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Elastic instability in stratified core annular flow
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We study experimentally the interfacial instability between a layer of dilute polymer solution and
water flowing in a thin capillary. The use of microfluidic devices allows us to observe and quantify in
great detail the features of the flow. At low velocities, the flow takes the form of a straight jet, while
at high velocities, steady or advected wavy jets are produced. We demonstrate that the transition
between these flow regimes is purely elastic – it is caused by viscoelasticity of the polymer solution
only. The linear stability analysis of the flow in the short-wave approximation captures quantitatively
the flow diagram. Suprisingly, unstable flows are observed for strong velocities, whereas convected
flows are observed for low velocities. We demonstrate that this instability can be used to measure
rheological properties of dilute polymer solutions that are difficult to assess otherwise.

PACS numbers: 83.80.Rs, 83.60.Wc, 83.85.Cg

Polymer solutions exhibit purely elastic flow instabili-
ties even in the absence of inertia [1]. The almost ubiq-
uitous ingredient of such an elastic instability is the cur-
vature of streamlines: polymers that have been extended
along curved streamlines are taken by fluctuations across
shear rate gradient in the unperturbed state which, in
turn, couples the hoop stresses acting along the curved
streamlines to the radial and axial flows and amplifies
the perturbation [2, 3]. Flat interfaces between two fluids
with different viscoelastic properties can also become un-
stable [4–6] due to the normal stress imbalance across the
interface. These instabilities often occur in coextrusion
where different polymers are melted in separate screw ex-
truders and then flown simultaneously in the extrusion
nozzle. Undesirable wavy interfaces are sometimes ob-
served between the adjacent polymer layers both during
the flow and in the final product [7]. Since these insta-
bilities set severe limits to the industrial processes such
as film or fiber fabrication, they have been extensively
studied before [7, 8]. Although previous experiments and
theory agree reasonably well [7, 9], a comprehensive de-
scription of the flow is still lacking [10].

In this Letter we propose a quantitative explanation
for various flow patterns observed in purely elastic inter-
facial instabilities. We perform a set of original exper-
iments on co-flow of a polymer solution and water and
map the full flow diagram. In contrast to previous exper-
imental studies dealing with macroscopic flows of molten
polymers, we focus here on flows of dilute polymer solu-

tions and water inmicrofluidic devices. The advantage of
using dilute polymer solutions is that their elastic prop-
erties can easily be tuned by dilution and that most of
the theoretical work has been performed for models rep-
resenting dilute polymeric fluids. The use of microfluidic
flow geometries offers simple control and visualisation of
the flow.

We observe that above some flow rate the interface

between the polymer solution and water becomes wavy.
Surprisingly, for relatively low velocities, the instability is
convected downstream, while a stationary unstable flow
is observed at high velocities. This behaviour is due to
the interplay between advection by the mean flow and
the growth of a perturbation and is in close agreement
with the model we propose. Our work opens the route to
use such an elastic instability in straight channels to pro-
mote mixing in microfluidic devices [11]. We demonstrate
that it is also a new way to measure rheological proper-
ties of weakly elastic polymer solutions where very few
techniques are available.

Our experiments are performed in a microfluidic de-
vice made of nested glass capillaries: an inner capil-
lary of square cross-section with tapered nozzle (section
≃ 300µm) nearly perfectly fits into a cylindrical capil-
lary (Rc = 400µm) that carries the outer fluid; it offers a
simple way to self-center and align the capillaries [12, 13].
The length between the nozzle and the outlet of the de-
vice is set to L = 6 cm. The two co-flowing fluids are
injected with precision syringe pumps at flow rates Qi

and Qe for the internal and external rates respectively.
The microfluidic chip is positioned vertically on a stan-
dard microscope (mounted accordingly) in order to pre-
vent the effect of gravity. The observations are carried
out with a fast camera (Miro Phantom). Our working
fluid is a solution of Poly(VinylAlcohol) (PVA) of mo-
lar mass Mw = 196000 g/mol in water at concentrations
of 3.25, 5, 6 and 7.5 % wt/wt (for which c & c⋆ ≈ 1%
wt/wt). The measured values of the shear viscosity of
the solutions are given in Table I and do not depend on
the shear rate up to 102 s−1. The viscosity of water is
taken to be ηi ≃ 10−3 Pa · s at 20 ◦C.

We observe flow patterns that depend strongly on the
flow rates. Fig. 1 shows a typical flow diagram in the
(Qi, Qe) plane for water and the semi-dilute PVA solu-
tion as the inner and outer fluids, respectively. For low
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flow rates, we find straight jets (+) that extend up to
the outlet of the device, while at higher flow rates the
interface between the two fluids becomes unstable. At
intermediate flow rates, jets are straight from the inlet
up to some distance downstream where varicose undula-
tions set in. We call them advected wavy jets (◦) and note
that this distance decreases with the flow rates. At yet
higher flow rates, jets are wavy through the whole set-
up (•). We note here that the advected wavy and wavy
jets are, most probably, the same dynamical state, the
only difference is that the latter sets in before and for-
mer after some arbitrary lengthscale Lc. We distinguish
between the two states in order to be able to measure
the relaxation time of the polymer solution, as will be-
come apparent later. Unless mentioned otherwise, we set
Lc = 10Rc.
In order to identify the origin of the instability, we

first calculate the laminar flow profile in the system. We
neglect both inertial effects and molecular diffusion pro-
cesses since the Reynolds number is small (Re ∼ 0.1)
and the Péclet number is large (Pe & 104) in our exper-
iments. The two miscible fluids thus flow side by side
without mixing and exhibit a constant effective surface
tension [14]. The motion of water is then described by
the Stokes equation while the polymer solution obeys the
Oldroyd-B model [15]:

−~∇p+ ηs∆~v + ~∇ ·Σ = 0, (1)

Σ+ τ
∇

Σ= ηp

(

~∇~v + ~∇~vT
)

,

where
∇

Σ= ∂tΣ+~v · ~∇Σ−(~∇~v)T ·Σ−Σ · ~∇~v is the upper-
convected derivative [15]. Here, ~v is the velocity and p is
the pressure in the fluid, Σ is the polymer contribution
to the stress tensor; ηs is the viscosity of the solvent, and
τ and ηp are the Maxwell relaxation time of the polymer
and the increase of viscosity due to the polymer chains
respectively. The total shear viscosity of the polymeric
solution is thus ηe = ηp+ηs. We enforce no-slip boundary
conditions at the solid-liquid interface and the continuity
of the velocity and of the tangential stress at the inter-
face between the two fluids. In the unidirectional laminar
flow of Fig. 1, the pressure drop ∆P between the nozzle
and the outlet of the capillary is the same in both flu-
ids and is related by Eqs. (2) to the flow rates and the
relative position of the interface between the two fluids
x = Ri/Rc:

∆P

L
=

8ηeQe

πR4
c(1 − x2)

, (2)

where x =
√

α−1

α−1+m
, α =

√

1 +mQi

Qe

, and m = ηe/ηi is

the viscosity ratio.
In the left part of Fig. 2 we redraw our experimen-

tal data in the (x,∆P/L) plane and observe that stable
flows occur at low while unstable flows occur at high
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FIG. 1. (Left) Experimental flow diagram of the 5% PVA
polymer solution (external fluid) and dyed water (internal
fluid) as a function of the respective flow rates. (Right) Flow
patterns observed in the microfluidic chip: stable straight jets
(+), wavy jets (•) and advected wavy jets (◦).

0.2 0.4 0.6
0

2

4

6

8

10

12

x

∆ 
P

/L
 (

1
0

4
 P

a
/m

)

0.2 0.4 0.6

x

τ = 9 ± 2 ms

FIG. 2. (Left) Flow diagram in the (x,∆P/L) plane [same
data as in Fig. 1: stable straight jets (+), wavy jets (•), ad-
vected wavy jets(◦)]. (Right) Same data compared with the
kinetic criterion (4): jets with a straight part longer (×) and
shorter (•) than Lc = 4.8mm. The solid line is calculated
from (4) with the polymer relaxation time τ = 9ms. The
two dotted lines with τ = 7ms and τ = 11ms bracket the
uncertainty.

pressure drops. This observation allows us to dismiss the
Rayleigh-Plateau mechanism as a possible origin of the
instability that would be triggered by the effective surface
tension between the two miscible fluids [14, 16]. Indeed,
this would be contradictory to recent experimental and
theoretical results [13] that explicitly demonstrate that
droplets and wavy jets (absolutely unstable states) occur
at low pressure drops while straight jets dominate at high
pressure drops.

We also exclude the viscosity stratification of the flow
as an origin of the instability [17, 18]. We have repeated
the same experiment with a glycerin solution with ηe =
0.1 Pa · s and we have never observed unstable inferfaces.
Since the viscosity-contrast based instability is of inertial
origin, it should develop at higher Reynolds numbers.
However, it does not play a role at our flow conditions.

We are thus left with a purely elastic instability
driven by the constrast of the normal stresses across
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FIG. 3. State diagrams for the 3.25%wt PVA polymer solu-
tion determined for several reference distances Lc. A single
value τ = 8ms is used to fit all the state boundaries.

the interface [5]. This instability was studied analyt-
ically by Chen [4] and by Chen and Joseph [19] as-
suming low Reynolds and high Péclet numbers as in
Eq. (2). They performed the linear stability analysis of
the flow with respect to small axisymmetric perturba-
tions ∝ exp (ikz + ωt) with ω being the complex growth
rate and k setting the wavelength of the perturbation.
They found that long-wavelength perturbations are al-
ways stable [4]. In the opposite limit k → ∞, the flow is
always unstable [19] and for weak elasticity of the solu-
tion, the dispersion relation can be approximated by:

ω =
m(m− 1)

(1 +m)2

(

∆P

L

xRc

2ηe

)2

τ − ik
∆P

L

R2
c

4ηe
(1 − x2).

(3)

An important feature of this dispersion relation is that
the real part of the growth rate is independent of the
wavelength. Full numerical linear stability analysis (to be
published elsewhere) confirms that the dispersion curve
is practically flat and positive only becoming negative for
very small k’s. This implies that almost all wavelengths
become unstable with an identical growth rate and the
question of the wavelength selection cannot be answered
based on the linear theory. Intriguingly, the use of a
more complex rheological model would permit to raise
this degeneracy [7].
In order to describe the convective nature of the insta-

bility we propose a simple kinetic criterion that captures
most of our experimental observations. We assume that
the instability sets in very close to the nozzle and is grow-
ing on the typical timescale τr = 1/Re(ω) while being
advected downstream with the velocity of the interface
U . The typical development length of the instability is
then L̃ = Uτr, and the boundary between the advected
wavy and wavy jets is given by L̃ = Lc. In terms of the
applied experimental parameters, this criterion reads:

f ≡
∆P

L

Lcτ

ηe

(m− 1)m

(1 +m)2
=

1− x2

x2
. (4)

This criterion offers a few interesting predictions. First,
the dependence upon the pressure drop is quite surpris-
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FIG. 4. Comparison between the experimental state diagram
and the stability criterion (4) (solid line) for several polymer
solutions (different concentrations). Solid symbols (•) corre-
spond to unstable flows and crosses (×) to stable jets on the
length Lc.

ing. Eq. (4) implies that for a given ratio of the flow
rates (which is independent of ∆P ), the advected wavy
jets (L̃ > Lc) occur at low pressure drops, while the wavy
jets (L̃ < Lc) should occur at high pressure drops, as ob-
served experimentally. Since the velocity of the interface
scales linearly with the pressure drop while the destabilis-
ing forces due to the viscoelastic normal stresses scale as
∆P 2 [15], the instability moves closer to the inlet upon
increase of the pressure drop. This is in contrast with
the Rayleigh-Plateau instability due to the surface ten-
sion for which the opposite order of dynamical states is
observed [13]. Moreover, the higher the pressure drop,
the smaller the polymer relaxation time must be to reach
the condition L̃ = Lc, that turns out to be a fruitful way
to measure τ , as we show below. We also note that this
is a purely elastic instability as it vanishes in the Newto-
nian limit τ = 0. Finally, we observe that the criterion
(4) is indepedent of the size of the capillary that sug-
gests that this instability will also exist in nanofluidic or
macrofluidic devices provided the inertial forces are kept
small.

We now compare this kinetic criterion to our experi-
ments. The only unknown quantity in (4) is the polymer
relaxation time τ and we first use it as a fitting parame-
ter. The right panel of Fig. 2 shows that the theory based
on the single-relaxation time Oldroyd-B model agrees
reasonably well with the experiments. For the 5% so-
lution we have extracted τ = 9±2ms. Some discrepancy
however is apparent at small radii of the Newtonian core
x. One possible source of the discrepancy is the approx-
imate nature of the dispersion relation (3). It is derived
for short-wavelength perturbations while we use it for dis-
turbances of intermediate wavelength. This only makes
sense if the actual dispersion relation is flat for most of
the k’s. The full numerical linear stability analysis shows
that for small x the dispersion relation is less flat than
for large values of x which possibly explains the discrep-
ancy between theory and experiments in Fig. 2. Another
possibility is that at small x we observe a decrease of the
relaxation time with the local shear rate (small x corre-
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TABLE I. Comparison of the polymer relaxation time ob-
tained from the instability study (τ ), the drop detachment
experiments (τa) and shear rheometry done at γ̇ = 10s−1 (τw)
for several concentrations of PVA (Mw = 196000 g/mol).

wt% ηe (Pa · s) τ (ms) τa (ms) τw (ms,γ̇ = 10s−1)

7.5 0.65 120±20 70± 20 100

6 0.25 60 ±10 20± 10

5 0.1 9 ±2 15± 10 12

3.25 0.04 8 ±2

spond to large pressure drops and thus high shear rates
at the interface).

Next we show that the model is actually self-consistent
as the measurement of τ is quite insensitive to the choice
of Lc. In Fig. 3 we plot the stability diagram of the
same system with various reference distances Lc. A sin-
gle value of the polymer relaxation time is able to reason-
ably fit most of the data. Once again, the discrepancies
at small x are probably due to the reasons mentioned
above.

The experimental results for several polymer solutions
are summarised on the master phase diagram in Fig. 4.
Clearly, the simple criterion (4) is remarkably successful
in predicting the transition between advected wavy and
wavy jets. In Table I we provide the values of τ extracted
for several concentrations of the polymer. To check these
values, independent measurements of the polymer relax-
ation time have been performed. First, we use a version
of extensional rheometry described by Amarouchene et

al. [20]. When a drop of a polymer solution detaches from
a capillary tube, a long-lived cylindrical neck is formed.
Initially, it thins according to a power law for all liquids,
and then further, exponentially in time if the liquid is

viscoelastic. The decay time of the exponential thinning
is directly proportional to the characteristic time of the
polymer τa. We have also performed conventional rhe-
ological measurements of the polymer relaxation time.
The data are quite noisy since the solutions are not very
viscous and only weakly elastic. In Table I we report
the values τw measured at the shear rate of 10 s−1 which
is similar to the shear rates in our coflow experiments.
These values are in a reasonable agreement with the val-
ues τ extracted from the onset of wavy stationary jets.
Conventional rheometry also shows that the polymer re-
laxation time τw is a decreasing function of the shear rate
providing support for our explanation of the discrepan-
cies in Figs. 2 and 3.

In this Letter, we have demonstrated that the purely
elastic interfacial instability that exists between two flu-
ids with different viscoelastic properties can not only

be explained on a kinetic basis but also used to mea-
sure the polymer relaxation time in weakly elastic poly-
mer solutions which is quite difficult to obtain otherwise.
The technique also has the potential to measure shear-
thinning of the solution at high shear rates. We have
performed the fitting procedure described above indepen-
dently for every x and thus obtained the curve τ vs shear
rate. The results look promising and presently we are
working on the extension of the technique to more com-
plicated constitutive relations than the Oldroyd-B model
that will allow us to extract full non-linear rheology even
for very dilute polymer solutions.
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