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ON THE QUANTUM CLUSTER ALGEBRAS OF FINITE TYPES

MING DING

Abstract. We extend the definition of the quantum analogue of Caldero-Chapoton
map defined by [12][11]. When Q is a quiver of finite type, we prove that the al-
gebra AH|k|(Q) generated by all generalized cluster variables(see Definition 2.1) is
exactly the quantum cluster algebra EH|k|(Q).

1. Introduction

Quantum cluster algebras were introduced by A. Berenstein and A. Zelevinsky [3]
to study the canonical basis. When q = 1, the quantum cluster algebras are exactly
the corresponding cluster algebras which were introduced and studied by S.Fomin and
A. Zelevinsky in a series of papers [8][9][1]. The quantum analogue of the Caldero-
Chapoton formula [4] was defined by D. Rupel [12] and the author conjectured that
cluster variables could be expressed in terms of the quantum analogue of the Caldero-
Chapoton formula and proved it for cluster variables in finite types as well as in
almost acyclic clusters. Later this conjecture has been proved for acyclic equally
valued quivers in [11].

The cluster category is introduced for its combinatorial similarities with cluster
algebras. Different from the case in cluster algebras, for any objects M,N in clus-
ter category associated to quantum cluster algebra, it does not generally hold that
XNXM = |k|±

1

2
nN⊕MXN⊕M for any nN⊕M ∈ Z. Thus the natural problem is to

ask if XN⊕M is in the corresponding quantum cluster algebra. Hence it becomes
interesting to study the relation between the algebra generated by all generalized
cluster variables(see Definition 2.1) and the corresponding quantum cluster algebra.
In the case of cluster algebras, both of them are equal for finite and affine types
[5][7]. The aim of this article is to prove that for any quiver Q of finite type, the
algebra AH|k|(Q) generated by all generalized cluster variables is still the quantum
cluster algebra EH|k|(Q).

2. Preliminaries and main result

2.1. Definition of quantum cluster algebra. Let L be a lattice of rank m and
Λ : L×L → Z a skew-symmetric bilinear form. Set a formal variable q and the ring
of integer Laurent polynomials Z[q±1/2]. Define the based quantum torus associated
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to the pair (L,Λ) to be the Z[q±1/2]-algebra T with a distinguished Z[q±1/2]-basis
{Xe : e ∈ L} and the multiplication

XeXf = qΛ(e,f)/2Xe+f .

It is known that T is contained in its skew-field of fractions F . A toric frame in F
is a map M : Zm → F \ {0} given by

M(c) = ϕ(Xη(c))

where ϕ is an automorphism of F and η : Zm → L is an isomorphism of lattices. By
the definition, the elements M(c) form a Z[q±1/2]-basis of the based quantum torus
TM := ϕ(T ) and satisfy the following relations:

M(c)M(d) = qΛM (c,d)/2M(c + d), M(c)M(d) = qΛM (c,d)M(d)M(c),

M(0) = 1, M(c)−1 = M(−c),

where ΛM is the skew-symmetric bilinear form on Z
m obtained from the lattice

isomorphism η. Let ΛM be the skew-symmetric m × m matrix defined by λij =
ΛM(ei, ej) where {e1, . . . , em} is the standard basis of Zm. Given a toric frame M ,
let Xi = M(ei). Then we have

TM = Z[q±1/2]〈X±1
1 , . . . , X±1

m : XiXj = qλijXjXi〉.

An easy computation shows that:

M(c) = q
1

2

∑
i<j cicjλjiXc1

1 Xc2
2 · · ·Xcm

m =: X(c) (c ∈ Z
m).

Let Λ be an m×m skew-symmetric matrix and B̃ an m× n matrix with n ≤ m.
We call the pair (Λ, B̃) compatible if B̃TΛ = (D|0) is an n × m matrix with D =
diag(d1, · · · , dn) where di ∈ N for 1 ≤ i ≤ n. The pair (M, B̃) is called a quantum

seed if the pair (ΛM , B̃) is compatible. Define the m×m matrix E = (eij) as follows

eij =





δij if j 6= k;

−1 if i = j = k;

max(0,−bik) if i 6= j = k.

For n, k ∈ Z, k ≥ 0, denote
[
n
k

]
q
= (qn−q−n)···(qn−r+1−q−n+r−1)

(qr−q−r)···(q−q−1)
. Let c = (c1, . . . , cm) ∈

Z
m with ck ≥ 0. Define the toric frame M ′ : Zm → F \ {0} as follows:

(2.1) M ′(c) =

ck∑

p=0

[
ck
p

]

qdk/2

M(Ec + pbk), M ′(−c) = M ′(c)−1.

where the vector bk ∈ Z
m is the k−th column of B̃. Then the quantum seed

(M ′, B̃′) is defined to be the mutation of (M, B̃) in direction k. Two quantum seeds
are called mutation-equivalent if they can be obtained from each other by a sequence
of mutations. Let C = {M ′(ei) : i ∈ [1, n]} where (M ′, B̃′) is mutation-equivalent
to (M, B̃). The elements of C are called cluster variables. Let P = {M(ei) : i ∈
[n + 1, m]} and the elements of P are called coefficients. Denote by ZP the ring
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of laurent polynomials generated by {q±
1

2} ∪ P. Then the quantum cluster algebra

Aq(ΛM , B̃) is defined by the ZP-subalgebra of F generated by C.

2.2. The quantum Caldero-Chapoton map and main result. Let k be a finite

field with cardinality |k| = q and m ≥ n be two positive integers and Q̃ an acyclic
valued quiver with vertex set {1, . . . , m}. Denote the subset {n + 1, . . . , m} by C.

The full subquiver Q on the vertices 1, . . . , n is called the principal part of Q̃.

Let B̃ be the m × n matrix associated to the quiver Q̃ whose entry in position
(i, j) given by

bij = |{arrows i −→ j}| − |{arrows j −→ i}|

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Denote by Ĩ the left m × n submatrix of the identity
matrix of size m×m. Assume that there exists some antisymmetric m×m integer
matrix Λ such that

Λ(−B̃) =

[
In
0

]
,(2.2)

where In is the identity matrix of size n× n. Let R̃ = R̃Q̃ be the m× n matrix with

its entry in position (i, j) given by

r̃ij := dimkExt
1
kQ̃
(Sj, Si) = |{arrows j −→ i}|.

for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Set R̃tr = R̃Q̃op. Denote the principal parts of the matrices

B̃ and R̃ by B and R respectively. Note that B̃ = R̃tr − R̃ and B = Rtr − R.
Let CQ̃ be the cluster category of kQ̃, i.e., the orbit category of the derived category

Db(Q̃) by the functor F = τ ◦ [−1](see [2]). Let Ii be the indecomposable injective

kQ̃ module for 1 ≤ i ≤ m. Then the indecomposable kQ̃-modules and Ii[−1] for
1 ≤ i ≤ m exhaust all indecomposable objects of the cluster category CQ̃. Each
object M in CQ̃ can be uniquely decomposed as:

M = M0 ⊕ IM [−1]

where M0 is a module and IM is an injective module. The cluster category CQ̃ is a
2-Calabi-Yau category, i.e, for any objects M,N ∈ CQ̃:

Ext1C
Q̃
(M,N) ∼= DExt1C

Q̃
(N,M)

where D = Homk(−, k) is the standard duality.

The Euler form on kQ̃-modules M and N is given by

〈M,N〉 = dimkHom(M,N)− dimkExt
1(M,N).

Note that the Euler form only depends on the dimension vectors of M and N .

The quantum Caldero-Chapoton map of an acyclic quiver Q̃ has been defined in
[12][11]. For our purpose, we need to extend these definitions to the following map

X? : objCQ̃ −→ T
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defined by the following rule: If M is a kQ-module and I is an injective kQ̃-module,
then

XM⊕I[−1] =
∑

e

|GreM |q−
1

2
〈e,m−e−i〉X−B̃e−(Ĩ−R̃tr)m+dimsocI ,

where dimI = i, dimM = m and GreM denotes the set of all submodules V of M
with dimV = e. We note that

XP [1] = XτP = XdimP/radP = XdimsocI = XI[−1] = Xτ−1I .

for any projective kQ̃-module P and injective kQ̃-module I with socI = P/radP. In
the following, we denote by the corresponding underlined small letter x the dimension
vector of a kQ-module X and view x as a column vector in Z

n.

Definition 2.1. XL is called the generalized cluster variable, if L is kQ-module
or L = M ⊕ I[−1] ∈ CQ̃ satisfying that M is a kQ-module and I is an injective

kQ̃-module.

Denote by AH|k|(Q) is the ZP-algebra generated by all the generalized cluster
variables and by EH|k|(Q) is the corresponding quantum cluster algebra, i.e, the ZP-
algebra generated by all the cluster variables. The main result of this article is the
following theorem:

Theorem 2.2. For any quiver Q of finite type, we have EH|k|(Q) = AH|k|(Q).

Remark 2.3. It is an open problem that Theorem 2.2 holds for affine types because
it is difficult to check whether the generalized cluster variables associated to regular
modules in homogeneous tubes of degree at least two are in quantum cluster algebra.

3. proof of the main theorem 2.2

In this section, we fix a quiver Q of finite type with n vertices. Firstly, we recall

some notations. For any kQ̃−modules M,N and E, denote by εEMN the cardinality
of the set Ext1

kQ̃
(M,N)E which is the subset of Ext1

kQ̃
(M,N) consisting of those

equivalence classes of short exact sequences with middle term isomorphic to M ([10,
Section 4]). Let FM

AB be the number of submodules U of M such that U is isomorphic
to B and M/U is isomorphic to A. Then by definition, we have

|Gre(M)| =
∑

A,B;dimB=e

FM
AB.

Denote by [M,N ]1 = dimkExt
1
kQ̃
(M,N) and [M,N ] = dimkHomkQ̃(M,N). The fol-

lowing Theorem 3.1 proved in [6] and Proposition 3.2 give the explicit relations
between XNXM and XN⊕M .

Theorem 3.1. [6] Let M and N be kQ-modules. Then

q[M,N ]1XMXN = q
1

2
Λ((Ĩ−R̃tr)m,(Ĩ−R̃tr)n)

∑

E

εEMNXE .
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Let M be any kQ−module and I any injective kQ̃−module. Define

HomkQ̃(M, I)BI′ := {f : M −→ I|kerf ∼= B, cokerf ∼= I ′}.

The following result together with Theorem 3.1 is essentially important for us to
prove Theorem 2.2.

Proposition 3.2. With the above notations, we have

q[M,I]XMXI[−1] = q
1

2
Λ((Ĩ−R̃tr)m,−dimsocI)

∑

B,I′

|HomkQ̃(M, I)BI′ |XB⊕I′[−1].

Proof.

XMXI[−1]

=
∑

G,H

q−
1

2
〈H,G〉FM

GHX
−B̃h−(Ĩ−R̃tr)mXdimsocI

=
∑

G,H

q−
1

2
〈H,G〉FM

GHq
1

2
Λ(−B̃h−(Ĩ−R̃tr)m,dimsocI)X−B̃h−(Ĩ−R̃tr)m+dimsocI

= q
1

2
Λ(−(Ĩ−R̃tr)m,dimsocI)

∑

G,H

q−
1

2
〈H,G〉q

1

2
Λ(−B̃h,dimsocI)FM

GHX
−B̃h−(Ĩ−R̃tr)m+dimsocI

= q
1

2
Λ((Ĩ−R̃tr)m,−dimsocI)

∑

G,H

q−
1

2
〈H,G〉q−

1

2
[H,I]FM

GHX
−B̃h−(Ĩ−R̃tr)m+dimsocI .

Here we use the fact that

Λ(−B̃h, dimsocI) = −htrB̃trΛ(dimsocI) = −htr(dimsocI) = −[H, I].

Note that we have the following commutative diagram

0

��

0

��

Y

��

Y

��

0 // B //

��

M //

��

I // I ′ // 0

0 // X //

��

G

��

0 0

And short exact sequences

0 −→ B −→ M −→ A −→ 0

0 −→ A −→ I −→ I ′ −→ 0.
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It follows that∑

B

FB
XY F

M
AB =

∑

G

FG
AXF

M
GY , |HomkQ̃(M, I)BI′ | =

∑

A

|Aut(A)|FM
ABF

I
I′A

and ∑

A,I′,X

|Aut(A)|F I
I′AF

G
AX =

∑

I′,X

|HomkQ̃(G, I)XI′| = q[G,I] = q〈G,I〉.

By [10, Lemma 1], we have (Ĩ − R̃tr)i = dimsocI. Now we can compute the term
∑

B,I′

|HomkQ̃(M, I)BI′ |XB⊕I′[−1]

=
∑

A,B,I′,X,Y

|Aut(A)|FM
ABF

I
I′Aq

− 1

2
〈Y,X−I′〉FB

XYX
−B̃y−(Ĩ−R̃tr)b+dimsocI′

=
∑

A,G,I′,X,Y

q−
1

2
〈Y,X−I′〉|Aut(A)|F I

I′AF
G
AXF

M
GYX

−B̃y−(Ĩ−R̃tr)b+dimsocI′

=
∑

G,H

q〈G,I〉q−
1

2
〈H,G−I〉FM

GHX
−B̃h−(Ĩ−R̃tr)m+dimsocI

=
∑

G,H

q〈M,I〉q−
1

2
〈H,I〉q−

1

2
〈H,G〉FM

GHX
−B̃h−(Ĩ−R̃tr)m+dimsocI

= q[M,I]
∑

G,H

q−
1

2
[H,I]q−

1

2
〈H,G〉FM

GHX
−B̃h−(Ĩ−R̃tr)m+dimsocI .

Here we use the facts

i′ + a = i, x+ a = g =⇒ x− i′ = g − a.

And

−B̃y − (Ĩ − R̃tr)b+ dimsocI ′

= −B̃h− (Ĩ − R̃tr)(m− i− i′) + dimsocI ′

= −B̃h− (Ĩ − R̃tr)m+ (Ĩ − R̃tr)(i− i′) + dimsocI ′

= −B̃h− (Ĩ − R̃tr)m+ (Ĩ − R̃tr)i

= −B̃h− (Ĩ − R̃tr)m+ dimsocI.

This finishes the proof. �

Remark 3.3. Proposition 3.2 holds for any acyclic quiver.

The following lemma is well-known. Here we give a sketch of proof.

Lemma 3.4. Let

M −→ E −→ N
ǫ
−→ M [1]

be a non-split triangle in CQ̃. Then

dimkExt
1
C
Q̃
(E,E) < dimkExt

1
C
Q̃
(M ⊕N,M ⊕N).
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Proof. For any object L ∈ CQ̃, applying the functor Ext1C
Q̃
(−, L) to the above non-

split triangle gives rise to the exact sequence

0 −→ kerfL −→ Ext1C
Q̃
(N,L)

fL
−→ Ext1C

Q̃
(E,L)

gL
−→ Ext1C

Q̃
(M,L) −→ cokergL −→ 0

Thus we have

dimkkerfL+dimkExt
1
C
Q̃
(E,L)+dimkcokergL = dimkExt

1
C
Q̃
(N,L)+dimkExt

1
C
Q̃
(M,L)

Hence

dimkExt
1
C
Q̃
(E,N) ≤ dimkExt

1
C
Q̃
(N,N) + dimkExt

1
C
Q̃
(M,N)

dimkExt
1
C
Q̃
(E,E) ≤ dimkExt

1
C
Q̃
(N,E) + dimkExt

1
C
Q̃
(M,E).

Note that 0 6= ǫ ∈ kerfM , we have

dimkExt
1
C
Q̃
(E,M) < dimkExt

1
C
Q̃
(N,M) + dimkExt

1
C
Q̃
(M,M)

Therefore

dimkExt
1
C
Q̃
(M ⊕N,M ⊕N) > dimkExt

1
C
Q̃
(E,N) + dimkExt

1
C
Q̃
(E,M)

= dimkExt
1
C
Q̃
(N,E) + dimkExt

1
C
Q̃
(M,E)

≥ dimkExt
1
C
Q̃
(E,E).

This proves our assertion. �

Proof of the Theorem 2.2: We only need to prove that for any generalized cluster
variable XL ∈ AH|k|(Q), then XL ∈ EH|k|(Q).

Let L ∼=
⊕l

i=1 niLi, ni ∈ N where Li(1 ≤ i ≤ l) are indecomposable objects in CQ̃.

Thus XLi
(1 ≤ i ≤ l) are in EH|k|(Q). By Theorem 3.1, Proposition 3.2 and Lemma

3.4, we get that

Xn1

L1
Xn2

L2
· · ·Xnl

Ll
= q

1

2
nLXL +

∑

dimkExt
1
C
Q̃
(E,E)<dimkExt

1
C
Q̃
(L,L)

fnE
(q±

1

2 )XE

where nL ∈ Z and fnE
(q±

1

2 ) ∈ Z[q±
1

2 ]. Thus by induction, we can prove that XL ∈
EH|k|(Q) which implies EH|k|(Q) = AH|k|(Q).
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