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Abstract

It is well-known that solutions of backward differential equations are continuously dependent on the

terminal value. Since the increasing part of the minimal solution of a constrained backward differential

equation (shortly CBSDE) varies against terminal value, the continuous dependence property of terminal

value is not obvious for it. In this paper, we obtain a result about this problem under some mild assumptions.

The main tool used here is the penalization method to get the minimal solution of a CBSDE and the property

of convex functional that it is continuous when it is lower semi-continuous. The comparison theorem of the

minimal solution of CBSDE plays a crucial role in our proof.
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1 Introduction

It is well-known that g-solution and g-supersolution are both continuously dependent on the terminal value,

see El Karoui etc.[3] and Pardoux and Peng[5] for references. g-solution and g-supersolution are often used

to price or hedge claims in mathematical finance. In practice, some constraints may put on the portfolio and

wealth process, and the backward stochastic differential equation subjecting to some constraints comes up to

our consideration. For such investigation on constrained backward stochastic equation, we refer to Cvitanic.J,

Karatzas.I and Soner.H.M[1]. In their paper, the constraint is z(t) ∈ K for some convex set K. Under the

assumption that there exist at least one solution to such constrained BSDE, a penalization method can be used to

get the minimal solution to this CBSDE. Similarly, Peng[6] pointed out that the smallest g-supersolution, which

is denoted by Eg,φ
t (ξ), can be obtained by penalization method, i.e, it can be approximated by an increasing

sequence of g-supersolutions suppose that for the square integrable terminal value ξ in L2
T (R), there exist at

least one g-supersolution (yt, zt, Ct) satisfying the constraint equation φ(t, yt, zt) = 0. In these case, it is obvious

that the associated increasing part Ct of the minimal solution of CBSDE varies against terminal value, the usual

priori estimation of g-solution or g-supersolution does not work for the continuous dependence property. In this

paper, we mainly investigate such a problem in the framework of Peng[6] when both g and φ are convex. The

case z ∈ K can be concluded in this case taking φ(z) = d(z,K), the distance function from z to the convex set

K. It is obvious convex in z.

This paper is organized as follows: In section 2, we state the framework in Peng[6] and some propositions

on the smallest g-supersolution, namely the minimal solution of CBSDE with constraint as φ(t, yt, zt) = 0.

Under the assumption that when the generator g and constraint function φ are both convex, we obtain the

continuous dependence property of Eg,φ
t (ξ)( 0 ≤ t ≤ T ) in terms of ξ ∈ L2

T (R) in section 3.

2 BSDE and the minimal solution of CBSDE

Given a probability space (Ω,F , P ) and Rd-valued Brownian motion W (t), we consider a sequence {(Ft); t ∈

[0, T ]} of filtrations generated by Brownian motion W (t) and P is the σ-field of predictable sets of Ω × [0, T ].

We use L2
T (R

d) to denote the space of all FT -measurable random variables ξ : Ω → Rd for which

‖ ξ ‖2= E[|ξ|2] < +∞.

and use H2
T (R

d) to denote the space of predictable process ϕ : Ω× [0, T ] → Rd for which

‖ ϕ ‖2= E[

∫ T

0

|ϕ|2] < +∞.
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The backward stochastic differential equation (shortly BSDE ) driven by g(t, y, z) is given by

−dyt = g(t, yt, zt)dt− z∗t dW (t) (2.1)

where yt ∈ R and W (t) ∈ Rd. Suppose that ξ ∈ L2
T (R), g(., 0, 0) ∈ H2

T (R) and g is uniformly Lipschitz; i.e,

there exists M > 0 such that dP ⊗ dt a.s.

|g(ω, t, y1, z1)− g(ω, t, y2, z2)| ≤ M(|y1 − y2|+ |z1 − z2|), ∀(y1, z1), (y2, z2)

Pardoux and Peng [5] proved the existence of adapted solution (y(t), z(t)) of such BSDE. We call (g, ξ) standard

parameters for the BSDE.

In this paper, we assume g(ω, t, y, z) are both convex in(y, z).

Dfinition 2.1. (super-solution) A super-solution of a BSDE associated with the standard parameters (g, ξ) is

a vector process (yt, zt, Ct) satisfying

−dyt = g(t, yt, zt)dt+ dCt − z∗t dW (t), yT = ξ, (2.2)

or being equivalent to

yt = ξ +

∫ T

t

g(s, ys, zs)ds−

∫ T

t

z∗sdWs +

∫ T

t

dCs, (2.2′)

where (Ct, t ∈ [0, T ]) is an increasing, adapted, right-continuous process with C0 = 0 and z∗t is the transpose of

zt. When Ct ≡ 0, we call (yt, zt) a g-solution.

In this paper, we consider g-supersolutions (yt, zt, Ct) satisfying the constraint

φ(t, yt, zt) = 0, (2.3)

where φ(t, y, z) : [0, T ]×R×Rd → R+. In such case, we give the following definition,

Dfinition 2.2. (The smallest g-supersolution or the minimal solution) A g-supersolution (yt, zt, Ct) is said

to be the smallest g-supersolution or the minimal solution, given yT = ξ, subjecting to the constraint (2.3) if

for any other g-supersolution (y′t, z
′

t, C
′

t) satisfies (2.3) with y′T = ξ, we have yt ≤ y′t a.e., a.s., the smallest

g-supersolution is denoted by Eg,φ
t (ξ).

For any ξ ∈ L2
T (R), we denote Hφ(ξ) as the set of g-supersolutions (yt, zt, Ct) subjecting to (2.3) with

yT = ξ. When Hφ(ξ) is not empty, Peng[6] proved that the smallest g-supersolution exists for ξ ∈ L2
T (R). In

this paper, for simplicity, we first consider the continuous dependence property of Eg,φ
t (ξ) at t = 0.

The convexity of Eg,φ
0 (ξ) can be easily deduced from the same propositions of g-solutions or g-supersolutions

when both g and φ are convex.

Proposition 2.1. Let φ(t, y, z) be a function: [0, T ]× R × Rd → R+. If φ(t, y, z) is uniformly Lipschitz and

convex in (y, z), then under the assumption that g(t, y, z) is also uniformly Lipschitz and convex in (y, z) and

g(., 0, 0), φ(., 0, 0) ∈ H2
T (R), we have

Eg,φ
t (aξ + (1− a)η) ≤ aEg,φ

t (ξ) + (1− a)Eg,φ
t (η) ∀t ∈ [0, T ]

for any ξ, η ∈ L2
T (R) and a ∈ [0, 1].

Proof According to Peng[6], the solutions ymt (ξ) of

ymt (ξ) = ξ +

∫ T

t

g(yms (ξ), zms , s)ds+Am
T −Am

t −

∫ T

t

zms dWs.

is an increasing sequence and converges to Eg,φ
t (ξ), where

Am
t := m

∫ t

0

φ(yms , zms , s)ds.

For any fixed m, by the convexity of g and φ, ymt (ξ) is a convex in ξ, that is

ymt (aξ + (1 − a)η) ≤ aymt (ξ) + (1− a)ymt (η),
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taking limit as m → ∞, we get the required result. 2

By the same method of penalization, we can get the comparison theorem of Eg,φ
t (ξ) .

Proposition 2.2. Let φ(t, y, z) be a function: [0, T ] × R × Rd → R+, then under the same assumptions as

above proposition, we have

Eg,φ
t (ξ) ≤ Eg,φ

t (η)

for any ξ, η ∈ L2
T (R) when P (η ≥ ξ) = 1.

3 Continuous dependence of the minimal solution with terminal

value

Under the same assumptions as last section, for any k ∈ R, we define the k-level set of Eg,φ
0 (ξ) as

Ak , {ξ ∈ L2
T (R)|Eg,φ

0 (ξ) ≤ k}.

For such sets, we have the following result.

Lemma 3.1. For any k ∈ R, the set Ak is closed in L2
T (R)-norm.

Proof Suppose a sequence {ξn, n = 1, 2 · · · } ⊂ Ak converges under norm to some ξ ∈ L2
T (R). For any ξn, we

take ym0 (ξn) as in proposition 2.1. Since ym0 (ξn) converges increasingly to Eg,φ
0 (ξn) ≤ k as m → ∞, ym0 (ξn) ≤ k

holds for any n and m.

For any fixed m, take gm = g + mφ, by the continuous dependence property of gm-solution, we have

ym0 (ξn) → ym0 (ξ) as n → ∞ and ym0 (ξ) ≤ k is obtained for any m. Again, for the fixed ξ ∈ L2
T (R), ym0 (ξ) →

Eg,φ
0

(ξ) as m → ∞. Thus one has Eg,φ
0

(ξ) ≤ k, this means Ak is closed under norm in L2
T (R). 2

Let ϕ(ξ) = Eg,φ
0 (ξ), under our assumption, by proposition 2.1, it is a convex functional on its domain of

definition, which is obviously convex in L2
T (R).

By lemma 3.1, ϕ(ξ) = Eg,φ
0 (ξ) is lower semi-continuous on its domain of definition, but it is well-known that

a convex functional is continuous if and only if it is lower semi-continuous, then we have the following theorem.

Theorem 3.1. Suppose the generator function g(t, y, z) and constraint function φ(t, y, z) are both convex and

uniformly Lipschitz in (y, z), g(., 0, 0)φ(., 0, 0) ∈ H2
T (R), then Eg,φ

0 (ξ) is a continuous functional in its domain

of definition.

Next we want to investigate the continuous dependence property of Eg,φ
t (ξ) when t 6= 0. For this aim, we

suppose {ξn, n = 1, 2 · · · } is a sequence in the domain of definition of Eg,φ
t (ξ).

Theorem 3.2. Suppose the generator function g(t, y, z) and constraint function φ(t, y, z) are both convex and

uniformly Lipschitz in (y, z), g(., 0, 0), φ(., 0, 0) ∈ H2
T (R).Then for random variables ξn, ξ ∈ L2

T (R), we have

E|Eg,φ
t (ξn)− Eg,φ

t (ξ)|2 → 0

if E|ξn − ξ|2 → 0 as n → ∞.

Proof Let ξn = ξn
∨
ξ, ξ

n
= ξn

∧
ξ, by assumption, ξn, ξ

n
∈ L2

T (R) and they both converge to ξ in the space

L2
T (R) with norm.

First, we consider αn , E|Eg,φ
t (ξn)− Eg,φ

t (ξ)|2 and show that αn → 0 as n → ∞.

In fact, for any fixed ξ ∈ L2
T (R), by proposition 2.1, the functional ϕ(η) , E|Eg,φ

t (η) − Eg,φ
t (ξ)|2 is convex

on the set K = {η ∈ L2
T (R)|η ≥ ξ a.s}. It is also easy to show by the same technique used in lemma 3.1 that

ϕ(η) is lower semi-continuous on K, thus αn → 0 comes true.

Secondly, let βn , E|Eg,φ
t (ξ

n
)− Eg,φ

t (ξ)|2 and we can prove βn → 0 as n → ∞.

This time let us consider the functional ϕ(η) , E|Eg,φ
t (η)−Eg,φ

t (ξ)|2 on the convex set K̃ = {η ∈ L2
T (R)|η ≤

ξ a.s}. For any sequence {ηn ∈ K̃, n = 1, 2, · · · } which converges to η ∈ K̃, we can show that ϕ(η) ≥

c if ϕ(ηn) ≥ c for all n. In fact, let ymt (ηn) be the approximating sequence of Eg,φ
t (ηn) as in proposition

2.1, that is ymt (ηn) ≤ Eg,φ
t (ηn) and converges increasingly to Eg,φ

t (ηn) as m → ∞. Since ηn ≤ ξ a.s, thus
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E|ymt (ηn)−Eg,φ
t (ξ)|2 ≥ E|Eg,φ

t (ηn)−Eg,φ
t (ξ)|2 ≥ c for any n and m. For any fixed m, by continuous dependence

property of unconstrained BSDE, E|ymt (ηn) − ymt (η)|2 → 0 as n → ∞, this gives E|ymt (η) − Eg,φ
t (ξ)|2 ≥ c for

any m, it is then easy to conclude that E|Eg,φ
t (η)− Eg,φ

t (ξ)|2 ≥ c by monotone convergence theorem.

Now suppose on the contrary, if βn 9 0 as n → ∞, then there is some subsequence of {ξn, n = 1, 2, · · · }

(for convenience, we still denote it as {ξn, n = 1, 2, · · · }), such that βn , E|Eg,φ
t (ξ

n
) − Eg,φ

t (ξ)|2 ≥ δ for some

δ > 0. But if we take ξ
n
as ηn in the above argument, it will be a contradiction noting that ξ

n
→ ξ ∈ K̃.

At last, by the comparison theorem of proposition 2.2, we have Eg,φ
t (ξ

n
) ≤ Eg,φ

t (ξn) ≤ Eg,φ
t (ξn) and

E|Eg,φ
t (ξn)− Eg,φ

t (ξ)|2 ≤ max{E|Eg,φ
t (ξn)− Eg,φ

t (ξ)|2, E|Eg,φ
t (ξ

n
)− Eg,φ

t (ξ)|2},

thus complete our proof. 2

From the proof of theorem 3.2, we have following corollary for general generator function and constraint

function,

Corollary 3.1. Suppose the generator function g(t, y, z) and constraint function φ(t, y, z) are both uniformly

Lipschitz in (y, z) and g(., 0, 0), φ(., 0, 0) ∈ H2
T (R). If {ξn ∈ L2

T (R), n = 1, 2, · · · } is a sequence which converges

to ξ ∈ L2
T (R) with ξn ≤ ξ a.s for any n, then we have

E|Eg,φ
t (ξn)− Eg,φ

t (ξ)|2 → 0 ∀t ∈ [0, T ].

The proof is just a restatement of the second part of the proof of theorem 3.2.

Remark 3.1. El Karoui etc.[2] proved the existence of solution of reflected backward stochastic differential

equation(shortly RBSDE) reflected by St(0 ≤ t ≤ T ), it is just the smallest g-supersolution or minimal solution

with the constraint φ(t, yt, zt) = (yt − St)
− = 0. The domain of definition of the RBSDE is {ξ ∈ L2

T (R)|ξ ≥

ST , a.s}, it is a convex closed set in L2
T (R). By priori estimation, the minimal solution is uniformly continuous

with terminal value.

Remark 3.2. Note that in El Karoui etc.[2], the continuity of Eg,φ
t (ξ) for any t ∈ [0, T ] is unform and the

generator function need not to be convex. Furthermore, under the assumption of Eg,φ
0 (ξ) < ∞ for all ξ ∈ L2

T (R),

with the constraint function φ(t, y, z) being the distance function of z/σy from a convex closed set in Rn, Karatzas

and Shreve[4] proved that Eg,φ
0 (ξ) can be represent as a supremum of a family of linear functional on L2

T (R),

and then by the resonance theorem, Eg,φ
0 (ξ) is also uniformly continuous with ξ, although the constraint function

φ(t, y, z) is not convex. Inspired by these facts, we conjecture more general continuous dependence theorem may

exist.
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