Some estimates for Bochner-Riesz operators on the weighted Morrey spaces

Hua Wang*

School of Mathematical Sciences, Peking University, Beijing 100871, China

Abstract

In this paper, we will obtain some weighted strong type and weak type estimates of Bochner-Riesz operators $T_R^{(n-1)/2}$ on the weighted Morrey spaces $L^{p,\kappa}(w)$ for $1 \leq p < \infty$ and $0 < \kappa < 1$. We will also prove that the commutator formed by a $BMO(\mathbb{R}^n)$ function b(x) and $T_R^{\delta}(\delta \geq (n-1)/2)$ is a bounded operator on the weighted Morrey spaces $L^{p,\kappa}(w)$ for $1 and <math>0 < \kappa < 1$.

MSC(2000) 42B15; 42B35

Keywords: Bochner-Riesz operators; weighted Morrey spaces; commutator; A_p weights

1. Introduction

The Bochner-Riesz operators of order $\delta > 0$ in $\mathbb{R}^n (n \geq 2)$ are defined initially for Schwartz functions in terms of Fourier transforms by

$$(T_R^{\delta} f)\hat{}(\xi) = \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\delta} \hat{f}(\xi),$$

where \hat{f} denotes the Fourier transform of f. The associated maximal Bochner-Riesz operator is defined by

$$T_*^{\delta} f(x) = \sup_{R > 0} |T_R^{\delta} f(x)|.$$

These operators were first introduced by Bochner [2] in connection with summation of multiple Fourier series and played an important role in harmonic analysis. Let b be a locally integrable function on \mathbb{R}^n , for any given R > 0, the commutator of b and T_R^{δ} is defined as follows

$$[b, T_R^{\delta}]f(x) = b(x)T_R^{\delta}f(x) - T_R^{\delta}(bf)(x).$$

^{*}E-mail address: wanghua@pku.edu.cn.

The classical Morrey spaces $\mathcal{L}^{p,\lambda}$ were first introduced by Morrey in [9] to study the local behavior of solutions to second order elliptic partial differential equations. Recently, Komori and Shirai [7] considered the weighted version of Morrey spaces $L^{p,\kappa}(w)$ and studied the boundedness of some classical operators on these spaces.

The main purpose of this paper is to discuss the weighted boundedness of maximal Bochner-Riesz operator and commutator $[b, T_R^{\delta}]$ on the weighted Morrey spaces $L^{p,\kappa}(w)$ for $1 and <math>0 < \kappa < 1$, where the symbol b belongs to BMO. We will also give the weighted weak type estimate of Bochner-Riesz operators on these spaces $L^{p,\kappa}(w)$ when p = 1 and $0 < \kappa < 1$. Our main results are stated as follows.

Theorem 1. Let $\delta = (n-1)/2$, $1 , <math>0 < \kappa < 1$ and $w \in A_p$. Then there exists a constant C > 0 independent of f such that

$$||T_*^{\delta}(f)||_{L^{p,\kappa}(w)} \le C||f||_{L^{p,\kappa}(w)}.$$

Theorem 2. Let $\delta = (n-1)/2$, p = 1, $0 < \kappa < 1$ and $w \in A_1$. Then for any given R > 0, all $\lambda > 0$ and any ball B, there exists a constant C > 0 independent of f such that

$$w(\{x \in B : T_R^{\delta} f(x) > \lambda\}) \le \frac{C}{\lambda} \cdot ||f||_{L^{1,\kappa}(w)} w(B)^{\kappa}.$$

Theorem 3. Let $\delta \geq (n-1)/2$, $1 , <math>0 < \kappa < 1$ and $w \in A_p$. Suppose that $b \in BMO$, then there exists a constant C independent of f such that

$$\left\| [b, T_R^{\delta}] f \right\|_{L^{p,\kappa}(w)} \le C \|f\|_{L^{p,\kappa}(w)}.$$

2. Definitions and Notations

First let us recall some standard definitions and notations of weight classes. A weight w is a locally integrable function on \mathbb{R}^n which takes values in $(0,\infty)$ almost everywhere, $B=B(x_0,r)$ denotes the ball with the center x_0 and radius r. Given a ball B and $\lambda>0$, λB denotes the ball with the same center as B whose radius is λ times that of B. For a given weight function w, we denote the Lebesgue measure of B by |B| and the weighted measure of B by w(B), where $w(B)=\int_B w(x)\,dx$.

We shall give the definitions of two weight classes as follows.

Definition 1 ([10]). A weight function w is in the Muckenhoupt class A_p with 1 if for every ball <math>B in \mathbb{R}^n , there exists a positive constant C which is independent of B such that

$$\left(\frac{1}{|B|}\int_B w(x)\,dx\right)\left(\frac{1}{|B|}\int_B w(x)^{-\frac{1}{p-1}}\,dx\right)^{p-1} \le C.$$

When p = 1, $w \in A_1$, if

$$\frac{1}{|B|}\int_B w(x)\,dx \leq C \underset{x \in B}{\operatorname{ess\,inf}} w(x).$$

Definition 2 ([4]). A weight function w belongs to the reverse Hölder class RH_r if there exist two constants r > 1 and C > 0 such that the following reverse Hölder inequality

$$\left(\frac{1}{|B|} \int_{B} w(x)^{r} dx\right)^{1/r} \le C\left(\frac{1}{|B|} \int_{B} w(x) dx\right)$$

holds for every ball B in \mathbb{R}^n .

It is well known that if $w \in A_p$ with $1 , then <math>w \in A_r$ for all r > p, and $w \in A_q$ for some 1 < q < p. If $w \in A_p$ with $1 \le p < \infty$, then there exists r > 1 such that $w \in RH_r$.

We state the following results that we will use frequently in the sequel.

Lemma A ([4]). Let $w \in A_p$, $p \ge 1$. Then, for any ball B, there exists an absolute constant C such that

$$w(2B) \le Cw(B)$$
.

In general, for any $\lambda > 1$, we have

$$w(\lambda B) \le C\lambda^{np}w(B),$$

where C does not depend on B nor on λ .

Lemma B ([5]). Let $w \in RH_r$ with r > 1. Then there exists a constant C such that

$$\frac{w(E)}{w(B)} \le C \left(\frac{|E|}{|B|}\right)^{(r-1)/r}$$

for any measurable subset E of a ball B.

A locally integrable function b is said to be in $BMO(\mathbb{R}^n)$ if

$$||b||_* = \sup_B \frac{1}{|B|} \int_B |b(x) - b_B| \, dx < \infty,$$

where $b_B = \frac{1}{|B|} \int_B b(y) dy$ and the supremum is taken over all balls B in \mathbb{R}^n .

Theorem C ([3,6]). Assume that $b \in BMO(\mathbb{R}^n)$. Then for any $1 \le p < \infty$, we have

$$\sup_{B} \left(\frac{1}{|B|} \int_{B} |b(x) - b_{B}|^{p} dx \right)^{1/p} \le C ||b||_{*}.$$

Next we shall define the weighted Morrey space and give some results relevant to this paper. For further details, we refer the readers to [7].

Definition 3. Let $1 \le p < \infty$, $0 < \kappa < 1$ and w be a weight function. Then the weighted Morrey space is defined by

$$L^{p,\kappa}(w) = \{ f \in L^p_{loc}(w) : ||f||_{L^{p,\kappa}(w)} < \infty \},$$

where

$$||f||_{L^{p,\kappa}(w)} = \sup_{B} \left(\frac{1}{w(B)^{\kappa}} \int_{B} |f(x)|^{p} w(x) dx\right)^{1/p}$$

and the supremum is taken over all balls B in \mathbb{R}^n .

In [7], the authors proved the following result.

Theorem D. If $1 , <math>0 < \kappa < 1$ and $w \in A_p$, then the Hardy-Littlewood maximal operator M is bounded on $L^{p,\kappa}(w)$. If p = 1, $0 < \kappa < 1$ and $w \in A_1$, then for all $\lambda > 0$ and any ball B, we have

$$w(\{x \in B : Mf(x) > \lambda\}) \le \frac{C}{\lambda} \cdot ||f||_{L^{1,\kappa}(w)} w(B)^{\kappa}.$$

We are going to conclude this section by giving two important results concerning the boundedness of Bochner-Riesz operators on the weighted L^p spaces. Given a Muckenhoupt's weight function w on \mathbb{R}^n , for $1 \leq p < \infty$, we denote by $L_w^p(\mathbb{R}^n)$ the space of all functions satisfying

$$||f||_{L_w^p(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) \, dx\right)^{1/p} < \infty.$$

Theorem E ([11]). Let $1 , <math>w \in A_p$. Then there exists a constant C > 0 such that

$$||T_*^{(n-1)/2}(f)||_{L_w^p} \le C||f||_{L_w^p}.$$

Theorem F ([13]). Let $w \in A_1$. Then there exists a constant C such that

$$w(\lbrace x \in \mathbb{R}^n : |T_1^{(n-1)/2} f(x)| > \lambda \rbrace) \le \frac{C}{\lambda} \int_{\mathbb{R}^n} |f(y)| w(y) \, dy.$$

Throughout this article, we will use C to denote a positive constant, which is independent of the main parameters and not necessarily the same at each occurrence. By $A \sim B$, we mean that there exists a constant C > 1 such that $\frac{1}{C} \leq \frac{A}{B} \leq C$. Moreover, we will denote the conjugate exponent of r > 1 by r' = r/(r-1).

3. Proofs of Theorems 1 and 2

The Bochner-Riesz operators can be expressed as convolution operators

$$T_R^{\delta} f(x) = (f * \phi_{1/R})(x),$$

where $\phi(x) = [(1 - |\cdot|^2)_+^{\delta}]^{\hat{}}(x)$. It is well known that the kernel ϕ can be represented as(see [8,12])

$$\phi(x) = \pi^{-\delta} \Gamma(\delta+1)|x|^{-(\frac{n}{2}+\delta)} J_{\frac{n}{2}+\delta}(2\pi|x|),$$

where $J_{\mu}(t)$ is the Bessel function

$$J_{\mu}(t) = \frac{(\frac{t}{2})^{\mu}}{\Gamma(\mu + \frac{1}{2})\Gamma(\frac{1}{2})} \int_{-1}^{1} e^{its} (1 - s^{2})^{\mu - \frac{1}{2}} ds.$$

From the asymptotic properties of the Bessel function, we can deduce that $J_{\frac{n}{2}+\delta}(t) \leq Ct^{\frac{n}{2}+\delta}$ when $0 < t \leq 1$ and $J_{\frac{n}{2}+\delta}(t) \leq Ct^{-\frac{1}{2}}$ when t > 1. Therefore, for $\delta \geq (n-1)/2$, we have

$$|\phi(x)| \le \frac{C}{(1+|x|)^{\frac{n+1}{2}+\delta}}.$$
 (1)

Before proving our main theorems, we point out the following two facts. (i) When $\delta > (n-1)/2$, it is well known that(see [8,12])

$$T_*^{\delta}(f)(x) \le C \cdot M(f)(x).$$

Then for this case, the conclusion of Theorems 1 and 2 follows immediately from Theorem D.

(ii) Let $f_t(x) = t^{-n} f(x/t)$. Then for any fixed R > 0, it is easy to verify that $T_R^{(n-1)/2} f(x) = (\phi * f_R)_{1/R}(x)$. Hence, by Theorem F, we can get

$$w(\lbrace x \in \mathbb{R}^n : |T_R^{(n-1)/2} f(x)| > \lambda \rbrace) \le \frac{C}{\lambda} \int_{\mathbb{R}^n} |f(y)| w(y) \, dy. \tag{2}$$

On the other hand, E. M. Stein(see [12]) showed that when $n \geq 2$, then there exists a function $f \in L^1$ such that

$$\limsup_{R \to \infty} \left| T_R^{(n-1)/2} f(x) \right| = +\infty \quad \text{almost everywhere.}$$

Therefore the above inequality (2) can't hold for the maximal Bochner-Riesz operator $T_*^{(n-1)/2}$. Moreover, the corresponding result of Theorem 2 for $T_*^{(n-1)/2}$ is also unknown.

Proof of Theorem 1. Fix a ball $B = B(x_0, r_B) \subseteq \mathbb{R}^n$ and decompose $f = f_1 + f_2$, where $f_1 = f\chi_{2B}$, χ_{2B} denotes the characteristic function of 2B. Since $T_*^{\delta}(\delta = (n-1)/2)$ is a sublinear operator, then we have

$$\begin{split} &\frac{1}{w(B)^{\kappa/p}} \Big(\int_{B} |T_{*}^{\delta} f(x)|^{p} w(x) \, dx \Big)^{1/p} \\ &\leq \frac{1}{w(B)^{\kappa/p}} \Big(\int_{B} |T_{*}^{\delta} f_{1}(x)|^{p} w(x) \, dx \Big)^{1/p} \\ &\quad + \frac{1}{w(B)^{\kappa/p}} \Big(\int_{B} |T_{*}^{\delta} f_{2}(x)|^{p} w(x) \, dx \Big)^{1/p} \\ &= I_{1} + I_{2}. \end{split}$$

Theorem E and Lemma A imply

$$I_{1} \leq C \cdot \frac{1}{w(B)^{\kappa/p}} \left(\int_{2B} |f(x)|^{p} w(x) dx \right)^{1/p}$$

$$\leq C \|f\|_{L^{p,\kappa}(w)} \frac{w(2B)^{\kappa/p}}{w(B)^{\kappa/p}}$$

$$\leq C \|f\|_{L^{p,\kappa}(w)}.$$
(3)

We now turn to estimate the term I_2 . Note that when $\delta = (n-1)/2$, then by the estimate (1), we have $|\phi(x)| \leq \frac{C}{|x|^n}$. We also observe that when $x \in B$, $y \in (2B)^c$, then $|y-x| \sim |y-x_0|$. Hence

$$T_*^{\delta} f_2(x) = \sup_{R>0} \left| f_2 * \phi_{1/R}(x) \right|$$

$$\leq C \cdot \sup_{R>0} \int_{(2B)^c} \frac{R^n}{(R|x-y|)^n} |f(y)| \, dy$$

$$\leq C \cdot \sum_{j=1}^{\infty} \frac{1}{|2^{j+1}B|} \int_{2^{j+1}B} |f(y)| \, dy.$$
(4)

It follows from Hölder's inequality and the condition A_p that

$$\int_{2^{j+1}B} |f(y)| \, dy \le \left(\int_{2^{j+1}B} |f(y)|^p w(y) \, dy \right)^{1/p} \left(\int_{2^{j+1}B} w(y)^{-p'/p} \right)^{1/p'} \\
\le C \|f\|_{L^{p,\kappa}(w)} \cdot |2^{j+1}B| w(2^{j+1}B)^{(k-1)/p}. \tag{5}$$

Substituting the above inequality (5) into (4), we thus obtain

$$T_*^{\delta} f_2(x) \le C \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^{\infty} w(2^{j+1}B)^{(k-1)/p}.$$

Consequently

$$I_2 \le C \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^{\infty} \frac{w(B)^{(1-\kappa)/p}}{w(2^{j+1}B)^{(1-\kappa)/p}}.$$

Since $w \in A_p$, then there exists r > 1 such that $w \in RH_r$. By using Lemma B, we can get

$$\frac{w(B)}{w(2^{j+1}B)} \le C \left(\frac{|B|}{|2^{j+1}B|}\right)^{(r-1)/r}.$$

Therefore

$$I_{2} \leq C \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^{\infty} \left(\frac{1}{2^{jn}}\right)^{(1-\kappa)(r-1)/pr}$$

$$\leq C \|f\|_{L^{p,\kappa}(w)},$$
(6)

where the last series is convergent since $(1 - \kappa)(r - 1)/pr > 0$. Combining the previous estimate (3) with (6) and taking the supremum over all balls $B \subseteq \mathbb{R}^n$, we complete the proof of Theorem 1.

Proof of Theorem 2. For any given $\lambda > 0$, we write

$$w(\{x \in B : |T_R^{\delta}f(x)| > \lambda\})$$

$$\leq w(\{x \in B : |T_R^{\delta}f_1(x)| > \lambda/2\}) + w(\{x \in B : |T_R^{\delta}f_2(x)| > \lambda/2\})$$

$$= I_1' + I_2'.$$

Lemma A and the inequality (2) yield

$$I_{1}' \leq \frac{C}{\lambda} \int_{2B} |f(y)| w(y) \, dy$$

$$\leq \frac{C}{\lambda} \cdot ||f||_{L^{1,\kappa}(w)} w(2B)^{\kappa}$$

$$\leq \frac{C}{\lambda} \cdot ||f||_{L^{1,\kappa}(w)} w(B)^{\kappa}.$$

$$(7)$$

It follows from the inequality (4) and the condition A_1 that

$$|T_R^{\delta} f_2(x)| \le C \cdot \sum_{j=1}^{\infty} \frac{1}{|2^{j+1}B|} \int_{2^{j+1}B} |f(y)| dy$$

$$\leq C \cdot \sum_{j=1}^{\infty} \frac{1}{w(2^{j+1}B)} \int_{2^{j+1}B} |f(y)| w(y) \, dy$$

$$\leq C \|f\|_{L^{1,\kappa}(w)} \sum_{j=1}^{\infty} \frac{1}{w(2^{j+1}B)^{1-\kappa}}$$

$$= C \|f\|_{L^{1,\kappa}(w)} \cdot \frac{1}{w(B)^{1-\kappa}} \sum_{j=1}^{\infty} \frac{w(B)^{1-\kappa}}{w(2^{j+1}B)^{1-\kappa}}.$$

Since $w \in A_1$, then $w \in RH_{r^*}$ with $r^* > 1$. By Lemma B again, we obtain

$$\frac{w(B)}{w(2^{j+1}B)} \le C \left(\frac{|B|}{|2^{j+1}B|}\right)^{(r^*-1)/r^*}.$$

Hence

$$\left| T_R^{\delta} f_2(x) \right| \le C \|f\|_{L^{1,\kappa}(w)} \cdot \frac{1}{w(B)^{1-\kappa}} \sum_{j=1}^{\infty} \left(\frac{1}{2^{jn}} \right)^{(1-\kappa)(r^*-1)/r^*} \\
\le C \|f\|_{L^{1,\kappa}(w)} \cdot \frac{1}{w(B)^{1-\kappa}}, \tag{8}$$

where in the last inequality we have used the fact that $(1-\kappa)(r^*-1)/r^* > 0$. If $\{x \in B : |T_R^{\delta}f_2(x)| > \lambda/2\} = \emptyset$, then the inequality

$$I_2' \le \frac{C}{\lambda} \cdot ||f||_{L^{1,\kappa}(w)} w(B)^{\kappa}$$

holds trivially.

If $\{x \in B : |T_R^{\delta} f_2(x)| > \lambda/2\} \neq \emptyset$, then by the inequality (8), we have

$$\lambda \le C \|f\|_{L^{1,\kappa}(w)} \cdot \frac{1}{w(B)^{1-\kappa}},$$

which is equivalent to

$$w(B) \le \frac{C}{\lambda} \cdot ||f||_{L^{1,\kappa}(w)} w(B)^{\kappa}.$$

Therefore

$$I_2' \le w(B) \le \frac{C}{\lambda} \cdot ||f||_{L^{1,\kappa}(w)} w(B)^{\kappa}. \tag{9}$$

Combining the inequality (9) with (7), we finish the proof of Theorem 2. \square

4. Proof of Theorem 3

Proof. As in the proof of Theorem 1, for any given R > 0, we write

$$\frac{1}{w(B)^{\kappa/p}} \Big(\int_{B} \left| [b, T_{R}^{\delta}] f(x) \right|^{p} w(x) \, dx \Big)^{1/p} \\
\leq \frac{1}{w(B)^{\kappa/p}} \Big(\int_{B} \left| [b, T_{R}^{\delta}] f_{1}(x) \right|^{p} w(x) \, dx \Big)^{1/p} \\
+ \frac{1}{w(B)^{\kappa/p}} \Big(\int_{B} \left| [b, T_{R}^{\delta}] f_{2}(x) \right|^{p} w(x) \, dx \Big)^{1/p} \\
= J_{1} + J_{2}.$$

By Theorem E and the previous pointwise inequality $T_*^{\delta}(f)(x) \leq C \cdot M(f)(x)$, $\delta > (n-1)/2$, we have that for $\delta \geq (n-1)/2$, T_R^{δ} is bounded on L_w^p provided that $1 and <math>w \in A_p$. Then by the well-known boundedness criterion for the commutators of linear operators, which was obtained by Alvarez, Bagby, Kurtz and Pérez(see [1]), we see that $[b, T_R^{\delta}]$ is also bounded on L_w^p for all $1 and <math>w \in A_p$. This together with Lemma A imply

$$J_{1} \leq C \|b\|_{*} \cdot \frac{1}{w(B)^{\kappa/p}} \Big(\int_{2B} |f(x)|^{p} w(x) \, dx \Big)^{1/p}$$

$$\leq C \|b\|_{*} \|f\|_{L^{p,\kappa}(w)} \frac{w(2B)^{\kappa/p}}{w(B)^{\kappa/p}}$$

$$\leq C \|b\|_{*} \|f\|_{L^{p,\kappa}(w)}. \tag{10}$$

We turn to deal with the term J_2 . When $\delta \geq (n-1)/2$, by the estimate (1), we thus have $|\phi(x)| \leq \frac{C}{(1+|x|)^n}$. As before, we also get $|y-x| \sim |y-x_0|$ when $x \in B$ and $y \in (2B)^c$. Hence

$$\begin{aligned} \left| [b, T_R^{\delta}] f_2(x) \right| &= \left| \int_{(2B)^c} \left(b(x) - b(y) \right) \phi_{1/R}(x - y) f(y) \, dy \right| \\ &\leq C \left| b(x) - b_B \right| \cdot \int_{(2B)^c} \frac{|f(y)|}{|y - x_0|^n} \, dy \\ &+ C \int_{(2B)^c} \frac{|b(y) - b_B| |f(y)|}{|y - x_0|^n} \, dy \\ &= \mathrm{I} + \mathrm{II}. \end{aligned}$$

It follows immediately from the inequality (5) that

$$I \le C |b(x) - b_B| \cdot \sum_{j=1}^{\infty} \frac{1}{|2^{j+1}B|} \int_{2^{j+1}B} |f(y)| dy$$

$$\le C ||f||_{L^{p,\kappa}(w)} |b(x) - b_B| \cdot \sum_{j=1}^{\infty} w(2^{j+1}B)^{(k-1)/p}.$$

Consequently

$$\frac{1}{w(B)^{\kappa/p}} \left(\int_{B} \mathbf{I}^{p} w(x) dx \right)^{1/p} \\
\leq C \|f\|_{L^{p,\kappa}(w)} \frac{1}{w(B)^{\kappa/p}} \cdot \sum_{j=1}^{\infty} w(2^{j+1}B)^{(k-1)/p} \cdot \left(\int_{B} \left| b(x) - b_{B} \right|^{p} w(x) dx \right)^{1/p} \\
= C \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^{\infty} \frac{w(B)^{(1-\kappa)/p}}{w(2^{j+1}B)^{(1-\kappa)/p}} \cdot \left(\frac{1}{w(B)} \int_{B} \left| b(x) - b_{B} \right|^{p} w(x) dx \right)^{1/p}.$$

Using the same arguments as in the proof of Theorem 1, we can see that the above summation is bounded by a constant. Hence

$$\frac{1}{w(B)^{\kappa/p}} \Big(\int_B \mathbf{I}^p \, w(x) \, dx \Big)^{1/p} \le C \|f\|_{L^{p,\kappa}(w)} \Big(\frac{1}{w(B)} \int_B \big| b(x) - b_B \big|^p w(x) \, dx \Big)^{1/p}.$$

Since $w \in A_p$, as before, there exists a number r > 1 such that $w \in RH_r$. Then, by the reverse Hölder's inequality and Theorem C, we thus get

$$\left(\frac{1}{w(B)} \int_{B} |b(x) - b_{B}|^{p} w(x) dx\right)^{1/p} \\
\leq C \cdot \frac{1}{w(B)^{1/p}} \left(\int_{B} |b(x) - b_{B}|^{pr'} dx\right)^{1/pr'} \left(\int_{B} w(x)^{r} dx\right)^{1/pr} \\
\leq C \cdot \left(\frac{1}{|B|} \int_{B} |b(x) - b_{B}|^{pr'} dx\right)^{1/pr'} \\
\leq C \|b\|_{*}.$$
(11)

So we have

$$\frac{1}{w(B)^{\kappa/p}} \left(\int_B I^p w(x) dx \right)^{1/p} \le C \|b\|_* \|f\|_{L^{p,\kappa}(w)}. \tag{12}$$

On the other hand

$$\begin{split} & \text{II} \leq C \sum_{j=1}^{\infty} \frac{1}{|2^{j+1}B|} \int_{2^{j+1}B} |b(y) - b_B| |f(y)| \, dy \\ & \leq C \sum_{j=1}^{\infty} \frac{1}{|2^{j+1}B|} \int_{2^{j+1}B} |b(y) - b_{2^{j+1}B}| |f(y)| \, dy \\ & + C \sum_{j=1}^{\infty} \frac{1}{|2^{j+1}B|} \int_{2^{j+1}B} |b_{2^{j+1}B} - b_B| |f(y)| \, dy \\ & = \text{III+IV}. \end{split}$$

By using Hölder's inequality, we thus obtain

$$\int_{2^{j+1}B} |b(y) - b_{2^{j+1}B}| |f(y)| dy \tag{13}$$

$$\leq \left(\int_{2^{j+1}B} |b(y) - b_{2^{j+1}B}|^{p'} w^{-p'/p}(y) dy \right)^{1/p'} \left(\int_{2^{j+1}B} |f(y)|^p w(y) dy \right)^{1/p}$$

$$\leq C \|f\|_{L^{p,\kappa}(w)} w (2^{j+1}B)^{\kappa/p} \left(\int_{2^{j+1}B} |b(y) - b_{2^{j+1}B}|^{p'} w^{-p'/p}(y) dy \right)^{1/p'}.$$

Set $v(y) = w^{-p'/p}(y) = w^{1-p'}(y)$. Then we have $v \in A_{p'}$ because $w \in A_p$ (see [3]). Following along the same lines as in the proof of (11), we can get

$$\left(\frac{1}{v(2^{j+1}B)} \int_{2^{j+1}B} |b(y) - b_{2^{j+1}B}|^{p'} v(y) \, dy\right)^{1/p'} \le C||b||_*. \tag{14}$$

Substituting the above inequality (14) into (13), we thus have

$$\int_{2^{j+1}B} |b(y) - b_{2^{j+1}B}||f(y)| \, dy \le C \|b\|_* \|f\|_{L^{p,\kappa}(w)} \cdot w(2^{j+1}B)^{\kappa/p} v(2^{j+1}B)^{1/p'}$$

$$\le C \|b\|_* \|f\|_{L^{p,\kappa}(w)} \cdot |2^{j+1}B| w(2^{j+1}B)^{(\kappa-1)/p}.$$

Hence

$$\frac{1}{w(B)^{\kappa/p}} \left(\int_{B} \Pi I I^{p} w(x) dx \right)^{1/p} \leq C \|b\|_{*} \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^{\infty} \frac{w(B)^{(1-\kappa)/p}}{w(2^{j+1}B)^{(1-\kappa)/p}} \\
\leq C \|b\|_{*} \|f\|_{L^{p,\kappa}(w)}. \tag{15}$$

Finally, let's deal with the term IV. Since $b \in BMO(\mathbb{R}^n)$, then a simple calculation shows that

$$|b_{2^{j+1}B} - b_B| \le C \cdot j ||b||_*.$$

Again, it follows from the inequality (5) that

$$IV \le C \|b\|_* \sum_{j=1}^{\infty} j \cdot \frac{1}{|2^{j+1}B|} \int_{2^{j+1}B} |f(y)| \, dy$$

$$\le C \|b\|_* \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^{\infty} j \cdot w(2^{j+1}B)^{(\kappa-1)/p}.$$

Therefore

$$\frac{1}{w(B)^{\kappa/p}} \Big(\int_B \mathrm{IV}^p \, w(x) \, dx \Big)^{1/p} \le C \|b\|_* \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^\infty j \cdot \frac{w(B)^{(1-\kappa)/p}}{w(2^{j+1}B)^{(1-\kappa)/p}} \Big)^{1/p}$$

$$\leq C \|b\|_* \|f\|_{L^{p,\kappa}(w)} \sum_{j=1}^{\infty} \frac{j}{2^{jn\theta}}$$

$$\leq C \|b\|_* \|f\|_{L^{p,\kappa}(w)},$$
(16)

where $w \in RH_r$ and $\theta = (1 - \kappa)(r - 1)/pr$. Summarizing the estimates (15) and (16) derived above, we thus obtain

$$\frac{1}{w(B)^{\kappa/p}} \left(\int_{B} \Pi^{p} w(x) dx \right)^{1/p} \le C \|b\|_{*} \|f\|_{L^{p,\kappa}(w)}. \tag{17}$$

Combining the inequalities (10), (12) with the above inequality (17) and taking the supremum over all balls $B \subseteq \mathbb{R}^n$, we finally conclude the proof of Theorem 3.

References

- [1] J. Alvarez, R. J. Bagby, D. S. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math, **104**(1993), 195-209.
- [2] S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc, **40**(1936), 175-207.
- [3] J. Duoandikoetxea, Fourier Analysis, American Mathematical Society, Providence, Rhode Island, 2000.
- [4] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- [5] R. F. Gundy and R. L. Wheeden, Weighted integral inequalities for nontangential maximal function, Lusin area integral, and Walsh-Paley series, Studia Math, 49(1974), 107-124.
- [6] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math, 14(1961), 415-426.
- [7] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr, **282**(2009), 219-231.
- [8] S. Lu and K. Wang, Bochner-Riesz means(in Chinese), Beijing Normal Univ Press, Beijing, 1988.
- [9] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc, **43**(1938), 126-166.

- [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc, **165**(1972), 207-226.
- [11] X. L. Shi and Q. Y. Sun, Weighted norm inequalities for Bochner-Riesz operators and singular integral operators, Proc. Amer. Math. Soc, **116**(1992), 665-673.
- [12] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, New Jersey, 1971.
- [13] A. Vargas, Weighted weak type (1,1) bounds for rough operators, J. London Math. Soc, **54**(1996), 297-310.