z:)p_l <c.

2



Whenp =1, w e Ay, if

|Té|/ w(z)dr < C essinfw(x).
B

rzeB

Definition 2 ([4]). A weight function w belongs to the reverse Hélder class
RH, if there exist two constants v > 1 and C' > 0 such that the following
reverse Hélder inequality

(o)< i e

holds for every ball B in R™.

It is well known that if w € A, with 1 < p < oo, then w € A, for all
r>p,and w € A, for some 1 < ¢ < p. If w e A, with 1 < p < oo, then
there exists » > 1 such that w € RH,.

We state the following results that we will use frequently in the sequel.

Lemma A ([4]). Let w € A,, p > 1. Then, for any ball B, there exists an
absolute constant C' such that

w(2B) < Cw(B).
In general, for any A > 1, we have
w(AB) < CA\"Pw(B),
where C' does not depend on B nor on .

Lemma B ([5]). Let w € RH, with r > 1. Then there exists a constant C

such that .
w(B) —  \|B|

for any measurable subset E of a ball B.

A locally integrable function b is said to be in BMO(R") if

1
o]l = sup— / Ib(z) — by| da < oo,
B |B|JB

where bg = ‘—é‘ [ b(y) dy and the supremum is taken over all balls B in R".



Theorem C ([3,6]). Assume thatb € BMO(R™). Then for any 1 < p < oo,

we have
1 1/p
sup <—/ |b(z) — b " da:) < C|bl+.
B \|Bl /B

Next we shall define the weighted Morrey space and give some results
relevant to this paper. For further details, we refer the readers to [7].

Definition 3. Let 1 <p < oo, 0 < k <1 and w be a weight function. Then
the weighted Morrey space is defined by

LP(w) = {f € Li,o(w) « |fll o) < o0},

where

1 1/p
sy =09 (= [ r@Puto)as )

and the supremum is taken over all balls B in R™.
In [7], the authors proved the following result.

Theorem D. If1 < p < o0, 0 <k <1 and w € A,, then the Hardy-
Littlewood mazimal operator M is bounded on LP*(w).
Ifp=1,0<k <1 andw € A1, then for all A > 0 and any ball B, we have

w(fo € B: Mf(x) > \}) < 5 17 1anuy(B)

We are going to conclude this section by giving two important results
concerning the boundedness of Bochner-Riesz operators on the weighted LP
spaces. Given a Muckenhoupt’s weight function w on R”, for 1 < p < oo,
we denote by L%, (R™) the space of all functions satisfying

1/p
iz = ([ @Pu@as) <o

Theorem E ([11]). Let 1 < p < oo, w € A,. Then there exists a constant
C > 0 such that N
172 ()le, < €l e

Theorem F ([13]). Let w € Ay. Then there exists a constant C' such that

w(fe e B TV p@) >0 <5 [ 10l .
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Throughout this article, we will use C to denote a positive constant,
which is independent of the main parameters and not necessarily the same
at each occurrence. By A ~ B, we mean that there exists a constant C' > 1
such that % < % < C. Moreover, we will denote the conjugate exponent of
r>1byr =r/(r—1).

3. Proofs of Theorems 1 and 2
The Bochner-Riesz operators can be expressed as convolution operators

Thf(z) = (f * d1/r) (@),

where ¢(z) = [(1 — |- [*)%]"(z). It is well known that the kernel ¢ can be
represented as(see [8,12])

o) = 7T + Dla|~ G+ T ys(2r]),
where J,,(t) is the Bessel function
(i)ﬂ ! its 2\pu—1
2/ \2) /=

From the asymptotic properties of the Bessel function, we can deduce that
Jnis(t) < Ct2%% when 0 < ¢t < 1 and Jnis(t) < Ct72 when t > 1.
Therefore, for 6 > (n — 1)/2, we have

Ju(t) =

()] « —

(1+al) s+ .

Before proving our main theorems, we point out the following two facts.
(i) When 6 > (n — 1)/2, it is well known that(see [8,12])

T (f)(z) < C - M(f)(x).

Then for this case, the conclusion of Theorems 1 and 2 follows immediately
from Theorem D.

(ii) Let fi(x) = t7"f(z/t). Then for any fixed R > 0, it is easy to verify
that T}(%n_l)pf(:n) = (¢ * fr)1/r(z). Hence, by Theorem F, we can get

n n—1)/2 c
w(te e® T @) > ) <5 [ @@ @)
On the other hand, E. M. Stein(see [12]) showed that when n > 2, then
there exists a function f € L! such that
n—1)/2

lim sup ‘T}(% ) f(@)| = +oo almost everywhere.
R—o0



Therefore the above inequality (2) can’t hold for the maximal Bochner-
Riesz operator T*(n_l)/ 2, Moreover, the corresponding result of Theorem 2

for T*("_l)/ 2 is also unknown.

Proof of Theorem 1. Fix a ball B = B(zg,rg) € R™ and decompose f =
f1 + f2, where fi = fX,5, X,5 denotes the characteristic function of 2B5.
Since T2(8 = (n — 1)/2) is a sublinear operator, then we have

g @) )

< o L1 n@puG) i)

+ i ([ TP ue) )

=1+ I.

1/p

Theorem E and Lemma A imply

I SC-W(AB]f(x)]pw(az)dx)l/p

w(2B)"/P (3)

< O fll Lo (w) w(B) 7

< Ol f o (w)-

We now turn to estimate the term 5. Note that when § = (n—1)/2, then by
the estimate (1), we have |¢(x)| < £~. We also observe that when z € B,

‘w‘n'

y € (2B)¢, then |y — 2| ~ |y — zo|. Hence

T? fo(x) = sup | fo * ¢1 /g ()]
R>0

Rn
< C'Sup/ ——|f(y)|dy
SR J e @z =g )

= 1
<C3 g L. liwla

It follows from Holder’s inequality and the condition A, that

P v 2/ /p) "
L vars ([ vwrama)” ([ o)
< C|| f ||z - 127 Bl (27T B) /P,
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Substituting the above inequality (5) into (4), we thus obtain
T2 fo(x) < Ol fllponuy Y w(@ 1 B)F=D/P,
7j=1

Consequently (1)
= w(B)(R/p
I, < CHf”LPv"(w) E : w(2j+1B)(1—li)/p'
i=1

Since w € Ap, then there exists r > 1 such that w € RH,. By using Lemma

B, we can get
wB) (1B \"
w(2HB) = 7 \|2H1B] ‘

o0

r)(r=1)/pr
B Ol (5)
J=1 (6)

< Ol fllzem ()

Therefore

where the last series is convergent since (1 — k)(r — 1)/pr > 0. Combining
the previous estimate (3) with (6) and taking the supremum over all balls
B C R™, we complete the proof of Theorem 1. O

Proof of Theorem 2. For any given A > 0, we write

w({z € B: T f ()] > AH)
<w({z € B: T8 f1(x)| > A/2}) +w({zeB: T3 fo(x)| > A/2})
=1+ I

Lemma A and the inequality (2) yield

I < —

<5 I
< = If ot yw(2B)” (7)

<

Nl s yw(B)".

4) and the condition A; that

= >~|Q>~|Q

It follows from the inequality

TR fo(x)| < C- Z’2]+1B‘/+1B (y)] dy



1
<C- Z m /2j+1B ‘f(y)hU(y) dy

1 w(B)l—n
= CHfHLl"‘(w) ’ w(B)l_H Z w(2j+1B)1—/i
j=1

Since w € Ay, then w € RH,« with r* > 1. By Lemma B again, we obtain

w(B) <C< |B| >(r*_l)/7’*

w(2j+1B) - \2j+1B\
Hence
> (I=k)(r*=1)/r*
|T}5{f2(‘73)‘ < CHfHLl"”"(w) ’ 1 P (2Jn>
j=1 (8)
1
< Ol fll s () w(B) R

where in the last inequality we have used the fact that (1—k)(r*—1)/r* > 0.
If {x € B:|T5f2(x)| > A\/2} = O, then the inequality

M e yw(B)"

>|Q

holds trivially.
If {x € B:|TSf2(x)| > A\/2} # O, then by the inequality (8), we have

1

A< CONfllprsw) - w(B) A

which is equivalent to

c .
w(B) < S I e quyu(B)"

Therefore
I <w(B) <

>/|Q

AN sy w(B)”- (9)
Combining the inequality (9) with (7), we finish the proof of Theorem 2. O
4. Proof of Theorem 3



Proof. As in the proof of Theorem 1, for any given R > 0, we write

W(/B |16, TR f () [Pw(z) dg;)l/p
W ( /B |[b, TR1f1 ()| "w () d:n) "

i ([ 1T Pt dr)

=J1 + Jo.
By Theorem E and the previous pointwise inequality T2 (f)(x) < C-M(f)(z),
§ > (n —1)/2, we have that for § > (n —1)/2, T% is bounded on L%, pro-
vided that 1 < p < oo and w € Aj,. Then by the well-known boundedness
criterion for the commutators of linear operators, which was obtained by
Alvarez, Bagby, Kurtz and Pérez(see [1]), we see that [b, 9] is also bounded
on L%, for all 1 < p < co and w € A,. This together with Lemma A imply

1 1/p
< — P

7 <Ol s ([ 1@t de)
w(2B)"/P (10)
< C|b]|« () —
< Ol v i

< Clbllllf e ()

We turn to deal with the term Jo. When § > (n — 1)/2, by the estimate
(1), we thus have |¢(x)| < ﬁ As before, we also get |y — z| ~ |y — x|
when x € B and y € (2B)°. Hence

TR =] [ 00 b)) ount — 10 d
§C’\b(m)—b3\-/( Mdy

2B)e [y — xo|™

(2B)

ly — xo|"

=I+IL
It follows immediately from the inequality (5) that

=1
1< Clb(x) — bg| ;m /2j+1B ()| dy

< C|fllprmiuyb(x) = bp| - > w(@ T B)ED/P,
=1



Consequently

wm(fyre@a)

e wawup ([ 160 - ot )
[e.e] w h}

=Wl Zw(2ﬂ+1B (1-r)/p /‘b _bB‘p >
7=1

Using the same arguments as in the proof of Theorem 1, we can see that
the above summation is bounded by a constant. Hence

W(/Blpw(ﬂf) d;z:)l/p < CHfHLPm(m(ﬁ/B|b($)_bB‘pw(x) d$>1/17‘

Since w € A, as before, there exists a number r > 1 such that w € RH,.
Then, by the reverse Holder’s inequality and Theorem C, we thus get

(ﬁ /B [b(@) — bs|"w(x) dz) 1/r
= W( /B ) — s )" /B wiaydz) " N

(7 /. o) =" )™

<C1b]l-
So we have
1 1/p
i (P ww)n) ™ < Il o 12)
On the other hand
CZ |2J+1B| /2;+1 y) — bs||f(y)| dy

Z |2J+1B| /21+1B — byi1pl|f(y)l dy

! CZ m /21’+1B |baj+15 = bpl[f(y)] dy
j=1
=II14+1V.
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By using Holder’s inequality, we thus obtain

/ b) — byl f)l dy (13)
2i+1B

/ / 1// 1/
<( / Jbly) = by Py ay) / ) Pe )
2i+1B 2i+1B
. 4 ’ 1/ !
<Ol lereuyw@ B ([ o) = by o) )"
2/+1B

Set v(y) = w P /P(y) = w' P (y). Then we have v € A,y because w € A,(see
[3]). Following along the same lines as in the proof of (11), we can get

1 % 1/p
<m /2]‘+1B |b(y) = s | v(y) dy) < o] (14)

Substituting the above inequality (14) into (13), we thus have

/.+1B |b(y) bj2j+1 B||f(y)| dl < CHbH*HfH P,ﬁ(w) . w(2j+1B)n/p,U( j+1B)1/p’
J L 2
<_ C”b”*HfHLP,n(w) N ’2] 1B\w(23 1B)(H 1)/17'

Hence

> )(1=r)/p

1 1/p w
P
w(B)R/p(/BIII w(z)dz) " < CbllLf ) Zw(23+1B o

Jj=1

< Ol L | oo () - (15)
Finally, let’s deal with the term IV. Since b € BMO(R"™), then a simple
calculation shows that
|bgi+1p — bp| < C'- j[|b]l
Again, it follows from the inequality (5) that

1

m g ‘f(y” dy

v < Clpll. Y-
7j=1

< Clblll| fllznuy 3 - w2 BY D
j=1
Therefore

1 1/p ad B)(1=m)/p
- P
w(B)~/p (/BIV w(z) da:) < C”b”*HfHLM JE:1j 2J+1B (1-r)/p

11



o~
< Clbllell £l o) D 2inb
7j=1

S N0l f Nl Loom () s

where w € RH, and § = (1 — k)(r — 1)/pr. Summarizing the estimates (15)
and (16) derived above, we thus obtain

(16)

1

1/p
W(/Bllpw(:n)daz) < O8Il L ooecar. )

Combining the inequalities (10), (12) with the above inequality (17) and
taking the supremum over all balls B C R"™, we finally conclude the proof of
Theorem 3. U
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