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CLOSE-PACKED DIMERS ON THE LINE:

DIFFRACTION VERSUS DYNAMICAL SPECTRUM

MICHAEL BAAKE AND AERNOUT VAN ENTER

Abstract. The translation action of Rd on a translation bounded measure ω leads to an

interesting class of dynamical systems, with a rather rich spectral theory. In general, the

diffraction spectrum of ω, which is the carrier of the diffraction measure, lives on a subset

of the dynamical spectrum. It is known that, under some mild assumptions, a pure point

diffraction spectrum implies a pure point dynamical spectrum (the opposite implication

always being true). For other systems, the diffraction spectrum can be a proper subset of

the dynamical spectrum, as was pointed out for the Thue-Morse sequence (with singular

continuous diffraction) in [15]. Here, we construct a random system of close-packed dimers

on the line that have some underlying long-range periodic order as well, and display the same

type of phenomenon for a system with absolutely continuous spectrum. An interpretation

in terms of ‘atomic’ versus ‘molecular’ spectrum suggests a way to come to a more general

correspondence between these two types of spectra.

1. Introduction

It is well-known [23, 28, 7, 25] that pure point diffraction and pure point dynamical spec-

trum, under some mild assumptions, are equivalent properties of dynamical systems of trans-

lation bounded measures on d-space. This type of equivalence does not extend to systems

with continuous spectrum, as the example of the Thue-Morse sequence shows [15]. Here, the

diffraction spectrum (for balanced weights) is purely singular continuous, while the dynami-

cal spectrum has a non-trivial pure point part in form of the dyadic rationals. This spectral

information is not reflected in the diffraction spectrum, no matter whether one works with

balanced or general weights. However, this part can be extracted from the diffraction of a

factor of the Thue-Morse system, the so-called period doubling sequence.

Below, we discuss a simple system that displays a similar phenomenon in the presence of

absolutely continuous diffraction. We employ a one-dimensional caricature of a system of

dimeric molecules. It has an absolutely continuous diffraction spectrum and an extra point in

the dynamical spectrum (for the Z-action of the discrete shift), which is due to the presence of

a superstructure with periodic long-range order. One can recover this extra spectral informa-

tion by considering the diffraction of a factor of the original system. Our example illustrates

the distinction between dynamical and diffraction spectrum in a particularly simple manner.

Let us begin by briefly summarising the basic notions and concepts from diffraction theory

and dynamical systems. In our context, it is best to use a measure-theoretic setting for the

systems under study, where we rely on the Riesz-Markov representation theorem to identify

regular Borel measures on R
d with (continuous) linear functionals on the space Cc(R

d) of
1
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continuous functions on R
d with compact support. In particular, we consider unbounded,

complex measures ω on Euclidean space R
d that are translation bounded, which means that,

for each compact set K ⊂ R
d, we have supt∈Rd |ω|(t+K) <∞; see [12] for background. Such

an ω describes the realisation of an infinite system, be it a crystal, a quasicrystal or a more

general object.

Given such an ω, let ω̃ be obtained from ω by reflection in the origin followed by complex

conjugation, so that ω̃(g) = ω(g̃) for any continuous function g of compact support, where g̃

is defined via g̃(x) = g(−x). Given ω, the corresponding autocorrelation measure γ = γω, or

autocorrelation for short, is defined as the Eberlein convolution

(1) γ = ω ⊛ ω̃ := lim
R→∞

ω|R ∗ ω̃|R
vol

(
BR(0)

) ,

where BR(x) is the open ball of radius R and centre x, while ω|R denotes the restriction of

ω to the ball BR(0). The limit in (1) is taken in the vague topology, and will exist in all

examples considered later, at least almost surely in the probabilistic sense; for some general

results, see [18].

The measure γ is positive definite by construction, and hence Fourier transformable. This

gives γ̂, the diffraction measure or diffraction for short, which is a positive measure on R
d that

describes the outcome of kinematic diffraction from ω; see [13] for background and physical

applications. The diffraction has a unique decomposition as

(2) γ̂ =
(
γ̂
)
pp

+
(
γ̂
)
sc
+

(
γ̂
)
ac

into its pure point, singular continuous and absolutely continuous parts, where the decompo-

sition of the continuous part is relative to Lebesgue measure. This is the Haar measure on

R
d and also the right reference measure from the physical applications point of view.

A measure ω is called pure point diffractive when the corresponding diffraction measure

satisfies γ̂ =
(
γ̂
)
pp
, and similar definitions apply to the other spectral components. Impor-

tant examples for pure point diffractive systems are perfect crystals and model sets [18, 10],

while the Thue-Morse sequence or the Rudin-Shapiro sequence, both with balanced weights,

are paradigms for systems with purely singular continuous or purely absolutely continuous

diffraction spectra; see [15, 5, 27, 29, 19, 6] and references therein for more. Here and below,

a point set Λ ⊂ R
d is considered as a measure on R

d via its Dirac comb δΛ :=
∑

x∈Λ δx,

and a sequence (wn)n∈Z as a measure on Z or on R (or both) via the weighted Dirac comb

ω =
∑

n∈Zwnδn, where δx is the normalised point (or Dirac) measure at x.

In general, it is not adequate to restrict the attention to a single measure ω. Equally

relevant are translates of it, written as δt ∗ω, or any other measure that can be approximated

arbitrarily well (in the vague topology) by such translates. Thus, one defines the hull Xω of

ω as its vague orbit closure under the action of Rd,

Xω = {δt ∗ ω | t ∈ Rd}.

It is clear that the Rd-action is continuous on Xω, so that (Xω,R
d) is a topological dynamical

system. Since ω is assumed to be translation bounded, the hull Xω is compact in the vague

topology [28]. More generally, we will consider a compact space X that contains the orbit
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closure Xω and emerges as the ensemble of possible realisations of an ergodic stochastic

process.

We equip X with a translation invariant probability measure µ (which exists by standard

arguments), and consider the (measure-theoretic) dynamical system (X,B, µ), where B is

the standard Borel σ-algebra induced by the vague topology; see [14] for background. The

measure µ also permits to consider (X, µ) as a stochastic process [15, 17, 3], as will be done

below, too. The action of Rd now induces a unitary action on the Hilbert space L2(X, µ). If

the simultaneous eigenfunctions of the generators of the R
d-action span L2(X, µ), one speaks

of pure point dynamical spectrum. In general, as before, one can have different spectral

types, and one interesting question is the relation between the diffraction and the dynamical

spectrum.

What follows, is an attempt to improve this situation by way of some guiding examples.

Our focus will be on systems with some absolutely continuous spectrum, as they have recently

become more important. Afterwards, we summarise some general observations and formulate

a more systematic connection between diffraction and dynamical spectrum.

2. A periodic toy model

All our examples below are built on closed subsets of {±1}Z, which is compact in the

obvious product topology. Let us begin with a quick glance at the set

(3) X0 = {. . . −+− |+−+ . . . , . . .+−+ | −+− . . .}

that consists of the two possible (truly) 2-periodic sequences within {±1}Z. Here and below,

we use the shorthand ± for ±1 and write a bi-infinite sequence as w = . . . w−2w−1|w0w1 . . .,

where | denotes the origin. Giving each element of X0 probability 1/2 defines µ0, the only

possible invariant probability measure on X0, which is thus ergodic. The corresponding dy-

namical system
(
X0,P(X0), µ0

)
, with P(A) denoting the power set of A, is clearly minimal,

hence strictly ergodic.

Remark 1. At this stage, we only consider the Z-action induced by the discrete shift operator.

Its suspension into a dynamical system under the action of the full translation group R can

later be added as a second step. It is trivial in the sense that one only sees the structure of

the unit circle S in addition, in line with R/Z ≃ S.

Considering any w ∈ X0 and turning it into a Dirac comb via

ω =
∑

m∈Z

hw(m)δm

with arbitrary complex weights h±, one quickly checks by routine calculations that the cor-

responding autocorrelation in both cases reads

γ =
|h+ + h−|

2

4
δZ +

|h+ − h−|
2

4

(
δ2Z − δ2Z+1

)
,

with diffraction measure

(4) γ̂ =
|h+ + h−|

2

4
δZ +

|h+ − h−|
2

4
δ(2Z+1)/2 .
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This formula follows from an application of the Poisson summation formula for lattice Dirac

combs [10], which reads

δ̂Γ = dens(Γ ) δΓ ∗

for a lattice Γ and its dual lattice Γ ∗. As expected for a periodic structure, γ̂ is a pure point

measure. Since the original measure ω is supported on Z, its diffraction is 1-periodic [2]. The

2-periodicity of ω in turn results in Z/2 as the support of γ̂. The latter can alternatively be

written as

γ̂ =
1

4

(
|h+ + h−|

2 δ0 + |h+ − h−|
2 δ1/2

)
∗ δZ ,

which illustrates both aspects. In particular, when h± = ±1, one obtains γ̂ = δ
Z+ 1

2

.

Let us compare this with the dynamical spectrum (under the Z-action of the shift). Here,

we clearly have L2(X0, µ0) ≃ C
2, and there are two eigenfunctions, f ≡ 1 (for eigenvalue 1)

and g (for eigenvalue −1), the latter defined by w 7→ g(w) = w0. Together, they form an

orthonormal basis of C2, relative to the inner product 〈f |g〉 =
∫
X0
f̄ g dµ. So, this is a simple

example where one clearly sees how pure point diffraction spectrum and pure point dynamical

spectrum fit together (and are, in fact, equivalent [23, 7, 25]). We will explain this in more

detail later on.

3. Close-packed dimers on the line with random orientation

Consider close-packed dimers on the integers, at this stage viewed as empty boxes of length

2 that cover Z without overlaps or gaps. There are two possible configurations, which are

distinguished by the central box (the latter either occupying the positions 0 and 1, or −1 and

0). Let us now fill the boxes randomly with dimeric ‘molecules’, by distributing weights ±1

such that each dimer carries a 1 and a −1, but in random order (or orientation). So, each box

is then either (+,−) or (−,+). The result is a sequence in {±1}Z, where we now disregard

the boxes again (they can always be reconstructed from a given sequence unless it is one of

the two periodic sequence from X0).

The ensemble of all dimeric sequences as described above forms a closed and compact shift

space X, with continuous action of the group Z via the usual shift operation. We call it the

dimeric molecule shift, or DMS for short. More precisely, the shift S : X −→ X, defined by

(Sw)n = wn+1, is a continuous automorphism on X and generates Z. We will come back to

this point of view shortly.

Consider a sequence w ∈ X and form the corresponding weighted Dirac comb

(5) ω = w δZ :=
∑

m∈Z

wmδm ,

which is a translation bounded (signed) measure on Z (and also on R, via the canonical

embedding of Z in R). The corresponding autocorrelation measure (if it exists) is of the form

γ =
∑

n∈Z η(n)δn, where the coefficients are given by the limits

(6) η(n) = lim
N→∞

1

2N + 1

N∑

m=−N

wm wm+n ,

provided the latter exist.
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Lemma 1. For any n ∈ Z, the autocorrelation coefficient η(n) of the close-packed dimer

model on Z with random orientation is given by

η(n) =





1, n = 0

−1
2 , n = ±1

0, otherwise.

Consequently, the autocorrelation is γ = δ0 −
1
2(δ1 + δ−1), which applies to almost all realisa-

tions of the DMS process.

Proof. The process is clearly stationary and ergodic, so that we can determine η from a

typical realisation. One has η(0) = 1 for every realisation, and η(n) = η(−n) for n ∈ Z is

clear whenever one of the coefficients exist. So, it remains to show the claim for n ∈ N.

Since the sequences with all dimers in the same orientation form a null set, we may assume

that at least one position i ∈ Z exists such that wi = wi+1. In fact, in a typical realisation,

we have infinitely many such positions in the sequence, and they are either all even or all

odd. We may now assume that they are all even (without loss of generality).

When n ≥ 2, the values wm and wm+n are independent. Moreover, the sum in (6) can be

split into four sums, each of which is a sum over i.i.d. random variables of Bernoulli type.

The strong law of large numbers (SLLN; see [16]) then tells us that each contribution almost

surely vanishes, so that η(n) = 0 in this case.

In the remaining case (n = 1), every second term is −1 due to the structure of the dimers,

which sums to −1
2 . The remaining terms are the ones that cross the dimer boundaries, hence

contribute 1 or −1 with equal probability and thus (almost surely) do not contribute to the

overall sum (again by the SLLN). This gives η(1) = −1
2 and the proof is complete. �

The corresponding diffraction follows by a straight-forward calculation.

Proposition 2. The diffraction of the DMS model is given by

γ̂ = (1− c)λ

with c(k) = cos(2πk), so that γ̂ is an absolutely continuous measure. �

This particularly simple result is due to the balanced nature of the weights, which means

that

lim
N→∞

1

2N + 1

N∑

n=−N

wn = 0

holds for all realisations of our process. Let us now consider general weights, which we realise

via the mapping h : {±1} −→ C that takes values h±. Given a realisation w, the new Dirac

comb is then

(7) ωh =
∑

m∈Z

h(wm) δm =
h+ + h−

2
δZ +

h+ − h−
2

ω,

where ω is the Dirac comb of Eq. (5). The new autocorrelation turns out to be

(8) γh = ωh ⊛ ω̃h =
|h+ + h−|

2

4
δZ +

|h+ − h−|
2

4
γ
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with the γ from the balanced weight case of Lemma 1. Note that (8) holds almost surely, and

rests upon the (almost sure) identities δ
Z
⊛ ω̃h = 0 and δ̃

Z
⊛ ωh = 0.

The corresponding diffraction measure γ̂h can be calculated via Fourier transform and an

application of Proposition 2. It (almost surely) reads

(9) γ̂h =
|h+ + h−|

2

4
δZ +

|h+ − h−|
2

4

(
1− cos(2πk)

)
λ.

This is a measure of mixed type, with a pure point part and an absolutely continuous one.

However, the point part is trivial in the sense that it only reflects the lattice support of

the Dirac comb ωh and thus does not carry any other relevant information on the system.

This corresponds to the trivial (constant) eigenfunction of the dynamical spectrum, which we

determine next.

4. The DMS and its dynamical spectrum

Let us look at the above model from the viewpoint of dynamical systems. As before, we

begin with the Z-action of the shift operator. Given a sequence w ∈ {±1}Z, let us first define

(10) M(w) = {m ∈ Z | wm = wm+1}.

Note that M(w) = ∅ precisely for w ∈ X0, with X0 from Eq. (3). The set of all dimeric

molecule sequences from Section 3 forms the ensemble

(11) X = {w ∈ {±1}Z |M(w) ⊂ 2Z or M(w) ⊂ 2Z + 1},

which is a closed subshift (and hence a compact set). We call a sequence even (odd) when

M(w) is non-empty and a subset of 2Z (of 2Z+ 1). Then, X splits as

X = X+ ∪̇X− ∪̇X0 ,

where X+ and X− denote the closed subsets of even and odd sequences, respectively, while ∪̇

denotes the disjoint union of sets.

The shift S (as defined earlier) is viewed as the (continuous) generator of the action of Z

on {±1}Z. As X is clearly shift-invariant, we obtain (X, S) as a topological dynamical system

(with Z-action). It is clear from standard arguments that there are invariant probability

measures on X. Indeed, the underlying process highlights a natural choice for a measure µ,

as is also clear from the proof of Lemma 1. It satisfies µ(X0) = 0 together with µ(X+) =

µ(X−) =
1
2 . Within X+, each dimer then has equal probability to be either (+,−) or (−,+),

so that the corresponding cylinder sets and their measures are well-defined. We can now view

(X,B
X
, µ) as a measure-theoretic dynamical system (under the action of Z via the shift S),

where B
X
is the standard Borel σ-algebra on X.

Let us next consider the Hilbert space H = L2(X, µ), with the induced action of S via

U : H −→ H, as defined by f 7→ Uf with Uf(w) := f(Sw). The inner product is written as

〈f | g〉 =

∫

X

f(w) g(w) dµ(w),

where 〈Uf | Ug〉 = 〈f | g〉 holds due to the shift invariance of µ. In fact, U is unitary.
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The function ϕ ≡ 1 is an eigenfunction of U with eigenvalue 1 as usual, but we also have

an eigenfunction for the eigenvalue −1, namely the one defined by

(12) ψ(w) =

{
0, if w ∈ X0,

±1, if w ∈ X±,

which is well-defined because X0, X+ and X− are measurable sets. Clearly, 〈ϕ | ψ〉 = 0, since

µ(X+) = µ(X−) = 1
2 , while ψ

2 = ϕ holds µ-almost everywhere. Note also that ψ can be

written as a limit via

ψ(w) = lim
N→∞

1

2N + 1

N∑

n=−N

(−1)nwnwn+1 ,

which exists for µ-almost all w ∈ X by the dominated convergence theorem.

So far, we know that the C-span of ϕ and ψ is contained in Hpp. To see that actually have

equality here, consider the double shift S2 on X. First, for any w ∈ X, the entries wn and

wn+2 are independent, so that, for any fixed i ∈ Z, the sequence (S2nw)i with n ∈ Z is a coin

tossing sequence. Consequently, S2 must comprise a spectrum of countable Lebesgue type.

On the other hand, for any given w, the sequences with index i and i+1 are dependent, which

is reflected by the fact that X is not minimal for the action of S2, Here, X0, X+ and X− are

the non-trivial invariant subspaces. They lead to two eigenfunctions of S2 with eigenvalue

1, namely the characteristic functions 1+ and 1− (on X+ and X−), with ϕ = 1+ + 1− and

ψ = 1+ − 1− (both holding µ-almost everywhere). Since our system is one-dependent in the

sense of [1], this exhausts the spectrum for S2, and the spectral theorem tells us that S has

precisely the two eigenfunctions constructed above and only absolutely continuous spectrum

otherwise. In particular, we have no freedom for singular continuous components.

Let us now expand on the continuous part of the spectrum. To this end, we consider the

function defined by w 7→ σn(w) = wn+wn+1, which is continuous on X and hence measurable.

A short calculation reveals that

〈ϕ | σn〉 = 〈ψ | σn〉 = 0,

so that σn ∈ H⊥
pp
, while Uσn = σn+1. The smallest U -invariant subspace of H that contains

σn is thus the cyclic space

C(σn) =
⊕

m∈Z

C σm .

For any m ∈ Z, the spectral measure of σm is given by

(13) 〈σm | Unσm〉 =

∫

X

(wm + wm+1)(wm+n + wm+n+1) dµ(w) = δn,0 −
1

2

(
δn,2 + δn,−2

)
,

which is a positive definite function on Z. In its calculation, we have used

∫

X

wmwm+k dµ(w) =





1, if k = 0,

−1
2 , if |k| = 1,

0, if |k| ≥ 2,
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which follows by an argument used before for the determination of the autocorrelation coef-

ficients η(m) in Lemma 1.

By the Herglotz-Bochner theorem, the positive definite function n 7→ 〈σm | Unσm〉 is the

Fourier transform of a positive measure, which means that

〈σm | Unσm〉 =

∫ 1

0
e−2πinx dνm(x)

for some positive measure νm on the unit circle S, represented here by the unit interval (with

periodic boundary conditions). By routine calculation, one finds

(14) νm = λ−
1

2

(
e4πik + e−4πik

)
λ =

(
1− cos(4πk)

)
λ,

where the bracketed factor is the Radon-Nikodym density of νm relative to Lebesgue measure

λ, written as a function of the variable k. In particular, νm is absolutely continuous (relative

to λ), and does not depend on m. Note that νm is obtained from the diffraction measure by

doubling the argument in its Radon-Nikodym density.

Since there are (countably many) distinct and mutually orthogonal functions in H with

the same structure, we now have the following result.

Proposition 3. The dynamical spectrum of the DMS under Z-action is a mixture of a pure

point part and an absolutely continuous one. The eigenvalues are ±1, while the remainder is

of countable Lebesgue type. �

So far, we have formulated the spectrum ‘naively’, without any reference to harmonic

analysis and duality. It is more systematic to include the dual group to Z into the picture,

which is the unit circle, conveniently represented by the half-open interval [0, 1) together with

addition modulo 1. Then, one sees (via the elements of the dual group as characters on Z)

that our eigenvalues 1 and −1 correspond to the elements 0 and 1
2 of the unit circle, with 1

2

being the non-trivial contribution.

This point of view is particularly useful when we suspend the Z-action into the continuous

translation action of the group R, as given by ω 7→ δt ∗ ω with t ∈ R. Now, the dual group

is R (since R is self-dual), and our dynamical spectrum becomes Z/2. This is the natural

formulation for the comparison with the (support of the) diffraction spectrum. The pure

point part of the dynamical spectrum is non-trivial because it is Z/2 rather than Z.

At this point, we note that the relation between the dynamical and the diffraction spectrum

is reminiscent of the situation for the Thue-Morse sequence. In both cases, there exists some

non-trivial point spectrum that is not reflected in the diffraction measure of the sequence.

However, the missing spectral part of the Thue-Morse sequence is retrieved via the period

doubling sequence, which (as a dynamical system) can be viewed as a factor the the Thue-

Morse system. We will now demonstrate that the analogous situation is also met for our new

example.

5. A factor system and its diffraction

Let us define a mapping φ : X −→ {±1}Z via w 7→ φ(w) with

φ(w)n = −wnwn+1 ,



CLOSE-PACKED DIMERS ON THE LINE 9

which is continuous. This particular mapping is inspired by the analogous situation for

the Thue-Morse sequence, and indeed has similar consequences here. The image set, Y =

φ(X), is again compact, and (Y, S) is another topological dynamical system. It is clear

that φ(−w) = φ(w), where (−w)n = −wn, and a moments reflection shows that this is

the only ambiguity, so that φ : X −→ Y is a globally two-to-one surjection. In particular,

Y0 = φ(X0) = {. . . 11|11 . . .}, and the entire image shift space is

Y =
{
v ∈ {±1}Z | vn = 1 for all n ∈ 2Z or for all n ∈ 2Z+ 1

}
.

Moreover, φ makes the diagram

(15)

X
S

−−−−→ X

φ

y
yφ

Y
S

−−−−→ Y

commutative. Consequently, (Y, S) is a (topological) factor [14] of the dynamical system

(X, S). In our setting, the measure µ on X induces a measure ν on Y via ν(A) = (φ.µ)(A) :=

µ(φ−1(A)) for Borel sets A. We may thus also consider the dynamical system (Y,B
Y
, ν),

which is then a measure-theoretic factor of (X,B
X
, µ); see [8, Sec. 3] for a summary of factors

and their spectral properties.

Let us first look at diffraction, for a typical element v ∈ Y.

Lemma 4. The autocorrelation coefficients of v ∈ Y are ν-almost surely given by η(0) = 1,

η(2n) = 1
2 for all n ∈ Z \ {0}, and η(2m+ 1) = 0 for all m ∈ Z.

Proof. The mapping φ has the effect that a typical v ∈ Y has weights 1 on every second

position, and weights ±1 with equal probability on all remaining positions. The latter form

an i.i.d. family of random variables, so that an application of the SLLN, in the same spirit as

used before, gives the formula for η. �

Proposition 5. Autocorrelation and diffraction of Y are given by

γ =
1

2
δ0 +

1

2
δ2Z and γ̂ =

1

2
λ+

1

4
δ
Z/2 ,

which apply to almost all realisations of the underlying process.

In particular, the diffraction is of mixed type, with a non-trivial pure point component.

Proof. The claim on γ is clear from Lemma 4, while its Fourier transform follows from δ̂0 = λ

together with an application of the Poisson summation formula to δ2Z. �

As before, this is the result for weights ±1. Since they are no longer balanced, the calcu-

lation of the diffraction formula for general weights needs one extra step. Observing that

lim
N→∞

1

2N + 1

N∑

n=−N

vn =
1

2

holds for ν-almost all v ∈ Y, one easily derives the Eberlein convolutions

δZ ⊛ ω̃ =
1

2
δZ and ω ⊛ δ̃

Z
=

1

2
δZ ,
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which apply ν-almost surely. Since the general Dirac comb ωh again satisfies (7), a simple

calculation results in

γh =
|h+ + h−|

2 + |h+|
2 − |h−|

2

4
δZ +

|h+ − h−|
2

4
γ

and thus in the general diffraction formula

(16) γ̂h =
|h+ + h−|

2 + |h+|
2 − |h−|

2

4
δZ +

|h+ − h−|
2

16
δ
Z/2 +

|h+ − h−|
2

8
λ,

by an application of Proposition 5. The intensity of any point measure δk with k ∈ Z is

thus given by |34h+ + 1
4h−|

2, which is the absolute square of the average weight (or scattering

strength) in this case, as it must. Eq. 16 displays a non-trivial pure point component (namely

the one with support Z/2) that ‘recovers’ the missing part from our original dynamical system(
X,B

X
, µ

)
.

The dynamical spectrum of
(
Y,B

Y
, µ

)
is the same as that of

(
X,B

X
, µ

)
. Given an element

v ∈ Y, our previous eigenfunction g takes the same value on the two pre-images in φ−1(v), so

that we once again have an eigenfunction for the eigenvalue −1, in addition to the constant

function (for the eigenvalue 1). The Bernoulli substructure is responsible for a continuous

spectrum of countable Lebesgue type. Note that a factor system need not have the same

dynamical spectrum as the original system, as the example of the Thue-Morse sequence

versus the period doubling sequence demonstrates.

Remark 2. There is another very simple (albeit somewhat degenerate) possibility to define

a factor. Recall that X0 = {u+, u−} with u+ = . . . +−|+− . . . and u− = Su+. Now, define

the mapping ψ : X −→ X0 by

w 7−→ ψ(w) :=

{
w, if w ∈ X0,

u±, if w ∈ X±,

which is a continuous surjection and shows that our toy system of Section 2 is a factor of

the DMS. Here, the factor has pure point spectrum. The diffraction spectrum is Z/2, which

exhausts the dynamical spectrum of the DMS.

Up to this point, we can observe that the diffraction of X does not reflect the full dynamical

spectrum of X, while the diffraction of X together with that of its factor Y does. The same

phenomenon appears in the case of the Thue-Morse sequence [15, 5], where the dyadic ratio-

nals in the dynamical spectrum are only recovered by the diffraction of the period doubling

sequence, which is again a factor with pure point diffraction. Let us thus look at this situation

from a more general point of view.

6. General observations and outlook

Here and below, X is a compact dynamical system of (possibly weighted) Dirac combs on

Z
d or of translation bounded measures on R

d, with ergodic invariant measure µ under the

action of the translation group Z
d or R

d. Let Y be a factor of X, with factor map φ and

induced measure ν. In particular, we assume that diagram (15) is again commutative, with

S replaced by any generator of our translation group.
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If g is an eigenfunction in L2(Y, ν), it is clear that g ◦φ ∈ L2(X, µ), and the commutativity

of (15) implies that the latter is again an eigenfunction, with the same eigenvalue (or set of

eigenvalues, if d > 1).

Fact 6. The dynamical eigenvalues of the factor system Y form a subset of those of the

original system X. �

This is one ingredient for the following result; see [14, 8] for more.

Proposition 7. If X has pure point dynamical spectrum, then so does Y.

More generally, it seems difficult for a factor to decrease the long-range order in the diffrac-

tion, except for the removal of the pure point part that corresponds to the trivial eigenfunction

(via the balanced weight representation). It is also rather clear that, by means of suitable cor-

relation functions, one can detect each eigenfunction in the diffraction measure of a suitable

factor. This is known explicitly for the Thue-Morse sequence, but also for the Rudin-Shapiro

sequence, both having the dyadic rationals as the pure point part of the dynamical spectrum

[26]. Once a factor is pure point, further factors can only reduce to subgroups, and hence do

not contain new information on the system. This mechanism also underlies the equivalence

of diffraction and dynamical spectrum in the pure point case.

However, it is less obvious that a factor could display a singular continuous diffraction

spectrum if the original system does not. That this is indeed possible is once again visible

from the TM sequences. Recall that the TM hull XTM can be defined via the primitive

substitution 1 7→ 11̄, 1̄ 7→ 1̄1 on the binary alphabet {1, 1̄}. For any w ∈ XTM, replace 1 and

1̄ by the weights 1
5 and 7

5 , followed by a random and independent choice of a sign (+ or −) for

each weight. This way, one defines an (infinite) cover of XTM. Each element of it has average

squared scattering strength 1, while each typical element has vanishing 2-point correlations.

Consequently, the diffraction measure of the covering hull is γ̂ = λ, which is purely absolutely

continuous. The TM system, which is a factor, has purely singular continuous diffraction (for

the balanced weight case), while the period doubling system, which is again a factor, is pure

point. So, this little example illustrates a step-wise unravelling of the order phenomena.

Note that what we say here is more general than (and somewhat different from) the direct

discussion of dynamical versus diffraction spectrum in a single system. Indeed, if the diffrac-

tion spectrum is pure point, then so is the dynamical spectrum. But is is certainly possible to

have a factor with pure point diffraction spectrum when the original system has a dynamical

spectrum with also continuous components – this is what the known examples demonstrate.

Somehow, the dynamical spectrum contains the information of the diffraction spectra of all its

factors. Conversely, in all known examples so far, the diffraction spectra of a system and its

factors taken together seem to comprise the complete information on the dynamical spectrum

of the original system (even though the diffraction spectrum of each individual factor might

not be very informative at all).

The general claim is rather clear now: The dynamical spectrum is not to be compared with

the diffraction spectrum of the system alone, but with the diffraction spectra of the system

and all its factors. A more general and precise formulation and exposition is postponed to a

forthcoming publication [4].
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Let us close by some remarks on the relation of our findings to some more general issues

investigated in statistical physics. Our DMS model forms a caricature of a system where

‘molecules’ are ordered, but due to a disordered interior of each molecule, ‘atoms’ do not dis-

play long-range order. Although we have a 1-dimensional ground state order for the dimeric

molecules, which is typical for T = 0, and independent disorder on the ‘atomic’ level, which

is typical for infinite temperatures, we expect conceptually similar phenomena to be rather

widespread. In more realistic models, one should have a similar result for appropriate Gibbs

measures, which then should be higher-dimensional. For some preliminary results on diffrac-

tion, mixing properties and spectra of equilibrium systems (as described by Gibbs measures),

we refer to [11, 21, 22, 30].
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