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A CATEGORIFICATION OF THE STABLE SU(2)
WITTEN-RESHETIKHIN-TURAEV INVARIANT OF LINKS IN S2 × S1

LEV ROZANSKY

Abstract. The WRT invariant of a link L in S2×S1 at sufficiently high values of the level

r can be expressed as an evaluation of a special polynomial invariant of L at q = exp(πi/r).

We categorify this polynomial invariant by associating to L a bi-graded homology whose

graded Euler characteristic is equal to this polynomial.

If L is presented as a circular closure of a tangle τ in S2 × S1, then the homology of L

is defined as the Hochschild homology of the Hn-bimodule associated to τ in [Kho00]. This

homology can also be expressed as a stable limit of the Khovanov homology of the circular

closure of τ in S3 through a torus braid with high twist.
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2 L. ROZANSKY

1. Introduction

1.1. The stable WRT invariant of links in a 3-sphere with handles. Let Z(O) ∈

Q[[q, q−1] be a Laurent series of q which is a topological invariant of an object O (e.g. a link

in a 3-manifold). A general idea of a (weak) categorification, as presented in [Kho00], is to

associate to O a Z⊕Z-graded vector space H(O) =
⊕

i,j∈ZHi,j(O), the first degree being of

homological nature, such that its graded Euler characteristic is equal to Z(O):

Z(O) =
∑

i,j∈Z

(−1)i qj dimHi,j(O). (1.1)

A full categorification extends this assignment to a functor from the category of link cobor-

disms to the category of homogeneous maps between bigraded vector spaces.

Let L be a framed link in a 3-manifold M . The SU(2) Witten-Reshetikhin-Turaev (WRT)

invariant Zr(L,M) is a C-valued topological invariant of the pair (L,M) which depends on an

integer number r ≥ 2. We assume that the components of L are ‘colored’ by the fundamental

representation of SU(2) and if L is an empty link, then we omit it from notations.

Generally, the dependence of Zr(L,M) on r seems random and the non-polynomial nature

of Zr(L,M) presents a challenge for anyone trying to categorify it. However, there is a special

class of 3-manifolds (3-spheres with handles) for which Zr(L,M) is almost polynomial. Let

S3
|k denote a 3-sphere S3 from which k 3-balls are cut. Let S3

g|k denote oriented manifold

constructed by gluing 2g spherical boundary components of S3
|2g+k pairwise. A 3-sphere with

g handles S3
g is defined as S3

g|0: S3
g = S3

g|0. Alternatively, S3
g can be constructed by gluing

together two handlebodies of genus g through the identity isomorphism of their boundaries.

A link L in S3
g can be constructed by taking a (n1, . . . , n2g)-tangle τ in S3

|2g with pairwise

matching valences ni = ni+g and applying the pairwise gluing to the boundary components

of S3
|2g and to the tangle endpoints which reside there. If at least one of the valences is odd,

then the WRT invariant associated with the resulting link is zero for any r, hence we will

always assume that all valences are even. For a (2n1, . . . , 2n2g)-tangle τ in S3
|2g we define the

critical level:

rcr(τ, S
3
|2g) = max(n1, . . . , ng) + 2.

We define the critical level rcr(L, S
3
g) of a link L ⊂ S3

g as the minimum of rcr(τ, S
3
|2g) over all

the presentation of L as the closure of a tangle.

The following theorem is easy to prove:
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Theorem 1.1. For a link L in a 3-sphere with g handles S3
g there exists a unique rational

function J(L, S3
g) ∈ Q(q) such that if r ≥ rcr(L, S

3
g), then the modified WRT invariant

Z̃r(L, S
3
g) =

Zr(L, S
3
g)

Zr(S3
g)

is equal to the evaluation of J(L, S3
g) at q = exp(iπ/r):

Z̃r(L, S
3
g) = J(L, S3

g)|q=exp(iπ/r). (1.2)

We call J(L, S3
g) the stable WRT invariant of L ⊂ S3

g. We expect that Laurent series

expansion of J(L, S3
g) at q = 0 can be categorified in the sense of eq.(1.1).

If g = 0, then S3
g is a 3-sphere S3. In this case rcr(L, S

3) = 2 and J(L, S3) is the Jones

polynomial whose categorification was constructed in [Kho00].

In this paper we consider the case of g = 1, that is, we study S3
1 = S2 × S1. It turns out

that the corresponding stable WRT invariant J(L, S2 × S1) is again a Laurent polynomial,

and we construct its categorification.

1.2. A 3-dimensional oriented restricted TQFT. The stable WRT invariant J(L, S3
g)

comes from a stable restricted topological WRT theory. Let us recall the definition of a

3-dimensional oriented restricted TQFT (a generalization to n dimensions is obvious).

Let F be a field with an involution

¯ : F −→ F. (1.3)

Usually, F = C, ¯ being the complex conjugation.

Let S be the set of admissible connected boundaries: its elements are some closed oriented

connected 2-manifolds with marked points. S always includes the empty surface ∅.

Let M be a 3-dimensional manifold with a boundary consisting of k connected components

from S, each having ni (i = 1, . . . , k) marked points. An identification of the boundary of M

is a choice of a diffeomorphism between every connected component of ∂M and its ‘standard

copy’ in S.

A n-tangle in M , where n = (n1, . . . , nk), is an embedding of a disjoint union of segments

and circles in M such that the endpoints of segments are mapped one-to-one to the marked

points on the boundary ∂M . Our tangles are assumed to be framed. Let T̃(M) be the set

of all n-tangles in M distinguished up to boundary fixing ambient isotopy.

A diffeomorphism M → M is called relative if it acts trivially on the boundary of M .

Let MapM denote the mapping class group of relative homeomorphisms of M . This group
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acts on T̃(M), and we refer to the elements of the quotient T(M) = T̃(M)/MapM as rough

tangles, that is, rough tangles are tangles distinguished up to relative homeomorphisms.

Let M be the set of admissible manifolds: its elements are some oriented 3-manifolds with

independently oriented boundary components, each boundary component being admissible.

The set M must include the manifolds S × I for all S ∈ S and I = [0, 1]. Also M must be

closed with respect to two operations. The first operation is the disjoint union of admissible

manifolds. The second operation is the gluing of two diffeomorphic connected components

of ∂M , provided that they have opposite relative orientations with respect to the orientation

of M .

To an admissible boundary S ∈ S the TQFT associates a Hilbert space H(S) over F with

three isomorphisms

♦,▽ : H(S) −→ H∨(S), ¯ : H(S) −→ H(S). (1.4)

Here H∨ is the dual of H and the maps ▽ and ¯ are ‘anti-linear’: they involve the involu-

tion (1.3) of the field F. The maps (1.4) should satisfy the relations

(v̄)♦ = v▽, (v̄)▽ = v♦, ¯̄v = v. (1.5)

for all v ∈ H(S). If any two of three isomorphisms (1.4) are defined, then the third one is

determined by either of the first two relations (1.5). Slightly abusing notations, we will use

the same notations ♦ and ▽ for the inverses of the isomorphisms (1.4); in each case it will

be clear whether a direct or an inverse isomorphism is used.

To a disjoint union of admissible boundaries TQFT associates a tensor product of Hilbert

spaces over F:

H(S1 ⊔ · · · ⊔ Sk) = H(S1)⊗ · · · ⊗ H(Sk).

For the empty boundary H(∅) = F.

Let M be an admissible manifold. The relative orientation of M and connected compo-

nents of its boundary separates ∂M into two disjoint components: the ‘in’ boundary and the

‘out’ boundary: ∂M = (∂M)in ⊔ (∂M)out. Define

H(∂M) = H(∂M)out ⊗H∨(∂M)in.

For every identification of ∂M the TQFT provides a state map, which maps rough tangles

τ in M to elements of the Hilbert space of its boundary:

〈−〉 : T(M) −→ H(∂M), (τ,M) 7→ 〈τ,M〉. (1.6)

The state map should satisfy the following axioms:
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Change of orientation of the boundary component: A change in the orientation

of a boundary component of M results in the application of the ♦ map to the corre-

sponding factor in the Hilbert space H(∂M).

Change of orientation of M : If M ′ is the manifold M with reversed orientation,

then 〈τ,M ′〉 = 〈τ,M〉▽ ∈ H∨(∂M) (since we did not change the orientation of

the boundary components, the ‘in’ boundary component of M becomes the ‘out’

boundary component of M ′ and vice versa).

Disjoint union: For two admissible pairs (τ1,M1) and (τ2,M2), the state map of their

disjoint union is 〈τ1 ⊔ τ2,M1 ⊔M2〉 = 〈τ1,M1〉 ⊗ 〈τ2,M2〉.

Gluing: Suppose that the same admissible boundary component S appears in the ‘in’

and in the ‘out’ parts of M . Let M ′ be the manifold constructed by gluing these

components together (according to their identifications with the ‘standard copy’).

Then 〈τ,M ′〉 is the result of canonical pairing x applied to the tensor product H(S)⊗

H∨(S) within the Hilbert space H(∂M).

If follows from the change of orientation axioms and relations (1.5) that if M ′ is the

manifold M in which the orientation of M and of its boundary are reversed simultaneously,

then 〈τ,M ′〉 = 〈τ,M〉.

In the stable restricted topological WRT theory the base field F is Q(q) – the field of

rational functions of q with rational coefficients. Admissible boundaries are 2-spheres with

2n marked points, n ≥ 0 and admissible 3-manifolds are S3
g|k and their disjoint unions. In

this paper we will consider a more restricted (‘toy’) version of this theory. Namely, the

admissible 3-manifolds are only S3
0 = S3 (a 3-sphere), S3

0|1 = B3 (a 3-ball), S3
0|2 = S2 × I,

S3
1 = S2 × S1 and their disjoint unions.

We will show in subsections 3.3.4 that J(L, S3) = 〈L, S3〉 is equal to the Jones polynomial

of L and we will prove in subsection A.2 that the invariant J(L, S2 × S1) = 〈L, S2 × S1〉 is a

Laurent polynomial of q and satisfies the property (1.2), which is this case takes the form

Zr(L, S
2 × S1) = 〈L, S2 × S1〉|q=exp(iπ/r) (1.7)

for r ≥ rcr(L, S
2 × S1), because Zr(S

2 × S1) = 1.

1.3. A Z-graded weak algebraic categorification. In this paper we will construct a

weak algebraic categorification of the toy stable restricted topological WRT theory.

Let us recall basic facts about a Z-graded version of a weak algebraic categorical 3-

dimensional TQFT. We use the same set of admissible boundaries S and the set of ad-

missible 3-manifolds M as in previous subsection. To an admissible boundary S ∈ S an

algebraic categorical TQFT associates a Z-graded algebra A(S) and an additive category
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C(S) = Db(A(S)), that is, the bounded derived category of Z-graded A(S)-modules. Each

algebra has a canonical involution

♦ : A(S) −→ Aop(S) (1.8)

which preserves Z-grading. There are two equivalence functors

♦,▽ : Db(A(S)) −→ Db(Aop(S)). (1.9)

The functor ♦ is covariant: it turns a complex of A(S)-modules into a complex of Aop(S)-

modules with the help of the involution (1.8) and shifts its homological and Z gradings by

an amount depending on S. The functor ▽ is contravariant: it maps objects to their duals

and then shifts their degree by an amount depending on S. The contravariant functor

¯ : Db(A(S)) −→ Db(A(S))

is the composition of ♦ with the inverse of ▽ or the other way around. In other words, ¯

turns a complex of A(S)-modules into the dual complex of Aop(S)-modules, then replaces

Aop(S) by A(S) with the help of the involution (1.8) and finally performs a degree shift

which depends on S. Three functors satisfy the relations (1.5), where this time v is an

object of Db(A(S)).

To a disjoint union of admissible boundaries an algebraic categorical TQFT associates a

tensor product of algebras

A(S1 ⊔ · · · ⊔ Sk) = A(S1)⊗ · · · ⊗ A(Sk).

and, consequently, the category

C(S1 ⊔ · · · ⊔ Sk) = Db
Ä

A(S1)⊗ · · · ⊗ A(Sk)
ä

. (1.10)

For an empty boundary A(∅) = Q and C(∅) is the category of bounded complexes of Z⊕Z-

graded vector spaces over Q (the first grading is homological and the second is related to

Z-grading of algebras). Equivalently, this is a category of Z ⊕ Z-graded vector spaces over

Q (both categories are related by taking homology).

Define

A(∂M) = A(∂M)out ⊗Aop(∂M)in, C(∂M) = Db
Ä

A(∂M)
ä

.

For every identification of the boundary of an admissible manifoldM the algebraic categorical

TQFT provides an object map

〈〈−〉〉 : T(M) −→ C(∂M), (τ,M) 7→ 〈〈τ,M〉〉. (1.11)
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If ∂M = ∅, so that τ is a link L in M , we take the homology of the complex 〈〈L,M〉〉 and

refer to it as the stable homology of the link L ⊂ M :

Hst
• (L,M) = H•(〈〈L,M〉〉).

The object map should satisfy the following axioms:

Change of orientation of M : If M ′ is the manifold M with reversed orientation,

then 〈〈τ,M ′〉〉 = 〈〈τ,M〉〉▽ ∈ Db
Ä

Aop(∂M)
ä

.

Disjoint union: For two admissible pairs (τ1,M1) and (τ2,M2), the object map of

their disjoint union is 〈〈τ1 ⊔ τ2,M1 ⊔M2〉〉 = 〈〈τ1,M1〉〉 ⊗ 〈〈τ2,M2〉〉.

Change of orientation of a boundary component: A change in the orientation of

a boundary component of M results in the application of the ♦ functor to the corre-

sponding factor in the category of eq.(1.11).

Gluing: Suppose that the same admissible boundary component S appears in the ‘in’

and in the ‘out’ parts of M . Let M ′ be the manifold constructed by gluing these

components together. Then 〈〈τ,M ′〉〉 is the result of derived tensor product
L
⊗ applied

to the category Db
Ä

A(S)⊗Aop(S)
ä

within the category Db
Ä

A(∂M)
ä

.

An application of Grothendieck’s K0-functor to the elements of a weak algebraic categor-

ical TQFT construction produces an ordinary TQFT described in the previous subsection.

This time F is the field Q(q) of rational functions of q and q̄ = q−1. The Grothendieck group

K0

Ä

Db(A(S))
ä

is a module over Z[q, q−1], the multiplication by q corresponding to the trans-

lation [1]q of Z-grading. A Hilbert space H(S) is the Grothendieck group KQ
0

Ä

Db(A(S))
ä

defined as an extension to Q(q):

H(S) = KQ
0

Ä

Db(A(S))
ä

= K0

Ä

Db(A(S))
ä

⊗Z[q,q−1] Q(q). (1.12)

There is a canonical isomorphism H∨(S) = K0

Ä

Db(Aop(S))
ä

, because for two objects

A ∈ Db(A(S)) and B ∈ Db(Aop(S)) there is a pairing K0(B)xK0(A) = χ
Ä

Tor(B,A)
ä

, where

χ is the Euler characteristic. Hence K0 reduces the functors (1.9) to the corresponding

involutions (1.4).

Overall, for every admissible manifold M there should be a commutative triangle

T(M)
〈−〉

$$J
JJJJJJJJ

〈〈−〉〉

zzuuuuuuuuu

C(∂M)
K0 // H(∂M)

(1.13)
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and if a manifold M ′ is constructed by gluing together two matching boundary components

of M , then there should be a commutative prism

T(M)
gluing

//

〈−〉

��

〈〈−〉〉

%%K
KKKKKKKK

T(M ′)

〈−〉

��

〈〈−〉〉

%%KKKKKKKKKK

C(∂M)
L

⊗ //

K0yysssssssss
C(∂M ′)

K0yyssssssssss

H(∂M)
x // H(∂M ′)

(1.14)

1.4. A brief account of the results and the plan of the paper. We construct a

weak categorification of the stable toy WRT theory. Our construction is based on Z-graded

algebras Hn introduced in [Kho02]. In the same paper, a complex 〈〈τ〉〉K of Hn⊗Hop
m -modules

is associated to a diagram of a (2m, 2n)-tangle τ .

In this paper we associate the algebra Hn and a derived category of Z-graded Hn-modules

Db(Hn) to a 2-sphere with 2n marked points. A tangle τ in a 3-ball can be considered as a

(0, 2n)-tangle, hence we associate to it the same complex 〈〈τ〉〉K this time considered as an

object of Db(Hn). A link L in S3 can be constructed by gluing two tangles in 3-balls along

the common boundary. As explained in [Kho02], the Hn-modules in 〈〈τ〉〉K are projective,

hence the gluing rule implies that stable homology of L ⊂ S3 coincides with the homology

introduced in [Kho00].

The boundary category of the manifold S2×I with 2m marked points on the ‘in’ boundary

and 2n marked points on the ‘out’ boundary is Db(Hn⊗Hop
m ). If a tangle σ in S2×I is repre-

sented by a (2m, 2n)-tangle τ then we set again 〈〈σ〉〉 = 〈〈τ〉〉K. We prove that if two different

(2m, 2n)-tangles τ1 and τ2 represent the same tangle in S2 × I, then the complexes 〈〈τ1〉〉K
and 〈〈τ2〉〉K are quasi-isomorphic, that is, although they may be homotopically inequivalent,

they represent isomorphic objects in derived category Db(Hn ⊗Hop
m ).

If a link L in S2 × S1 is presented as a closure of a (2n, 2n)-tangle τ within S2 × S1, then

in accordance with the gluing rule we define the stable homology of L as the Hochschild

homology of 〈〈τ〉〉K: Hst(L; S2 × S1) = HH•(〈〈τ〉〉K). We prove that this homology does not

depend on the choice of a tangle τ which represents L.

Finally, we suggest a practical method of computing the stable homology Hst(L; S2 × S1).

If L ⊂ S2×S1 can be constructed by a S2×S1 closure of a (2n, 2n)-tangle τ , then it is known

that the stable invariant 〈L, S2 × S1〉 can be approximated (up to the coefficients at high

powers of q) by the Kauffman bracket of the S3 closure of τ through the torus braid with high

twist number. We show that the same is true in categorified theory: Khovanov homology

of the S3 closure of τ through a high twist torus braid approximates the stable homology
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of L in S2 × S1. In fact, a close relation between the Hochschild homology of Hn and the

Khovanov homology of a high twist torus link was first observed by Jozef Przytycki [Prz10]

in case of n = 1.

In Section 2 we review the definition and properties of Kauffman bracket and Temperley-

Lieb algebra. We define the stable toy WRT theory and prove that it satisfies the axiom

requirement. Then we review Khovanov homology, Bar-Natan’s universal categorification of

the Temperley-Lieb algebra [BN05] and bi-module categorification of Temperley-Lieb alge-

bra [Kho02].

In Section 6 we present main results of the paper: we define the categorified theory,

explain how stable homology is related to Khovanov homology through torus braid closure

and conjecture the structure of Hochschild homology and cohomology of algebras Hn.

In Section 7 we prove that the categorified theory is well-defined and satisfies the axioms.

In Section 8 we prove that torus braid closures of tangles within S3 approximate the sta-

ble homology of their closures within S2 × S1. In Section A we review the properties of

Jones-Wenzl projectors and prove the relation (1.7) between the complete and stable WRT

invariants of links in S2 × S1.

Acknowledgements. The work on this paper was started jointly with Mikhail Khovanov.

In particular, we worked out the proofs of Theorems 6.1 and 6.3 together. I am indebted to

Mikhail for numerous discussions, explanations, critical comments and encouragement.

This work is supported by the NSF grant DMS-0808974.

2. Tangles and links

2.1. Basic definition.

2.1.1. Tangles. All tangles and links in this paper are framed, and in pictures we assume

blackboard framing. We use a notation

= ◦ 1

for a framing twist.

For a 3-manifold M with a boundary we have defined the set of tangles T̃(M), the relative

mapping class group MapM and the set of rough tangles T(M) = T̃(M)/MapM in subsec-

tion 1.2. For a 2-dimensional manifold Σ being either R2 or S2, let T̃m,n(Σ× I) ⊂ T̃(Σ× I)

denote the set of (m,n)-tangles, that is, tangles with m marked points on the ‘in’ boundary

Σ×{0} and with n marked points on the ‘out’ boundary Σ×{1}. We use a shortcut notation
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T̃n(Σ× I) = T̃n,n(Σ× I) and we use similar notations for rough tangles with T̃ replaced by

T. Note that MapR2 is trivial, so T(R2) = T̃(R2).

The set T̃(Σ× I) of all tangles in Σ× I and its quotient T(Σ× I) have the structure of a

set of morphisms: the multiplication corresponds to the composition of tangles τ1 ◦ τ2. We

use the notation T̃op(Σ× I) to denote the same set of morphisms with the opposite order of

composing elements. The set of morphisms T̃(Σ×I) is ‘quiver-like’, because the composition

of tangles is meaningful only when the numbers of end-points match, otherwise we set it to

zero; in other words, the set of morphismss T̃n(Σ× I) stand at the vertices of the quiver and

the sets T̃m,n(Σ× I) stand at its oriented edges.

The braid group Bn(Σ) is a subgroup of T̃n(Σ × I) and, in particular, the Artin braid

group Bn is a subgroup of T(R2). We use the following notations for some important framed

braids in Bn:

�
�◦1

n·· = � �
AA

AA

AA

AA· · ·

· · ·
1 2 n

◦1
,

�
�◦

1

n·· = � �
�
�
�

�
�
�

1 n−1 n

◦1 · · ·

· · ·
(2.1)

�
� �
�◦

2

n·· = �
�◦1

n·· ◦
�
�◦

1

n·· =
�

�
�

�
· · ·

· · ·
1 2 n

◦2

,
...
1

n =
Å

�
�◦1

n··
ãn

, (2.2)

the latter braid representing the full rotation of n strands accompanied by a framing shift.

2.1.2. Tangles in R2×I. The most commonly used tangles are tangles in R2×I and we refer

to them simply as tangles. Tangles may be considered as morphisms of the tangle category:

an object of this category is a set of m linearly ordered points, an (m,n)-tangle τ is a

morphism between m points and n points and a composition of morphisms is a composition

of tangles. Thus the set of all tangles T = T(R2) is the set of morphisms in this category.

The set of morphisms T has three special involutions

♦,▽ : T −→ T
op, Tm,n −→ Tn,m, ¯ : T −→ T, Tm,n −→ Tm,n (2.3)

satisfying the relations (1.5). The first two turn a (m,n)-tangle τ into a (n,m)-tangle. The

flip ♦ rotates τ by 180◦ about an axis which lies in the blackboard plane and is perpendicular

to the time-line. The duality ▽ performs the flip and then switches all crossings of the tangle
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into the opposite ones. In other words, τ▽ is the mirror image of τ with respect to the plane

which is perpendicular to the time line. ¯ just switches all crossings of a tangle.

2.2. Temperley-Lieb tangles and crossingless matchings.

2.2.1. Definitions. A tangle is planar if it can be presented by a diagram without crossings.

A planar tangle is called Temperley-Lieb (TL) if it is boundary connected, that is, if it does

not contain disjoint circles. We denote TL tangles by the letter λ and TTL ⊂ T denotes the

set of all TL tangles. Since TL tangles have no crossings, then λ̄ = λ and the action of ♦

and ▽ coincide: λ♦ = λ▽.

The TL (0, 2n)-tangles are called crossingless n-matchings, and their set is denoted Cn =

TTL
0,2n. All crossingless matchings form the set C =

⋃

n Cn ⊂ TTL. We denote crossingless

matchings by letters α and β.

2.2.2. The structure of TL tangles. Let
i

n and
i

n , 1 ≤ i ≤ n−1, denote the elementary

cup and cap tangles:

i

n = · · · · · ·

i i+11 n

,
i

n = · · · · · ·

i i+11 n

.

For a positive integer d ≤ n
2
let I = (i1, . . . , id) be a sequence of positive integers such that

ik < n− 2k+2 for all k ∈ {1, . . . , d}. A cap-tangle
I

n is a (n, n− 2d)-tangle which can be

presented as a composition of d tangles of the form
i

m:

I

n =
id

n−2d+2 ◦ · · · ◦
i2

n−2 ◦
i1

n.

A cup-tangle
I

n is defined similarly:

I

n =
i1

n ◦
i2

n−2 ◦ · · · ◦
id

n−2d+2 .

Let In,t, where t = n−2d, be the set of all sequences I mentioned above with an additional

condition that ik+1 ≥ ik − 1 for all k ∈ {2, . . . , d}.

The following proposition is obvious:

Proposition 2.1. For every TL (m,n)-tangle λ there exists a number tλ and a unique

presentation

λ =
I

n ◦
J

m, I ∈ In,tλ , J ∈ Im,tλ , tλ = n− 2dλ = m− 2d′λ. (2.4)
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The number tλ is called a through degree, it equals the number of strands that go through

from the bottom to the top of the tangle. Obviously, tλ ≤ m,n and the numbers n − tλ,

m− tλ are even.

If tλ = 0 then the TL tangle λ is called split. A split (2m, 2n)-tangle λ has a unique

presentation λ = α ◦ β▽, where α is a TL (0, 2n)-tangle and β is a TL (0, 2m)-tangle.

2.3. Tangles in admissible manifolds.

2.3.1. Tangles in B3. The relative mapping class group of B3 is trivial, and there is an

obvious canonical bijective map

T0,n
= // Tn(B

3) = T̃n(B
3). (2.5)

2.3.2. Tangles in S2 × I. We call the tangles of T̃(S2 × I) spherical tangles and we call the

tangles of the quotient T(S2 × I) = T̃(S2 × I)/MapS2×I rough spherical tangles.

For a fixed product structure in S2 × I there are obvious surjective homomorphisms (with

respect to tangle composition) s̃ and s:

Ts̃

vvnnnnnnn s

((PPPPPPP

T̃(S2 × I)
−/Map

S2×I

// T(S2 × I)

Theorem 2.2. The kernel of the homomorphism T
s̃
−→ T̃(S2 × I) is a congruence on T gen-

erated by the braid �
� �
�◦

2

n·· , that is, an equivalence
Ä

τ1 ∼ τ2 ⇔ s(τ1) ≈ s(τ2)
ä

is the minimal

equivalence which includes the relation �
� �
�◦

2

n·· ∼
... n and respects the tangle composition.

The relative mapping class group of S2 × [0, 1] is Z2. Let tw (twist) denote its generator.

It acts on spherical tangles by composing them with the braid
...
1

n: if σ is a spherical

(m,n)-tangle, then

tw(σ) = s

Å

...
1

n

ã

◦ σ.

Hence we get the following extension of Theorem 2.2:

Theorem 2.3. The kernel of the homomorphism T
s
−→ T(S2 × I) = T̃(S2 × I)/MapS2×I is

the congruence generated by the braids �
� �
�◦

2

n·· and
...
1

n.

The homomorphisms s̃ and s transfer the involutions ▽, ♦ and ¯ from T to T̃(S2× I) and

to T(S2 × I).
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2.3.3. Links in S3 and in S2 × S1. For a 3-manifold M let L(M) denote the set of links

in M up to ambient isotopy and let L̃(M) be the set of links in M up to diffeomorphism:

L̃(M) = L(M)/MapM , where MapM is the mapping class group of M . We use a shortcut

notation L = L(S3) = L̃(S3) for links in S3.

Let (τ ; S3) denote a circular closure of a (n, n)-tangle within S3 and let (σ; S2×S1) denote

a circular closure of a spherical tangle within S2×S1. Sometimes we also use an abbreviated

notation (τ ; S2 × S1) =
Ä

s(τ); S2 × S1
ä

. Thus we have two closure maps

Tn,n
(−;S3)

yyrrrrrr (−;S2×S1)

''OOOOOOOO

L(S3) L(S2 × S1)

Both are trace-like and invariant under the involution ♦:

(τ1 ◦ τ2; ∗) = (τ2 ◦ τ1; ∗), (2.6)

(τ♦; ∗) = (τ ; ∗), (2.7)

where ∗ stands for S3 or S2 × S1.

The quotients over the action of the mapping class groups combine into the following

commutative diagram:

T
s̃ //

s

''OOOOOOOOOOOOOOO T̃(S2 × I)
(−;S2×S1)

//

��

L̃(S2 × S1)

��

T(S2 × I)
(−;S2×S1)

// L(S2 × S1)

The mapping class group of S2 × S1 is Z2 × Z2 with generators tw (twist) and ♦ (flip),

that is,

tw(τ ; S2 × S1) =
Å

...
1

n ◦ τ ; S2 × S1
ã

, (τ ; S2 × S1)♦ = (τ♦; S2 × S1).

Theorem 2.4. The equivalence relation
Ä

σ1 ∼ σ2 ⇔ (σ1; S
2 × S1) ∼= (σ2; S

2 × S1)
ä

within

T̃(S2×I) is generated by the relation σ1 ◦σ2 ∼ σ2 ◦σ1. The same equivalence within T(S2×I)

is generated by two relations: σ1 ◦ σ2 ∼ σ2 ◦ σ1 and σ♦
1 ∼ σ1.

3. Quantum invariants of links and tangles

3.1. The Temperley-Lieb algebra. A detailed account of Temperley-Lieb algebras and

Jones-Wenzl projectors can be found in the book by Lou Kauffman and Sostenes Lins [KL94].

Here we summarize relevant facts and set our notations.



14 L. ROZANSKY

3.1.1. Definitions. A Temperley-Lieb algebra TL is a ring generated, as a module, freely by

TL tangles, that is, by the elements 〈λ〉, λ ∈ TTL over the ring Z[q, q−1]. The product in TL

corresponds to the composition of tangles and is denoted by ◦. If the numbers of endpoints

do not match, then the product is defined to be zero. Any disjoint circle appearing in the

composition is replaced by the factor −(q + q−1):

≠ ∑

= −(q + q−1). (3.1)

The Kauffman bracket relation

≠ ∑

= q
1
2

≠ ∑

+ q−
1
2

≠ ∑

(3.2)

associates a TL element

〈τ〉 =
∑

λ∈TTL

aλ(τ) 〈λ〉, aλ(τ) =
∑

i∈Z

aλ,i(τ) q
i (3.3)

to any tangle τ . Note that the element 〈τ〉 depends on the framing of τ :

≠

◦ 1

∑

= −q
3
2

≠ ∑

. (3.4)

The homomorphisms (2.3) extend to the Temperley-Lieb algebra

♦,▽ : TL −→ TLop, TLm,n −→ TLn,m, ¯ : TL −→ TL, TLm,n −→ TLm,n (3.5)

by their action on generating TL tangles, the involutions ▽ and ¯ being accompanied by the

involution of the base ring ¯ : Z[q, q−1] → Z[q, q−1], q̄ = q−1. This extension is well-defined,

because the involutions preserve the Kauffman bracket relation (3.2) as well as the unknot

invariant formula (3.1).

3.1.2. Subrings of the Temperley-Lieb algebra and their bimodules. As a Z[q, q−1]-module,

TL contains submodules TLm,n (n − m is even) generated by (m,n)-tangles. The ‘diago-

nal’ submodules TLn,n, which we denote for brevity as TLn, are, in fact, subrings of TL.

Obviously, TLm,n is a module over the ring TLn ⊗ TLop
m .

The empty tangle λ∅ is the only TL (0, 0)-tangle, hence the ring TL0 is canonically isomor-

phic to Z[q, q−1]. A (0, 0)-tangle L is just a link, and the corresponding Kauffman bracket

equals its Jones polynomial: 〈L〉 = J(L, S3). The cyclic closure of an (n, n)-tangle in S3

produces a trace on the ring TLn: TLn
(−;S3)
−−−→ TL0 = Z[q, q−1].
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3.2. The Jones-Wenzl projectors. We use two versions of the Temperley-Lieb algebra

defined over the rings other than Z[q, q−1]. The Temperley-Lieb algebra QTL is generated

by TL tangles over the field Q(q) of rational functions of q and TL+ is the Temperley-

Lieb algebra over the field Q[[q, q−1] of Laurent power series. An injective homomorphism

Q(q) →֒ Q[[q, q−1] generated by the Laurent series expansion at q = 0 produces an injective

homomorphism of Temperley-Lieb algebras QTL →֒ TL+.

The algebra QTLn contains central mutually orthogonal idempotent elements Pn,m (0 ≤

m ≤ n, n−m ∈ 2Z) known as Jones-Wenzl projectors:

Pn,m ◦ Pn,m′ =











Pn,m, if m = m′,

0, if m 6= m′,

∑

0≤m≤n
n−m∈2Z

Pn,m =
... n. (3.6)

These projectors are defined by the relations (3.6) and by the conditions

¨

J

n
∂

◦ Pn,m = 0, if d > n−m,

where d is the number of caps in
¨

J

n
∂

. We denote the images of Jones-Wenzl projectors

Pn,m under the homomorphism Q(q) →֒ Q[[q, q−1] by the same symbols Pn,m.

All projectors are invariant under the involutions (3.5):

P▽
n,m = P♦

n,m = P̄n,m = Pn,m. (3.7)

Projectors Pn,m are central in the following sense:

Pn,k ◦ x = x ◦ Pm,k for any x ∈ QTLm,n. (3.8)

Consequently, the sums P∗,m =
∑∞

k=0Pm+2k,m form a complete set of mutually orthogonal

central projectors of the Temperley-Lieb algebra TL:
∑∞

m=0 P∗,m =
∑∞

n=0
... n.

The most famous and widely used projector is Pn,n denoted simply as Pn, but here we

will need other projectors too, especially P2n,0.

Split TL tangles have the form λ = β ◦ α♦, where α and β are crossingless matchings.

If λ is split, then λ ◦ λ′ and λ′ ◦ λ are split for any TL tangle λ′. Hence split TL tangles

form a two-sided ideal QTLspl ⊂ QTL with submodules QTLspl
2m,2n ⊂ QTLspl generated by

(2m, 2n)-tangles. Obviously,

QTLspl
2m,2n = QTL0,2n ⊗Q(q) QTL2m,0 (3.9)

An alternative definition of the Jones-Wenzl projector P2n,0 comes from the following

theorem:
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Theorem 3.1. There exists a unique element P2n,0 ∈ QTLspl
2n such that

P2n,0 ◦ 〈α〉 = 〈α〉 (3.10)

for any α ∈ Cn. This element is idempotent.

Proof. The elements 〈β ◦ α♦〉 form a basis of QTLspl
2n , hence an element P2n,0 ∈ QTLspl

2n has

a unique presentation P2n,0 =
∑

α,β∈Cn
cαβ〈β ◦ α♦〉. The condition (3.10) determines the

coefficients cαβ :

P2n,0 =
∑

α,β∈Cn

B−1
αβ

¨

β ◦ α♦
∂

, (3.11)

where a symmetric matrix (Bαβ)α,β∈Cn
is defined by the formula

Bαβ =
¨

α♦ ◦ β
∂

= (−q − q−1)nαβ . (3.12)

It is easy to verify that the element (3.11) is idempotent. �

Let QTLspl
2m,2n ⊂ QTLspl be the submodule generated by (2m, 2n)-tangles. Obviously,

QTLspl
2m,2n = QTL0,2n ⊗Q(q) QTL2m,0 (3.13)

and the homomorphism

QTL2n,2m
P̂∗,0
−−−→ QTLspl

2m,2n, P̂∗,0(x) = P2n,0 ◦ x = x ◦ P2m,0

is surjective.

3.3. A stable Witten-Reshetikhin-Turaev theory. Let us describe in more detail the

stable toy WRT theory that we want to categorify.

3.3.1. Basic structure. As we mentioned at the end of subsectionss:ortqft, its base field F

is the field Q(q) of rational functions of q. The involution ¯ is defined by its action on

q: q̄ = q−1. Admissible boundaries are 2-spheres S2
n with 2n marked points. Admissible

manifolds are disjoint unions of four 3-manifolds: B3, S2 × I, S3 and S2 × S1. In fact, all

admissible manifolds are generated by B3 and S2 × I through disjoint union and gluing.

Therefore the TQFT is defined by the choice of Hilbert spaces H(S2
n) and state maps for

rough tangles in B3 and in S2×I, because the other state maps are determined by the axioms.

3.3.2. Hilbert spaces. To a 2-sphere with 2n marked points the stable toy theory associates

a Q(q)-module H(S2
n) = QTL0,2n, which, by definition, is a free Q(q)-module generated by

(Kauffman brackets of) crossingless n-matchings. The module H∨(S2
n) = QTL2n,0 is canoni-

cally dual to H(S2
n), the pairing being defined by the Kauffman bracket of the composition of

tangles:
¨

α♦
∂

x〈β〉 =
¨

α♦ ◦ β
∂

. The involutions (1.4) are the corresponding involutions (3.5)

restricted to QTL2n,0.
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3.3.3. A state map for tangles in B3 and in S2 × I. If we orient the boundary of an oriented

3-ball B3 in the ‘out’ direction and put 2n marked points on it, then using the bijection (2.5)

we set 〈τ,B3〉 = 〈τ〉.

We set the orientation of the boundary component S2 × {0} as ‘in’, the orientation of

the boundary component S2 × {1} as ‘out’ and put 2m and 2n marked points on them.

According to eq.(3.9),

H(S2
n)⊗Q(q) H

∨(S2
m) = QTLspl

2m,2n, (3.14)

hence the state map has the form
¨

−, S2 × I
∂

: T(S2 × I) −→ QTLspl. (3.15)

The gluing axiom implies that it must be a homomorphism and we define it by the following

theorem:

Theorem 3.2. There exists a unique homomorphism (3.15) such that the diagram

T
s // //

〈−〉

��

T(S2 × I)

〈−,S2×I〉
��

TL
P̂∗,0

// QTLspl

(3.16)

is commutative, that is, for any τ ∈ T2m,2n

¨

s(τ), S2 × I
∂

= P2n,0 ◦ 〈τ〉 . (3.17)

Proof. Since the homomorphism s is surjective, it is sufficient to show that ker s is ‘untangled’

by the composition of the Kauffman bracket 〈−〉 and the projector P̂∗,0. According to

Theorem 2.3, ker s is generated by the braids �
� �
�◦

2

2n·· and
...
1

2n, so we have to show that

P2n,0 ◦ 〈τ〉 = P2n,0 for τ being either of these ker s̃-generating braids. The latter relations

follow from the the formula (3.11) and from the isotopies α♦ ◦ τ ≈ α♦ which hold true for

any TL (0, 2n)-tangle α. �

3.3.4. The invariant of links in S3 and in S2 × S1. Since S3 can be constructed by gluing

together two 3-balls B3, the gluing property dictates that the toy invariant of a link L in B3

is its Kauffman bracket: 〈L,B3〉 = 〈L〉.

If the manifold S2 × I has 2n marked points on both boundary components, then the

corresponding Hilbert module (3.14) becomes the module of endomorphisms:

H
Ä

∂(S2 × I)
ä

= QTLspl
2n = EndQ(q)(QTL0,2n). (3.18)
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Theorem 3.3. A trace of an element x ∈ QTLspl
2n,2n, considered as an endomorphism of

QTL0,2n, is equal to its circular closure within S2:

TrQTL0,2n
x =

¨

x; S3
∂

. (3.19)

Proof. It is sufficient to verify the formula for x = β ◦ α♦, where α and β are TL (0, 2n)-

tangles. The only diagonal element in the matrix of x in the basis of TL tangles comes

from the tangle β, and the corresponding matrix element is
¨

α♦ ◦ β
∂

, which is equal to the

Kauffman bracket of the closure of β ◦ α▽ within S3. �

If a rough link L ⊂ S2 × S1 is presented as a circular closure of a rough spherical tangle

σ ∈ T2n,2n(S
2 × I), then the gluing axiom of a TQFT says that the invariant of L must be

equal to the trace of the state map of σ:

¨

σ, S2 × S1
∂

= TrQTL0,2n

¨

σ, S2 × I
∂

. (3.20)

The presentation σ = s(τ) together with eqs.(3.19) and (3.17), allows us to recast eq.(3.20)

in the following equivalent form:

¨

s(τ), S2 × S1
∂

=
Ä

P2n,0 ◦ 〈τ〉 ; S
3
ä

. (3.21)

In other words, the map

¨

−, S2 × S1
∂

: L(S2 × S1) → Q(q) (3.22)

should provide the commutativity of the right square of the diagram

T2n,2n
s // //

〈−〉

��

T2n,2n(S
2 × I)

〈−,S2×I〉

��

(−;S2×S1)
// // L(S2 × S1)

〈−,S2×S1〉

��
QTL2n,2n

P2n,0◦−
// QTLspl

2n,2n

(−;S3)
// Q(q)

(3.23)

(the commutativity of the left square is a particular case of Theorem 3.2).

Theorem 3.4. There exists a unique map (3.22) such that the right square of the dia-

gram (3.23) is commutative

Proof. Since the map (−; S2 × S1) is surjective, then according to Theorem 2.4, we have to

check relations

Ä¨

σ1 ◦ σ2, S
2 × I

∂

; S3
ä

=
Ä¨

σ2 ◦ σ1, S
2 × I

∂

; S3
ä

,
Ä¨

σ♦, S2 × I
∂

; S3
ä

=
Ä¨

σ, S2 × I
∂

; S3
ä

,
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where σ, σ1 and σ2 are arbitrary spherical tangles. Present them as s̃ images of ordinary

tangles, then eq.(3.17) reduces these relations to
Ä

P2n,0 ◦ 〈τ1〉 ◦ 〈τ2〉; S
3
ä

=
Ä

P2n,0 ◦ 〈τ2〉 ◦ 〈τ1〉; S
3
ä

,
Ä

P2n,0 ◦ 〈τ
♦〉; S3

ä

=
Ä

P2n,0 ◦ 〈τ〉; S
3
ä

.

The first of this relations follows easily from the trace-like property (2.6) of the circular

closure of a tangle within S3 and from the commutativity (3.8) of projectors, while the

second one follows from the invariance of the projector (3.7) and of the circular closure (2.7)

under the involution ♦. �

Theorem 3.5. The link invariant 〈L, S2 × S1〉 defined by eq.(3.21) is a Laurent polynomial

of q.

Formula (3.21) indicates that relation (1.7) between the full and stable WRT invariants

of links in S2 × S1 follows from the following theorem:

Theorem 3.6. For any (2n, 2n)-tangle τ there is a relation

Zr(τ, S
2 × S1) =

Ä

P2n,0 ◦ 〈τ〉 ; S
3
ä

|q=exp(iπ/r) (3.24)

if r ≥ n+ 2.

This theorem is well-known, but we will provide its proof in subsection A.2 for complete-

ness.

4. Categorification

4.1. A triply graded categorification of the Jones polynomial. In [Kho00] M. Kho-

vanov introduced a categorification of the Jones polynomial of links. To a diagram L of a

link he associates a complex of graded vector spaces over Q

〈〈L〉〉 = (· · · → Ci → Ci+1 → · · ·) (4.1)

so that if two diagrams represent the same link then the corresponding complexes are homo-

topy equivalent, and the graded Euler characteristic of 〈〈L〉〉 is equal to the Jones polynomial

of L. As a complex of vector spaces, 〈〈L〉〉 is homotopically equivalent to its homology known

as Khovanov homology of the link L: H•

Ä

〈〈L〉〉
ä

= HKh
• (L).

Thus, overall, the complex (4.1) has two gradings: the first one was the homological

grading of the complex, the corresponding degree being equal to i, and the second grading was

the grading related to powers of q. In this paper we adopt a slightly different convention which

is convenient for working with framed links and tangles. It is inspired by matrix factorization

categorification [KR08] and its advantage is that it is no longer necessary to assign orientation
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to link strands in order to obtain the grading of the categorification complex (4.1) which

would make it invariant under the second Reidemeister move.

To a framed link diagram L we associate a Z⊕Z⊕Z2-graded complex (4.1) with degrees

degh, degq and deg2. The first two gradings are of the same nature as in [Kho00] and, in

particular, degh Ci = i. The third grading is an inner grading of chain modules defined

modulo 2 and of homological nature, that is, the homological parity of an element of 〈〈L〉〉,

which affects various sign factors, is the sum of degh and deg2. Both homological degrees are

either integer or half-integer simultaneously, so the homological parity is integer and takes

values in Z2. The q-degree degq may also take half-integer values.

Let [m, l, n] denote the shift of three degrees by l, m and n units respectively1. We use

abbreviated notations

[l, m] = [l, m, 0] , [m]h,q = [m,m] , [m]q = [0, m, 0] , [m]q,2 = [0, m,m] .

After the grading modification, the categorification formulas of [Kho00] take the following

form: the module associated with an unknot is still Z[x]/(x2) but with a different degree

assignment:

≠≠ ∑∑

= Z[x]/(x2) [0,−1, 1] , (4.2)

degq 1 = 0, degq x = 2, degh 1 = degh x = deg2 1 = deg2 x = 0, (4.3)

and the categorification complex of a crossing is the same as in [Kho00] but with a different

degree shift:

≠≠ ∑∑

=

Ñ

≠≠ ∑∑

î

−1
2
, 1
2
, 1
2

ó f
−−−→

≠≠ ∑∑

î

1
2
,−1

2
,−1

2

ó

é

, (4.4)

where f is either a multiplication or a comultiplication of the ring Z[x]/(x2) depending on

how the arcs in the r.h.s. are closed into circles. The resulting categorification complex (4.1)

is invariant up to homotopy under the second and third Reidemeister moves, but it acquires

a degree shift under the first Reidemeister move:

≠≠

◦ 1

∑∑

=
≠≠ ∑∑

î

−1
2
, 3
2
,−1

2

ó

. (4.5)

It is easy to see that the whole categorification complex (4.1) has a homogeneous degree

deg2.

1 Our degree shift is defined in such a way that if an object M has a homogeneous degree n, then the

shifted object M [1] has a homogeneous degree n+ 1.
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4.2. The universal categorification of the Temperley-Lieb algebra. D. Bar-Natan

[BN05] described the universal category TL, whose Grothendieck K0-group is the Temperley-

Lieb algebra TL considered as a Z[q, q−1]-module. We will use this category with obvious

adjustments required by the new grading conventions.

4.2.1. A homotopy category of complexes of a Z-graded additive category. A split Grothen-

dieck group G(C) of an additive category C is generated by the images G(A) of its objects

modulo the additive relation G(A⊕B) = G(A) + G(B).

A Grothendieck group K0(C) of an abelian category C is generated by the images K0(A)

of its objects modulo the exact sequence relation: K0(A) − K0(B) + K0(C) = 0, if there is

an exact sequence A → B → C.

A Grothendieck group K0(C) of a triangulated category C is generated by the images

K0(A) of its objects modulo the translation relation K0(A[1]) = −K0(A) and the exact

triangle relation: K0(A) − K0(B) + K0(C) = 0, if A, B and C form an exact triangle

A → B → C → A[1].

If the category C is Z-graded, that is, there is a shift functor [1]q and modules Hom(A,B)

are Z-graded, then the groups G(C) and K0(C) are modules over Z[q, q−1], the multiplication

by q corresponding to the shift [1]q.

For an additive category C, let Kb(C) denote the homotopy category of bounded complexes

and K−(C) – the similar category of bounded from above complexes over C. These categories

are triangulated. Suppose that C is Z-graded and generated, as an additive category, by

objects E1, . . . , EN and their Z-grading shifts, that is, an object A of C has a form

A =
⊕

1≤a≤N

⊕

j∈Z

ma
jEa [j]q , (4.6)

where ma
j ∈ Z≥0 are multiplicities of the shifted objects Ea [j]q. Suppose further that

K0(E1), . . . ,K0(EN ) generate freely G(C) as a module over Z[q, q−1], so the presentation (4.6)

is unique.

An object of Kb(C) has the form

A = (· · · → Ai → Ai+1 → · · ·) , Ai =
⊕

1≤a≤N

⊕

j∈Z

ma
i,jEa [j]q . (4.7)

We call the objects Ai chain ‘modules’ and we refer to objects Ea with non-zero multiplicities

as constituent objects of the complexA. The functor C →֒ K(C), A 7→ (0 → A → 0) generates

the isomorphism of modules G(C) = K0(K(C)) and

K0(A) =
∑

i∈Z

∑

1≤a≤N

∑

j∈Z

(−1)ima
i,j q

j K0(Ea). (4.8)
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Define the q+-order of an object (4.6) as |A |q = min
¶

j : ma
j 6= 0

©

. A complex A in

TL− is q+-bounded if limi→∞ |A−i |q = +∞. Let K−/+(C) ⊂ K−(C) be the full subcategory

of q+-bounded complexes. The category K−/+(C) is triangulated. Define K+
0 (K

−/+(C)) as

a module over formal Laurent series Q[[q, q−1] freely generated by the elements K+
0 (Ea),

1 ≤ a ≤ N and define the map K+
0 : ObK−/+(C) → K+

0 (K
−/+(C)) by the formula similar to

eq.(4.8):

K+
0 (A) =

∑

i∈Z

∑

1≤a≤N

∑

j∈Z

(−1)ima
i,j q

j K+
0 (Ea). (4.9)

Since the complex A is q+-bounded, the sum over i in this equation is well-defined.

4.2.2. The additive category ŤL. For two TL (m,n)-tangles λ1 and λ2, let

λ1#λ2 = S1
(1) ⊔ · · · ⊔ S1

(k) (4.10)

denote a union of disjoint circles produced by gluing together the matching end-points of λ1

and λ2. A planar cobordism Σ from λ1 to λ2 is a compact orientable surface with a specified

diffeomorphism between its boundary and λ1#λ2.

Let Cob(λ1, λ2) be a Z⊕Z2-graded module with free generators Σ̂ associated with planar

cobordisms Σ and having degrees

degq Σ̂ = deg2 Σ̂ = 1
2
(m+ n)− χ(Σ),

where χ(Σ) = 2−#holes−#handles is the Euler characteristic of Σ.

Let p1, p2, p3, p4 be 4 distinct points inside Σ. An associated 4Tu relation is a formal

relation

Σ̂12 + Σ̂34 = Σ̂13 + Σ̂24,

where Σij is a planar cobordism constructed by cutting small neighborhoods of pi and pj out

of Σ and then gluing together the boundaries of the cuts.

By definition, ŤLm,n is an additive Z⊕Z2-graded category generated by objects 〈〈λ〉〉 which

are indexed by TL (m,n)-tangles λ. A module of morphisms is

Hom
ŤLm,n

Ä

〈〈λ1〉〉, 〈〈λ2〉〉
ä

= Cob(λ1, λ2)/(4Tu relations).

A planar cobordism Σ is called reduced if it is a disjoint union of connected surfaces

Σ = Σ1 ⊔ · · · ⊔ Σk, such that each Σi is either a 2-disk B2 or a 2-torus with a hole; since

each Σi has a single boundary component, there are specified diffeomorphisms between the

boundaries ∂Σi and circles S1
(i) of eq.(4.10).

Theorem 4.1 ([Kho02], [BN05]). The module Hom
ŤLm,n

Ä

〈〈λ1〉〉, 〈〈λ2〉〉
ä

is generated freely by

reduced planar cobordisms.
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The following corollary of this theorem is easily established by relating two types of reduced

planar cobordisms (a 2-disk and a 2-torus with a hole) to the generators 1 and x of the

module (4.2).

Corollary 4.2. There is a canonical isomorphism

Hom
ŤLm,n

Ä

〈〈λ1〉〉, 〈〈λ2〉〉
ä

= 〈〈λ2 ◦ λ
▽
1 ; S

3〉〉
î

0, m+n
2

, m+n
2

ó

, λ1, λ2 ∈ T
TL
m,n. (4.11)

Moreover, since (λ2◦λ
▽
1 ; S

3) = (λ1◦λ
▽
2 ; S

3) = (λ▽
2 ◦λ1; S

3), there is a canonical isomorphism

〈〈λ2 ◦ λ
▽
1 ; S

3〉〉 = 〈〈λ1 ◦ λ
▽
2 ; S

3〉〉 = 〈〈λ▽
1 ◦ λ2; S

3〉〉 and in view of eq.(4.11) there are canonical

isomorphisms between the modules of morphisms

Hom
ŤLm,n

Ä

〈〈λ1〉〉, 〈〈λ2〉〉
ä

= Hom
ŤLm,n

Ä

〈〈λ2〉〉, 〈〈λ1〉〉
ä

= Hom
ŤLm,n

Ä

〈〈λ▽
1 〉〉, 〈〈λ

▽
2 〉〉
ä

. (4.12)

An elementary planar cobordism is a reduced cobordism which is either a saddle cobordism

or an x-multiplication, which is a connected sum of an identity cobordism and a 2-dimensional

torus.

Proposition 4.3. Every reduced planar cobordism can be presented as a composition of

elementary planar cobordisms.

A composition of TL tangles generates a bifunctor ◦ : ŤLm,n ⊗ ŤLl,m → ŤLl,n, if we apply

the categorified version of the rule (3.1) in order to remove disjoint circles:

≠≠ ∑∑

= 〈〈λ∅〉〉 [0, 1, 1] + 〈〈λ∅〉〉 [0,−1, 1] , (4.13)

Thus the category ŤL =
⊕

m,n ŤLm,n acquires the monoidal structure.

4.2.3. The universal category TL. The universal category TLm,n is the homotopy category

of bounded complexes over ŤLm,n: TLm,n = Kb(ŤLm,n). In other words, in accordance with

the general formula (4.7), an object of TL is a complex

A = (· · · → Ai → Ai+1 → · · ·) , Ai =
⊕

j∈Z
µ∈Z2

⊕

λ∈TTL
m,n

mλ
i,j,µ 〈〈λ〉〉 [0, j, µ] . (4.14)

The total category TL is a formal sum of categories: TL =
⊕

m,n TLm,n. It inherits the

monoidal structure of ŤL which comes from the composition of tangles.

A categorification map 〈〈−〉〉 : T → TL turns a framed tangle diagram τ into a complex

〈〈τ〉〉 according to the rules (4.2) and (4.4), the morphism f in the complex (4.4) being the

saddle cobordism.

We use a shortcut TLn = TLn,n. The category TL0 is generated by a single object 〈〈λ∅〉〉.

Hence it is equivalent to the homotopy category of free Z ⊕ Z2-graded modules and it has
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a homology functor. The homology functor applied to a complex 〈〈L〉〉 of a link L ⊂ S3

yields, by definition, the link homology: H•

Ä

〈〈L〉〉
ä

= HKh
• (L). A circular closure (τ ; S3) of

(n, n)-tangles τ within S3 extends to a S3-closure functor

TLn
(−;S3)

// TL0 = Kb(Z− gmod). (4.15)

4.2.4. Grothendieck group map K0. In accordance with the general rules of subsection 4.2.1,

K0(TL) = G(ŤL) = TL and there is a commutative diagram

TL

K0

��
T

〈〈−〉〉 55llllllllll
〈−〉

))RRRRRRRRRR

TL

(4.16)

where the map K0 turns the complex (4.14) into the sum (3.3):

K0(A) =
∑

λ∈TTL
n

∑

j∈Z

aλ,j q
j 〈λ〉, aλ,j =

∑

i∈Z
µ∈Z2

(−1)i+µmλ
i,j,µ. (4.17)

In addition to TL we consider the categories TL− and TL−/+ ⊂ TL− defined in accordance

with subsection 4.2.1. Obviously, K+
0 (TL

−/+) = TL+.

4.2.5. Involutive functors ♦, ▽ and ¯. Let TLop denote the category TL in which the com-

position of tangles is performed in reverse order. We define a covariant functor ♦ and

contravariant functors ▽, ¯

♦,▽ : TL −→ TLop, TLm,n −→ TLn,m, ¯ : TL −→ TL, TLm,n −→ TLm,n (4.18)

by the requirement that their action on generating objects 〈〈λ〉〉 matches their action on

underlying TL tangles λ and that ♦ should preserve degree shifts while ▽ and ¯ should

invert them. The action of the functors (4.18) on morphisms is established with the help of

isomorphisms (4.12).

It is easy to see by checking the action of ♦ and ▽ on eqs.(4.4) and (4.13) that the maps

of the diagram (4.16) intertwine the actions of ♦ and ▽ on T, TL and TL.

For two complexes A and B in TLm,n there is a canonical isomorphism extending that of

eq.(4.11):

HomTLm,n
(A,B) = 〈〈B ◦A▽; S3〉〉

î

0, m+n
2

, m+n
2

ó

.



A CATEGORIFICATION OF THE STABLE SU(2) WRT INVARIANT OF LINKS IN S2
× S1 25

4.2.6. A split subcategory. An additive split category ŤL
spl

2m,2n ⊂ ŤL2m,2n is a full subcategory

whose objects are split TL tangles 〈〈β ◦α♦〉〉, where α ∈ Cm and β ∈ Cn. There is an obvious

functor

ŤL2m,0 ⊗ ŤL0,2n −→ ŤL
spl

2m,2n,
Ä

〈〈β〉〉 , 〈〈α♦〉〉
ä

7→ 〈〈β ◦ α♦〉〉. (4.19)

A split category TL
spl
2m,2n ⊂ TL2m,2n is a full subcategory whose objects are 〈〈β ◦α♦〉〉, where

α ∈ Cm and β ∈ Cn. There is an obvious functor

TL2m,0 ⊗ TL0,2n −→ TL
spl
2m,2n,

Ä

〈〈β〉〉 , 〈〈α♦〉〉
ä

7→ 〈〈β ◦ α♦〉〉. (4.20)

Theorem 4.4. The functor (4.19) is an equivalence of categories.

Proof. Obviously, this functor acts bijectively on objects and injectively on morphisms. The

surjectivity of its action on morphisms is established with the help of Theorem 4.1: a reduced

planar cobordism between the tangles α1 ◦ β
♦
1 and α2 ◦ β

♦
2 is a disjoint union of a cobordism

between α1 and α2 and a cobordism between β1 and β2. �

The additive category equivalence (4.19) implies the equivalence of homotopy categories

K−/+(ŤL2m,0 ⊗ ŤL0,2n) −→ TL
spl,−/+
2m,2n , (4.21)

where TL
spl,−/+
2m,2n = K−/+

Ä

ŤL
spl

2m,2n

ä

is the full subcategory of TL
−/+
2m,2n.

4.3. Bimodule categorification.

4.3.1. The rings Hn. M. Khovanov [Kho02] defined the algebras Hn as the sums of rings of

morphisms between the objects 〈〈α〉〉 or, equivalently, 〈〈α▽〉〉, α ∈ Cn:

Hn =
⊕

α,β∈Cn

HomTL2n,0

Ä

〈〈α〉〉 , 〈〈β〉〉
ä

=
⊕

α,β∈Cn

HomTL2n,0

Ä

〈〈α▽〉〉, 〈〈β▽〉〉
ä

, (4.22)

the isomorphisms being particular cases of those of eq. (4.12). The rings Hn have Z ⊕ Z2-

grading associated with q-related Z-grading and Z2-grading of the category TL (in fact,

deg2Hn = 0). The first of isomorphisms (4.12) provides a canonical isomorphism

♦ : Hn → Hop
n . (4.23)

Denote Hn,m = Hn⊗Hop
m . We use abbreviated notations He

n = Hn⊗Hop
n and Kb(Hn,m) =

Kb(Hn,m−gmod). The isomorphism (4.23) generates the isomorphism ♦ : Hn,m → Hm,n and

consequently an equivalence functor

♦̇ : Kb(Hn,m) → Kb(Hm,n). (4.24)
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4.3.2. Bimodules from tangles. The categorification maps

〈〈−〉〉K : T2m,2n → Kb(Hn,m) (4.25)

are defined in [Kho02] by the formula

〈〈τ〉〉K =
⊕

α∈Cm
β∈Cn

HomTL2m,2n

Ä

〈〈β〉〉 , 〈〈τ ◦ α〉〉
ä

=
⊕

α∈Cm
β∈Cn

〈〈β▽ ◦ τ ◦ α〉〉 [n]q,2 . (4.26)

Comparing eqs.(4.22) and (4.26), it is easy to see that

¨̈ ... 2n

∂∂

K
= Hn, (4.27)

where Hn is considered as a module over He
n.

Theorem 4.5 ([Kho02]). The map 〈〈−〉〉K translates the composition of tangles into the

tensor product over the intermediate ring: if τ1 is a (2l, 2m)-tangle and τ2 is a (2m, 2n)-

tangle, then there is a canonical isomorphism

〈〈τ2 ◦ τ1〉〉K = 〈〈τ2〉〉K ⊗Hm
〈〈τ1〉〉K. (4.28)

The map (4.25) restricted to TL tangles extends to a functor FK : TL2m,2n → Kb(Hn,m),

which maps an object 〈〈λ〉〉 to 〈〈λ〉〉
K
and translates planar cobordisms between TL tangles λ

and λ′ into homomorphisms between the modules 〈〈λ〉〉
K
and 〈〈λ′〉〉

K
. Moreover, the categori-

fication maps (4.25) can be threaded though the universal category:

T2m,2n

〈〈−〉〉

����
��

��
��

�
〈〈−〉〉

K

  B
BB

BB
BB

BB

TL2m,2n
FK // // Kb(Hn,m)

(4.29)

The covariant involutive functor ♦ and contravariant involutive functors ▽ and ¯

♦,▽ : Kb(Hn,m) → Kb(Hm,n), ¯ : Kb(Hn,m) → Kb(Hn,m) (4.30)

are defined by the formulas

M♦ = M♦̇ [m− n]q,2 , M▽ = M∨ [−m− n]q,2 , M̄ = (M♦̇)∨ [−2m]q,2 , (4.31)

where M is a complex in Kb(Hn,m), M∨ is the dual complex and ♦̇ is the equivalence

functor (4.24). It is easy to see that the maps of the diagram (4.29) intertwine the ac-

tions (2.3), (4.18) and (4.30) of ♦, ▽ and ¯. In particular,

〈〈τ〉〉♦ = 〈〈τ♦〉〉 (4.32)

for τ ∈ T2n,2n.
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5. Derived category of Hn,m-modules and Hochschild homology

5.1. A quick review of derived categories of modules.

5.1.1. Projective resolution formula. For a (graded) ring R, Db(R) denotes the bounded

derived category of (graded) R-modules, R-pr denotes the category of (graded) projective

modules of R, while Kb
pr(R) and K−

pr(R) denote the bounded and bounded from above homo-

topy categories of (graded) projective R-modules. The following commutative diagram is a

practical guide for working with Db(R):

Kb
pr(R) � � //

� _

��

K−
pr(R)

Kb(R)
FKD // //

PK

;;wwwwwwwwwwwwwww

Db(R)
?�

P

OO
(5.1)

Here the arrows →֒ denote full subcategory injective functors, the arrow ։ denotes a functor

with surjective action on objects, while P and PK are functors of projective resolution.

If M is a complex in Kb(R), then usually, with a slight abuse of notations, FKD(M) is

denoted simply as M, and we will follow this convention.

Since the functor P is fully injective, while FKD is surjective, the structure of the derived

category Db(R) is completely determined by the functor PK, which has a convenient presen-

tation. Denote Re = R ⊗ Rop and define a projective resolution of R as Re-module to be a

complex of Re-modules

P(R) = (· · · → P(R)−2 → P(R)−1 → P(R)0)

with a homomorphism P(R)0 → R such that the total complex · · · → P(R)−1 → P(R)0 → R

is acyclic. Then PK acts on the complexes of Kb(R) by tensoring them with P(R) over R:

PK = P(R)⊗R −. (5.2)

The isomorphism of objects M andN of Db(R) is called quasi-isomorphism and is denoted

as M ≃ N.

5.1.2. Semi-projective bimodules. Suppose that R is a tensor product: R = R1 ⊗ Rop
2 . A

R1⊗Rop
2 -module is called semi-projective if it is projective separately as a R-module and as
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a Rop
2 -module. Denote by Kb

sp(R1 ⊗Rop
2 ) the bounded homotopy category of semi-projective

R1 ⊗ Rop
2 -modules and consider the following version of the commutative diagram (5.1):

Kb
sp(R1 ⊗Rop

2 )
Psp

//
� _

��

K−
pr(R1 ⊗Rop

2 )

Kb(R1 ⊗Rop
2 )

FKD // //

PK

66nnnnnnnnnnnnnn

Db(R1 ⊗Rop
2 )

?�

P

OO
(5.3)

The projective resolution functor PK can be expressed with the help of eq. (5.2): PK =

P(R1) ⊗R1
(−) ⊗R2

P(R2). However, its restriction Psp to complexes of semi-projective

modules has a simpler expression, because it is sufficient to tensor with a projective resolution

of one of two rings:

Psp = P(R1)⊗R1
− = −⊗R2

P(R2). (5.4)

5.1.3. Hochschild homology. For any ring R consider a ring Re = R ⊗ Rop. The Hochschild

homology and cohomology functors are defined by the diagrams

K−
pr(R

e)

H•(−⊗ReR)

%%KKKKKKKKKKKKKKKKK

Db(Re)
?�

P

OO

HH•(−)
// (Q− gmod)−

K−
pr(R

e)

H•(HomRe (−,R))

%%KKKKKKKKKKKKKKKKK

Db(Re)
?�

P

OO

HH•(−)
// (Q− gmod)+

(5.5)

where (Q−gmod)− and (Q−gmod)+ denote the categories of Z-graded vector spaces over Q

with homological Z-grading bound from above and from below. In other words, Hochschild

homology and cohomology are are functors TorRe(−, R) and ExtRe(−, R).

If M is a bounded complex of Re-modules, then

HH•(M) = H•(M⊗Re P(R)). (5.6)

5.2. Split TL tangles and projective Hn,m-modules.

5.2.1. Derived category of Hn,m-modules. Let Kb
sp(Hn,m) ⊂ Kb(Hn,m) denote the bounded

homotopy category of semi-projective Hn,m-modules. The following is easy to prove:

Theorem 5.1 ([Kho02]). For any TL (2n, 2m)-tangle λ, the Hn,m-module 〈〈λ〉〉
K
is semi-

projective with possible degree shift and, consequently, the image of the functor FK lies within

Kb
sp(Hn,m).

The next theorem strengthens this result for split TL tangles:
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Theorem 5.2 ([Kho02]). The Hn,m-modules Pβ,α = 〈〈β ◦α▽〉〉K [m]q,2, α ∈ Cm, β ∈ Cn form

a complete list of indecomposable projective Hn,m-modules.

Since H0 = Z and, consequently, Hn,0 = Hn, Theorem 5.2 implies that 〈〈α〉〉
K
, α ∈ Cn form

the full list of indecomposable projective modules of Hn. This fact has three corollaries. The

first one is obvious:

Corollary 5.3. The map 〈〈−〉〉K : T0,n → Kb(Hn) threads through the homotopy category of

projective modules:

T0,n

〈〈−〉〉K

**

〈〈−〉〉K

// Kb
pr(Hn)

� � // Kb(Hn)

The second corollary is a consequence of an obvious relation

〈〈β ◦ α▽〉〉K = 〈〈β〉〉
K
⊗ 〈〈α▽〉〉K. (5.7)

Corollary 5.4. The isomorphism (5.7) generates a canonical equivalence of categories

Hn,m-pr = (Hn-pr)⊗ (Hop
m -pr)

and consequently

K−/+
pr (Hn,m) = K−/+

Å

(Hn-pr)⊗ (Hop
m -pr)

ã

. (5.8)

The third corollary comes from the combination of eqs. (4.11), (4.28) and (4.31): for

α, β ∈ Cn

HomTL2n,0
(〈〈α〉〉 , 〈〈β〉〉) = 〈〈α▽ ◦ β〉〉 [n]q,2 = 〈〈α▽〉〉K ⊗Hn

〈〈β〉〉
K
[n]q,2

= 〈〈α〉〉∨
K
⊗Hn

〈〈β〉〉
K
= HomKb

pr(Hn)

Ä

〈〈α〉〉
K
, 〈〈β〉〉

K

ä

.

Corollary 5.5. The functor

FK : ŤL0,2n
=

−−→ Hn-pr, TL0,2n
=

−−→ Kb
pr(Hn) (5.9)

establishes an equivalence of categories.

A combination of equivalences (5.8), (4.19) and (5.9) leads to the equivalence of categories

FK : TL
spl,−/+
2m,2n

=
−−→ K−/+

pr (Hn,m). (5.10)

Let 〈〈−〉〉D be a composition of the categorification map 〈〈−〉〉K and the functor FKD:

T2m,2n

〈〈−〉〉D

))

〈〈−〉〉K

// Kb
sp(Hn,m)

FKD

// Db(Hn,m)



30 L. ROZANSKY

Theorem 5.6. The elements KQ
0

Ä

〈〈β ◦ α▽〉〉D
ä

, α ∈ Cm, β ∈ Cn form a basis of the Q(q)

vector space KQ
0 (D

b(Hn,m)).

Corollary 5.7. There are canonical isomorphisms

KQ
0

Ä

Db(Hn,m)
ä

= QTLspl
2m,2n, K+

0

Ä

Db(Hn,m)
ä

= TLspl,+
2m,2n

which identify the basis elements KQ
0

Ä

〈〈β ◦ α▽〉〉D
ä

and 〈β ◦ α▽〉.

From now on throughout the paper we will use QTLspl
2m,2n and TLspl,+

2m,2n in place of Gro-

thendieck groups of Db(Hn,m).

5.2.2. A universal projective resolution.

Theorem 5.8. The projective resolution functor P : Db(Hn,m) → K−
pr(Hn,m) threads through

q+-bounded complexes, so there is a commutative diagram

Db(Hn,m)

P

**

P+

//

PTL &&MMMMMMMMMMM
K−/+

pr (Hn,m)
� � // K−

pr(Hn,m)

TL
spl,−/+
2m,2n

FK =

OO

which defines the functor PTL.

Let Pn = PTL(Hn) be a ‘universal’ projective resolution of the He
n-module Hn. Since

the functor FK transforms the tangle composition into the tensor product, projective reso-

lution (5.4) of semi-projective Hn,m-modules can be performed universally with the help of

the following commutative diagram

TL2m,2n
P̂∗ //

FK

��

TL
spl,−/+
2m,2n

FK=

��

Kb
sp(Hn,m)

Psp
//

FKD &&MMMMMMMMMM
K−/+

pr (Hn,m)

Db(Hn,m)

P

88ppppppppppp

(5.11)

where the universal projective resolution functor P̂∗ is defined similarly to eq.(5.4):

P̂∗(−) = Pn ◦ − = − ◦Pm. (5.12)

In fact, the commutativity of the square in the diagram (5.11) together with the second

equality of eq.(5.4) proves that Pn ◦ − = − ◦Pm.



A CATEGORIFICATION OF THE STABLE SU(2) WRT INVARIANT OF LINKS IN S2
× S1 31

5.2.3. Hochschild homology. Let (Q− gmod)−/+ denote the category of Z⊕Z-graded vector

spaces V =
⊕

i,j∈Z Vi,j whose homological grading is bounded from above and which are also

q+-bounded (see the definition in subsection 4.2.1). Obviously, K+
0 (Q−gmod)−/+ = Z[[q, q−1]

and K+
0 acts on the objects of (Q − gmod)−/+ as the graded Euler characteristic χq. Let

(Q− gmod)Q ⊂ (Q− gmod)−/+ denote the full subcategory whose objects have the property

that their Euler characteristic is a rational function of q, that is, χq threads through Q(q):

(Q− gmod)Q

χq

((
χq

// Q(q) � � // Q[[q, q−1]

Theorem 5.9. The Hochschild homology of Db(He
n) lies within (Q− gmod)Q:

Db(He
n) HH•(−)

//

HH•(−)

++

(Q− gmod)Q � � // (Q− gmod)−/+

6. Results

6.1. Categorification. Admissible boundaries in stable restricted topological WRT theory

are 2-spheres S2
n with 2n marked points. Associated algebras are A(S2

n) = Hn, canonical

involution (1.8) being the homomorphism (4.23). Then by the axiom (1.10)

C(S2
n) = Db(Hn), C(S2

m ⊔ S2
n) = Db(Hn,m),

where in the last equation we assume that the boundary component S2
m is ‘in’, while the

boundary component S2
n is ‘out’. Gluing formulas force us to define the category C(∅)

associated with empty boundary as (Q − gmod)Q, however we can not define the action of

functors ▽ and ¯ on it.

The categorification map for 3-ball tangles is defined as the unique map 〈〈−〉〉 : Tn(B
3) →

Db(Hn) which makes the following diagram commutative

T0,n
= //

〈〈−〉〉K

��

〈〈−〉〉
D

$$H
HHHHH

HHHHHHHHHH
Tn(B

3)

〈〈−〉〉

���
�
�
�
�

Kb
pr(Hn)

� � // Db(Hn)

Since gluing two 3-balls together produces a 3-sphere, the gluing axiom determines the

categorification map for links in S3. Derived tensor product in Db(Hn) coincides with the

ordinary tensor product in Kb
pr(Hn), hence in view of Theorem 4.5, a link L ⊂ S3 is mapped

into its Khovanov homology: 〈〈L,B3〉〉 = 〈〈L〉〉.
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The categorification map 〈〈−〉〉 : T(S2×I) → Db(Hn,m) for rough tangles in S2×I is defined

with the help of the following theorem:

Theorem 6.1. There exists a unique categorification map 〈〈−〉〉 : T(S2×I) → Db(Hn,m) such

that the following diagram is commutative:

T2m,2n

〈〈−〉〉K

��

〈〈−〉〉
D

&&MMMMMMMMMMMMMMMMMM

s // // T2m,2n(S
2 × I)

〈〈−〉〉

���
�
�
�
�

Kb
sp(Hn,m)

FKD

// Db(Hn,m)

(6.1)

Theorem 6.2. The diagram (1.13)

T2m,2n(S
2 × I)

〈〈−〉〉

$$I
IIIIIIII

〈−〉

zzuuuuuuuuu

Db(Hn,m)
K0 // QTLspl

2m,2n

is commutative.

Since S2×S1 can be constructed by gluing together the boundary components of S2×I, the

gluing axiom requires that the categorification map for links in S2×S1 should be determined

by the following theorem:

Theorem 6.3. There exists a unique homology map HKh
• (−) : L(S2 × S1) → (Q − gmod)Q

such that the following diagram is commutative:

T2n,2n(S
2 × I)

(−;S2×S1)
// //

〈〈−〉〉

��

L(S2 × S1)

Hst
•
(−)

���
�
�
�
�

Db(Hn,m)
HH•(−)

// (Q− gmod)Q

Theorem 6.4. The diagram (1.13)

L(S2 × S1)
〈−〉

  A
AA

AA
AA

A
Hst

•
(−)

yyttttttttt

(Q− gmod)Q
χq

// Q(q)

(6.2)

is commutative.
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Next theorem shows that the universal resolution Pn allows us to compute the homology

〈〈L, S2 × S1〉〉 as a Khovanov-type homology within S3 and without reference to the algebras

Hn,m.

Theorem 6.5. The following diagram is commutative:

T2n,2n
s //

〈〈−〉〉

��

T2n,2n(S
2 × I)

(−;S2×S1)
// L(S2 × S1)

Hst
•
(−)

((RRRRRRRRRRRRRRRR

TL2n,2n
P̂∗ // TL

spl,−/+
2n,2n

H•(−;S3)
// (Q− gmod)−/+ (Q− gmod)Q? _oo

(6.3)

In other words, if a link in S2 × S1 is presented as a S2 × S1 closure of a (2n, 2n)-tangle τ ,

then its stable homology is isomorphic to the homology of the composition 〈〈τ〉〉 ◦Pn closed

within S3:

Hst
• (τ, S

2 × S1) = H•

Ä

〈〈τ〉〉 ◦Pn; S
3
ä

. (6.4)

The universal projective resolution complex Pn is approximated by categorification com-

plexes of torus braids with high twist. As a result, eq.(6.4) provides an effective method of

computing stable homology of links in S2×S1 by approximating it with Khovanov homology

of their ‘torus braid closures’ within S3.

6.2. Infinite torus braid as a projective resolution of Hn.

6.2.1. Torus braids yield a projective resolution of Hn. Let A∠ be a set of pairs of integer

numbers confined within a certain angle on a square lattice:

A∠ = {(i, j) ∈ Z2 | i ≥ 0, i ≤ j ≤ 2i} (6.5)

and let A∠ [k, l] denote the shifted set A∠:

A∠ [k, l] = {(i, j) | (i− k, j − l) ∈ A∠}. (6.6)

We also introduce a special notation

A∠(t, n;m) = A∠

î

1
2
mt2, 1

2
mt2 +mt− 1

2
t+ 1

2
n
ó

. (6.7)

A complex A ∈ ObTL−2n of eq.(4.14) is called angle-shaped if the multiplicities mλ
−i,j,µ are

non-zero only when (i, j) ∈ A∠. Obviously, in this case the complex is an object of TL
−/+
2n .

A complex A is called split if the multiplicities mλ
−i,j,µ are non-zero only when the tangles λ

are split.

A truncation of a complex A is defined as follows: t−≤mA = (A−m → A−m+1 → · · · ).



34 L. ROZANSKY

Let A be an object of TL−2n. We use a notation A♯ for a particular complex with special

properties, which represents a homotopy equivalence class of A.

In Section 8 we construct special categorification complexes of torus braids.

Theorem 6.6. There exists a sequence of special complexes
¨̈ ...

m

2n
∂∂♯

, m = 1, 2, . . ., such

that

(1) a TL tangle λ with a through degree tλ may appear in
¨̈ ...

m

2n
∂∂♯

only within a shifted

angle region:

mλ
−i,j,µ > 0 only if (i, j) ∈ A∠(tλ, n;m); (6.8)

(2) there is an isomorphism of truncated complexes

t−≤2m−1

¨̈ ...
m+1

2n
∂∂♯ ∼= t−≤2m−1

¨̈ ...
m

2n
∂∂♯

. (6.9)

According to eq.(6.9), braid complexes t−≤2m−1

¨̈ ...
m

2n
∂∂♯

‘stabilize’ and it turns out that

their ‘stable limit’ is the universal resolution Pn.

Theorem 6.7. There exists a particular angle-shaped complex P♯
n ∈ ObTL

−/+
2n represent-

ing the homotopy equivalence class of Pn, such that the following truncated complexes are

isomorphic:

t−≤2m−1

¨̈ ...
m

2n
∂∂♯ ∼= t−≤2m−1P

♯
n. (6.10)

A combination of this theorem with formula (6.4) leads to a practical method of computing

homology of a link in S2 × S1 presented as a closure of a (2n, 2n)-tangle τ :

Theorem 6.8. For a (2n, 2n)-tangle τ there is a canonical isomorphism of homologies

Hst
i (τ, S

2 × S1) = HKh
i

Å

τ ◦
...
m

2n ; S3
ã

(6.11)

for i ≥ | 〈〈τ〉〉 |+h − 2m+ 2.

Note that since the complexes P♯
n and

¨̈ ...
m

2n
∂∂♯

are trivial in positive homological

degrees, both sides of eq.(6.11) are trivial for i > | 〈〈τ〉〉 |+h .
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6.3. A conjecture about the structure of the Hochschild homology and cohomol-

ogy of the algebra Hn. Hochschild homology and cohomology of Hn is related to the

homology of the circular closure of the trivial braid within S2 × S1. Indeed, combining

eq.(4.27) and the definition of the categorification map Hst
• (−) : L(S2 × S1) → (Q− gmod)Q

via Theorem 6.3 we get the isomorphism

HH•(Hn) = Hst
•

Å

... 2n; S2 × S1
ã

. (6.12)

The algebra Hn has a Frobenius trace with q-degree equal to −2n, hence its Hochschild

cohomology is dual to its Hochschild homology up to a degree shift:

HH•(Hn) = HH•(Hn)
∨ [2n]q . (6.13)

This relation can be proved also with the help of universal categorification:

HH•(Hn) = H•

Ä

HomHe
n
(P(Hn), Hn)

ä

= H•

Ä

P(Hn)
∨ ⊗He

n
Hn

ä

= H•

Ä

P(Hn)
▽ ⊗He

n
Hn

ä

[2n]q

= H•

Ä

FK(P
▽
n )⊗He

n
Hn

ä

[2n]q = H•

Ä

P▽
n ; S

3
ä

[2n]q = H•

Ä

Pn; S
3
ä∨

[2n]q

= H•

Ä

P(Hn)⊗He
n
Hn

ä∨
[2n]q = HH•(Hn)

∨ [2n]q .

Here the first and last equalities are the definitions (5.5) of the Hochschild homology and

cohomology, the third equality comes from the second of equations (4.31), while the seventh

and fifth equalities come from commutative triangles

TL
spl,−
2n

FK

��

(−;S3)

))TTTTTTTTTTTTTTTTTT

K−
pr(H

e
n)

H•(−⊗He
n
Hn)

// (Q− gmod)−

TL
spl,+
2n

FK

��

(−;S3)

))TTTTTTTTTTTTTTTTTT

K+
pr(H

e
n)

H•(−⊗He
n
Hn)

// (Q− gmod)+

The first of these triangles is a part of the commutative diagram (7.10) (the q+-boundedness

condition plays no role there), while the second diagram is its analog for complexes bounded

from below.

Let Tn,nm denote the torus link which can be presented as n-cabling of the unknot with

framing number m: Tn,nm =
Å

...
m

2n; S3
ã

, and let Tn,−nm = T▽
n,nm denote its mirror image.

Note that the links are framed and each of 2n components of the link Tn,nm has a self-linking

number m. Combining Theorem 6.8 with eqs. (6.12) and (6.13) we arrive at the following

theorem:

Theorem 6.9. There are isomorphisms

HH−i(Hn) = HKh
−i (Tn,nm), HHi(Hn) = HKh

i (Tn,−nm) [2n]q

for i ≤ 2m− 2
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These isomorphisms were first observed by Jozef Przytycki [Prz10] in case of n = 1.

The homologies of torus links can be evaluated for sufficiently small n and m with the

help of computer programs. This experimental data led us to a conjecture regarding the

structure of the Hochschild cohomology of Hn as a commutative algebra.

Consider the following lists of variables:

x = x1, . . . , x2n degq xi = 2 degh xi = 0

a = a1, . . . , an degq ai = −2i− 2 degh ai = 2i

θ = θ1, . . . , θn degq θi = −2i+ 2 degh θi = 2i− 1

The variables θ have odd homological degree, hence they anti-commute:

θiθj = −θjθi, θ2i = 0.

Conjecture 6.10. The Hochschild cohomology of the algebra Hn has the following graded

commutative algebra structure:

HH•(Hn) = Q[x, a, θ]/Irel,

where Irel is the ideal generated by relations

x2
1 = · · · = x2

2n = 0, x1 + · · ·+ x2n = 0,

aipi(x) = θipi(x) = 0 for ∀pi ∈ Q[x] such that degx pi(x) = i,

where in the second relation pi ∈ Q[x] is any polynomial of homogeneous x-degree i.

7. Proofs of TQFT properties

7.1. A derived category of Hn,m-modules.

7.1.1. A special Z-graded algebra. Consider an algebra R which has some special properties

shared by all algebras Hn,m.

A finite-dimensional non-negatively Z-graded algebra R =
⊕

j≥0R|j with an involution

♦ : R → Rop is called convenient if its zero-degree subalgebra R|0 is generated by a finite

number of mutually orthogonal idempotents e1, . . . , eN :

eaeb =











ea, if a = b,

0, if a 6= b,
ea + · · ·+ eN = 1R,

where 1R is the unit of R. A convenient algebra R has N indecomposable projective modules

Pa = Rea and N one-dimensional irreducible modules Sa = (R/R|>0)ea, where R|>0 =
⊕

j≥1R|j .
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Theorem 7.1 ([Kho02]). The modules Pa and Sa, a = 1, . . . , N form a complete list of

indecomposable projective and, respectively, irreducible R-modules. The elements K0(Sa)

generate freely K0(D
b(R)).

Theorem 7.2. Each R-module M has a resolution P(M) = (· · · → A1 → A0) such that

|A−i |q ≥ i.

Proof. Let Homj(Pa, Pb) denote the q-degree j part of Hom(Pa, Pb). Then it is easy to see

that

Hom<0(Pa, Pb) = 0, Hom0(Pa, Pb) =











Q, if a = b,

0, if a 6= b.
(7.1)

and the generator of Hom0(Pa, Pa) is the identity homomorphism.

Consider a resolution of the R module M . If a constituent projective module of the resolu-

tion complex has a non-trivial zero-degree homomorphism coming from it to another module

Pa, then this pair can be contracted. After these contractions, if a constituent projective

module does not have a homomorphism originating from it, then it will contribute to ho-

mology, because its zero-degree part can not be annihilated by incoming homomorphisms.

Since the homology of a resolution must be concentrated in the zero homological degree, it

follows that |A−i−1 |q ≥ |A−i |q. �

Corollary 7.3. The projective resolution functor P : Db(R) → K−
pr(R) threads through the

subcategory of q+-bounded complexes:

Db(R)

P

''

P+

// K−/+
pr (R) � � // K−

pr(R)

This corollary allows us to use projective resolutions for the calculation of K0 of objects

of Db(R). Indeed, there is a commutative diagram

K−/+
pr (R)

K+
0 // K+

0 (K
−/+
pr (R))

����

Db(R)
?�

P+

OO

K0 // K+
0 (D

b(R))

(7.2)

where by definition K+
0 (D

b(R)) = K0(D
b(R)) ⊗Z[q,q−1] Q[[q, q−1]. The right vertical map is

surjective, because K+
0 (D

b(R)) is generated by K0-images of objects in Db(R), but all those

objects can be mapped into K+
0 (D

b(R)) through the resolution P+.

Theorem 7.4. The elements K0(Pa) form a basis in KQ
0 (D

b(R)).
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Proof. According to theorem 7.1, the elements K0(Sa) generate freely K0(D
b(R)), hence

they form a basis of K+
0 (D

b(R)) and dimK+
0 (D

b(R)) = dimKQ
0 (D

b(R)) = N . The right

vertical map in the diagram (7.2) is surjective, hence N elements K0(Pa) generate K
+
0 (D

b(R)).

Therefore they are linearly independent there and in KQ
0 (D

b(R)), so they form a basis of

KQ
0 (D

b(R)). �

Corollary 7.3 implies that the space K+
0 (D

b(R)) has a Q[[q, q−1]-valued symmetric bilinear

pairing
Ä

K+
0 (A),K+

0 (B)
ä

Tor
= χq

Ä

TorR(A
♦,B)

ä

, (7.3)

where, by definition, TorR is the homology of the derived tensor product:

TorR(A
♦,B) = H•

Ä

P+(A)♦ ⊗R B
ä

= H•

Ä

A♦ ⊗R P+(B)
ä

.

Proposition 7.5. The pairing (7.3) restricted to KQ
0 (D

b(R)) takes values in Q(q).

Proof. According to [Kho02], the irreducible modules Sa and projective modules Pa have the

property

Ä

K+
0 (Sa),K

+
0 (Pb)

ä

Tor
= dimq(S

♦
a ⊗R Pb) =











1, if α = β,

0, if α 6= β.
(7.4)

Since the elements K+
0 (Sa) and K+

0 (Pa) belong to KQ
0 (D

b(R)) and form (dual) bases there,

equation (7.4) implies that the pairing (7.3) on KQ
0 (D

b(R)) takes values in its base field

Q(q). �

The following is obvious:

Proposition 7.6. If algebras R1 and R2 are convenient then R1 ⊗ R2 is also convenient.

In particular, if R is convenient then Re = R ⊗Rop is also convenient.

Theorem 7.7. The Hochschild homology of Db(Re) lies within (Q− gmod)Q:

Db(Re)
HH•(−)

//

HH•(−)

++

(Q− gmod)Q � � // (Q− gmod)−/+

Proof. If M is a bounded complex of Re-modules, then according to the definition of the

Hochschild homology,

χq

Ä

HH•(M)
ä

= χq

Ä

TorRe(M, R)
ä

=
Ä

M, Rop
ä

Tor
,

hence by Proposition 7.6 χq

Ä

HH•(M)
ä

∈ Q(q) and by definition HH•(FKD(M)) ∈ (Q −

gmod)Q. �
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7.1.2. Algebras Hm,n and the universal resolution. The algebrasHn,m are convenient. In view

of Proposition 7.6, it is sufficient to check that Hn is convenient. Indeed, it is easy to see

from the definition (4.22) that the zero-degree part of Hn consists of identity endomorphisms

of objects 〈〈α〉〉, and those morphisms are mutually orthogonal idempotents.

Since the algebras Hn,m are convenient, Theorems 5.2, 5.6, 5.9 and 5.8 are particular cases

of Theorems 7.1, 7.4, 7.7 and Corollary 7.3.

Theorem 7.8. The map K+
0 : TL

spl,−/+
2n → TLspl,+

2n maps the universal projective resolution

Pn to the Jones-Wenzl projector P2n,0:

K+
0 (Pn) = P2n,0. (7.5)

Proof. For α ∈ Cn, the Hn-module 〈〈α〉〉 is projective. Projective resolution is unique up

to homotopy, hence there is a homotopy equivalence FK(Pn) ⊗Hn
〈〈α〉〉

K
∼ 〈〈α〉〉

K
. The

functor FK translates tangle composition into tensor product and establishes a category

equivalence (5.10), hence Pn ◦ 〈〈α〉〉 ∼ 〈〈α〉〉. Applying K+
0 to both sides of this relation, we

find that K+
0 (Pn) ◦ 〈α〉 = 〈α〉. Since K+

0 (Pn) ∈ TLspl,+
2m,2n, Theorem 3.1 implies eq.(7.5) �

Corollary 7.9. The solid arrows of following diagram are commutative:

Kb
sp(Hn,m)

FKD // Db(Hn,m)

K0

4
4

4
4

4
4

4
4

��4
4

4
44

4
44

4
44

4
44

44
4

44

_�

PTL

��

T2m,2n

〈−〉

��

〈〈−〉〉K

ffLLLLLLLLLL

〈〈−〉〉

yyrrrrrrrrrrr

s // //

〈〈−〉〉
D

66mmmmmmmmmmmmmm

T2m,2n(S
2 × I)

〈−〉

��

〈〈−〉〉
ggO

O
O

O
O

O

TL2m,2n

FK

OO

K0 %%KKKKKKKKKKK

P̂∗ // TL
spl,−/+
2m,2n

K+
0

>>
>>

>>
>>

>>

��>
>>

>>
>>

>>
TL2m,2n

P̂∗,0
// QTLspl

2m,2n

TLspl,+
2m,2n

?�

OO

(7.6)

Proof. The commutativity of the ‘skewed’ bottom horizontal square follows from Theo-

rem 7.8. The vertical square is a part of the diagram (5.11). The commutativity of the

right vertical triangle follows from the commutativity of the diagram (7.2) in the case when

R = Hn,m. The vertical upper-left triangle is the diagram (4.29) and the vertical lower-left

triangle is the diagram (4.16). Finally, the upper horizontal triangle is the definition of the

functor 〈〈−〉〉
D
. �
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Remark 7.10. Since Hn ⊗Hn
Hn = Hn, it follows that P(Hn) ⊗Hn

P(Hn) ∼ P(Hn) and,

consequently,

Pn ◦Pn ∼ Pn.

This relation together with eq.(7.5) suggests that Pn is a categorification of the projector P2n,0,

but we think that a proper setting for this statement would be a simultaneous categorification

of all projectors Pn,m which would allow the verification of the categorified orthogonality and

completeness conditions (3.6), so we leave it as a conjecture.

7.1.3. Basic properties of Hochschild homology. For two algebras R1 and R2, let M and N

be complexes of R2⊗Rop
1 -modules and, respectively, R1⊗Rop

2 -modules. Then the Hochschild

homologies of their derived tensor products are canonically isomorphic: HH•(M
L
⊗R1

N) =

HH•(N
L
⊗R2

M). If M and N are semi-projective, then their derived tensor products coincide

with the ordinary ones, so there is a simpler canonical isomorphism

HH•(M⊗R1
N) = HH•(N⊗R2

M). (7.7)

Suppose that an algebra R has an involution ♦ : R → Rop. It determines an involutive

functor ♦ : Kb(R) → Kb(Rop), which turns a R-module into a Rop-module with the help of

the isomorphism ♦. The algebra Re = R ⊗ Rop is canonically isomorphic to its opposite,

hence ♦ generates an automorphism ♦e : R
e → Re and a corresponding autoequivalence

functor ♦e : K
b(Re) → Kb(Re).

Theorem 7.11. For a complex of Re-modules M there is a canonical isomorphism

HH•(M) = HH•(M
♦e). (7.8)

Proof. It is easy to see that the isomorphism ♦ : R → Rop also establishes an isomorphism of

Re-modules ♦ : R → R♦e . Now the isomorphism (7.8) is established by a chain of canonical

isomorphisms

HH•(M) = TorRe(M, R) = TorRe(M♦e , R♦e) = TorRe(M♦e , R) = HH•(M
♦e).

�

7.1.4. Hochschild homology and a closure within S3.

Theorem 7.12. The following diagram is commutative:

Db(He
n)

HH•(−)
//

� _

PTL

��

(Q− gmod)Q
� _

��

TL
spl,−/+
2n

(−;S3)
// (Q− gmod)−/+

(7.9)
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Proof. Consider the following diagram:

K−/+
pr (He

n)

H•(−⊗He
n
Hn)

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

= // K−/+
Å

(Hop
n -pr)⊗ (Hn-pr)

ã

H•(−⊗Hn−)

��

Db(He
n)

P+

OO

PTL

��

HH•(−)
// (Q− gmod)Q � � // (Q− gmod)−/+

TL
spl,−/+
2n

= //

FK =

==

(−;S3)

44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

K−/+(ŤL2n,0 ⊗ ŤL0,2n)

FK⊗FK
=

hh

−◦−

OO

(7.10)

The lower left elementary triangle in it coincides with the diagram (7.9). All other elementary

triangles, as well as the outer frame, are commutative, hence the lower left elementary triangle

is also commutative. �

7.2. Proof of categorification properties. The proof of Theorem 6.1 is based on a the-

orem which we will prove later:

Theorem 7.13. The following complexes are homotopy equivalent within TL
spl,−/+
2m,2n :

P̂∗

Å

¨̈ �
� �
�◦

2

2n··
∂∂

ã

∼ P̂∗

Å

¨̈ ...
1

2n
∂∂

ã

∼ P̂∗

Å

¨̈ ... 2n

∂∂

ã

. (7.11)

Proof of Theorem 6.1. The commutativity of solid arrows in the diagram (7.6) together with

the injectivity of the functor PTL mean that homotopy equivalences (7.11) imply quasi-

isomorphisms

¨̈ �
� �
�◦

2

2n··
∂∂

D
≃
¨̈ ...

1

2n
∂∂

D
≃
¨̈ ... 2n

∂∂

D
. (7.12)

According to Theorem 2.3, ker s is generated by the braids �
� �
�◦

2

n·· and
...
1

n, hence eq.(7.12)

implies the existence of the map 〈〈−〉〉. Its uniqueness follows from the surjectivity of the

map s. �

Proof of Theorem 6.2. It is easy to see that the commutativity of solid arrows in the dia-

gram (7.6) together with the commutativity of the upper horizontal triangle with a dashed

side (Theorem 6.1) and surjectivity of the map s implies the full commutativity of the

diagram and, in particular, the commutativity of the right vertical triangle claimed by The-

orem 6.2. �
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Proof of Theorem 6.3. Consider a commutative diagram

T2n,2n
s // //

〈〈−〉〉
D

%%KKKKKKKKKKKKKKKKK
T2n,2n(S

2 × I)
(−;S2×S1)

// //

〈〈−〉〉

��

L(S2 × S1)

Hst
•
(−)

���
�
�
�
�

Db(He
n)

HH•(−)
// (Q− gmod)Q

The surjectivity of the maps s and (−; S2 × S1) together with Theorem 2.4 implies that the

existence of the homology map HKh
• (−) would follow from the isomorphisms

HH•

Ä

〈〈τ2 ◦ τ1〉〉D
ä

= HH•

Ä

〈〈τ1 ◦ τ2〉〉D
ä

, HH•

Ä

〈〈τ♦〉〉D
ä

= HH•

Ä

〈〈τ〉〉
D

ä

,

which should hold for any τ1 ∈ T2n,2m, τ2 ∈ T2m,2n and τ ∈ T2n,2n. The first isomorphism

follows from the isomorphisms (4.28) and (7.7), while the second isomorphism follows from

the isomorphisms (4.32) and (7.8). �

Proof of Theorem 6.4. The diagram (6.2) coincides with the right face of the solid cube in

the following diagram:

Db(He
n)

HH•(−)
//

P+

��

(Q− gmod)Q
� _

��

T2n,2n
s

// //_______

〈〈−〉〉

���
�

�
�

�

T2n,2n(S
2 × I)

〈〈−〉〉
ddIIIIIIIIII

〈−〉

��

(−;S2×S1)
// // L(S2 × S1)

〈−〉

��

Hst
•
(−)

ddJJJJJJJJJJJ

TL2n
P̂∗,0

//_____ TL
spl,−/+
2n

K+
0

$$H
HHHHHHHHH

(−;S3)
// (Q− gmod)−

χq

$$I
IIIIIIIIII
Q(q)

� _

��

TLspl,+
2n

(−;S3)
// Q[[q, q−1]

(7.13)

The commutativity of all other solid cube faces has been established (in particular, the

vertical back face is the diagram (7.9)). Hence the commutativity of the right face follows

from the surjectivity of the map (−; S2 × S1) : T2n,2n(S
2 × I) → L(S2 × S1). �

Proof of Theorem 6.5. The addition of dashed arrows to the solid cube in the diagram (7.13)

preserves the commutativity, because the dashed arrows together with the left face of the

solid cube form a part of the diagram (7.6). The diagram (6.3) is a part of the whole

diagram (7.13). �
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7.3. Categorification complexes of quasi-trivial tangles. An elementary cobordism ǫ

between two tangle diagrams τ and τ ′ is a cobordism of one of the following types: creation

or annihilation of a disjoint circle, a saddle cobordism, a Reidemeister move. To an elemen-

tary cobordism of each type one associates a special morphism between the corresponding

categorification complexes 〈〈τ〉〉
ǫ̂
−→ 〈〈τ ′〉〉. In particular, to a saddle cobordism one associates

the corresponding planar cobordism acting on constituent objects 〈〈λ〉〉 in the complex 〈〈τ〉〉.

A cobordism movie is a sequence of elementary cobordisms: ǫ = ǫ1, . . . , ǫk. A morphism ǫ̂

associated to a movie is a composition of elementary morphisms: ǫ̂ = ǫ̂k · · · ǫ̂1.

Theorem 7.14. If two cobordism movies ǫ and ǫ′ yield isotopic cobordisms, then the corre-

sponding morphisms are homotopy equivalent up to a sign: ǫ̂ ∼ ±ǫ̂′.

A Reidemeister movie is a cobordism movie which is a sequence of Reidemeister moves:

ρ = ρ1, . . . , ρk.

Definition 7.15. A (2n, 2n)-tangle τ is quasi-trivial if it satisfies two conditions:

(1) For any α ∈ T2n,0 (that is, for α being a flipped crossingless matching) there is a

Reidemeister movie ρα transforming α ◦ τ into α such that for any planar cobordism

ϕ between two tangles α and α′ the following diagram is commutative:

α1 ◦ τ
ϕ◦1τ //

ρα1

��

α2 ◦ τ

ρα2

��
α1

ϕ
// α2

(7.14)

that is, the cobordism movies ρα1
(ϕ ◦ 1τ ) and ϕρα1

are isotopic (1τ denotes the

identity cobordism between τ and τ).

(2) There exists a crossingless matching β ∈ Cn and a Reidemeister movie ρ′
β trans-

forming τ ◦ β into β, such that for any flipped crossingless matching α the following

Reidemeister movies are isotopic:

α ◦ τ ◦ β

ρα◦1β

((1α◦ρ′

β
66
α ◦ β (7.15)

Remark 7.16. If ǫ is an x-multiplication, then the first condition of this definition is satisfied

automatically, so if τ is quasi-trivial, then the second condition is satisfied for any elementary

planar cobordism.

To a (2n, 2n)-tangle τ we associate a functor τ̂ : ŤL2n,0 → TL2n,0 which acts by composing

with 〈〈τ〉〉: τ̂ = − ◦ 〈〈τ〉〉.
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Theorem 7.17. If a (2n, 2n)-tangle τ is quasi-trivial, then the tangle composition functor

τ̂ is isomorphic to the injection functor ŤL2n,0 →֒ TL2n,0.

Proof. As an additive category, ŤL2n,0 is generated freely by objects 〈〈α〉〉, where α are flipped

crossingless matchings: α ∈ T2n,0.

According to Definition 7.15, for any α the tangles α and α◦τ are isotopic, hence there is a

homotopy equivalence 〈〈α〉〉◦〈〈τ〉〉 ∼ 〈〈α〉〉. Hence, by the definition of functor isomorphism, it

remains to prove that for every α there exits a particular homotopy equivalence fα : 〈〈α◦τ〉〉 →

〈〈α〉〉 such that for any pair of flipped crossingless matchings α1, α2 and for any planar

cobordism ϕ between α1 and α2 the following diagram is commutative:

〈〈α1 ◦ τ〉〉
ϕ̂◦1τ //

fα1

��

〈〈α2 ◦ τ〉〉

fα2

��

〈〈α1〉〉
ϕ̂

// 〈〈α2〉〉

(7.16)

In view of Proposition 4.3, it is sufficient to prove this commutativity for ϕ being an elemen-

tary planar cobordism, that is, either an x-multiplication of a saddle cobordism.

Theorem 7.14 says that since the cobordism diagram (7.14) is commutative, the following

diagram is commutative up to a sign:

〈〈α1 ◦ τ〉〉
ϕ̂◦1τ //

ρ̂α1

��
±

〈〈α2 ◦ τ〉〉

ρ̂α2

��

〈〈α1〉〉
ϕ̂

// 〈〈α2〉〉

(7.17)

Since the Reidemeister movies (7.15) are isotopic, according to Theorem 7.14 there exists

a sign factor µα such that

µαρ̂α ◦ 1β ∼ 1α ◦ ρ̂′
β. (7.18)

We choose homotopy equivalences as fα = µαρ̂α. The ‘up to a sign commutativity’ of the

diagram (7.17) implies that there exists a sign factor µϕ = ±1 such that the diagram

〈〈α1 ◦ τ〉〉
ϕ̂◦1τ //

µα1
ρ̂α1

��

〈〈α2 ◦ τ〉〉

µα2
ρ̂α2

��

〈〈α1〉〉
µϕϕ̂

// 〈〈α2〉〉

(7.19)

is commutative. It remains to prove that µϕ = 1.
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Consider the following diagram:

〈〈α1 ◦ τ ◦ β〉〉
ϕ◦1τ ◦1β

//

µα1
ρ̂α1

◦1β

��

1α1
◦ρ̂′

β

��

〈〈α2 ◦ τ ◦ β〉〉

µα2
ρ̂α2

◦1β

��

1α2
◦ρ̂′

β

��

〈〈α1 ◦ β〉〉
ϕ◦1β

// 〈〈α2 ◦ β〉〉

The inner squeezed square is commutative, because cobordisms ϕ and ρ̂′
β act on different

parts of the composite tangles α1 ◦ τ ◦ β and α2 ◦ τ ◦ β. The commutativity of the left and

right faces is equivalent to eq.(7.18) for α1 and α2. Hence the whole diagram is commutative.

Compare the commutativity of its outer bloated square with the tangle composition of the

diagram (7.19) with β:

〈〈α1 ◦ τ ◦ β〉〉
ϕ̂◦1τ ◦1β

//

µα1
ρ̂α1

◦1β

��

〈〈α2 ◦ τ ◦ β〉〉

µα2
ρ̂α2

◦1β

��

〈〈α1 ◦ β〉〉
µϕϕ̂◦1β

// 〈〈α2 ◦ β〉〉

Since ϕ is an elementary planar cobordism, the linear map ϕ̂ ◦ 1β : 〈〈α1 ◦ β〉〉 → 〈〈α2 ◦ β〉〉 is

non-zero, hence µϕ = 1. �

Corollary 7.18. If a (2n, 2n)-tangle τ is quasi-trivial, then the tangle composition functor

τ̂ : TL
spl,−/+
2n −→ TL

spl,−/+
2n , τ̂ = − ◦ 〈〈τ〉〉

is isomorphic to the identity functor and, in particular, for any complex A in TL
spl,−
2n,2m there

is a homotopy equivalence

A ◦ τ ∼ A. (7.20)

Proof. Use the category equivalence (4.21) to replace TL
spl,−/+
2n with K−/+(ŤL2n,0 ⊗ ŤL0,2n).

The functor τ̂ acts as identity on the ŤL2n,0 factor and its action on the ŤL0,2n factor is

equivalent to identity by Theorem 7.17 �

Proof of Theorem 7.13. According to the definition (5.12) of the functor P̂∗, the homotopy

equivalences (7.11) are explicitly

Pn ◦
¨̈ �

� �
�◦

2

2n··
∂∂

∼ Pn ◦
¨̈ ...

1

2n
∂∂

∼ Pn. (7.21)
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It is easy to see that the tangles �
� �
�◦

2

2n·· and
...
1

2n are quasi-trivial (in fact, for these

tangles any β ∈ Cn satisfies the second condition of Definition 7.15). Since Pn is an object

of TL
spl,−/+
2n , the homotopy equivalences (7.21) follows from that of eq.(7.20). �

8. Properties of the universal categorification complex of a torus braid

8.1. A multi-cone structure of a chain complex. In many instances, in order to simplify

a complex through homotopy equivalence, we will use its presentation as a multi-cone, that

is, as a multiple application of cone construction. A general theory of this procedure is

related to Postnikov structures and it is described, e.g. , in [GM96]. We need only a tiny bit

of this theory, as it applies to homotopy categories.

Let Ch−(A) be a category of bounded from above chain complexes associated with an

additive category A. An object of Ch−(A) is a chain complex

(A,d) = (· · · → Ai
di−→ Ai+1 → · · · → Ak),

and a morphism between two chain complexes is a sequence of morphisms f = (. . . , fi, . . .):

A

f

��

· · ·
di−1 // Ai

di //

fi
��

Ai+1

di+1 //

fi+1

��

· · ·

B · · ·
d′i−1 // Bi

d′i // Bi+1

d′i+1 // · · ·

(8.1)

An associated homotopy category K
−(A) has the same objects as Ch−(A), while the mor-

phisms are chain morphisms (that is, morphisms which commute with differentials) up to

homotopy.

A multi-cone in the category Ch−(A) is a family of complexes (Aλ)λ∈Λ, where Λ is an

index set with a grading function h : Λ → Z such that h(Λ) is bounded from above and

h−1(n) is finite for any n ∈ Z. The complexes of the multi-cone are connected by morphisms

Aλ[−1]
fλ,λ′

−−→ Aλ′ if h(λ) < h(λ′), and the morphisms satisfy the condition

fλ,λ′′dλ + dλ′′fλ,λ′′ +
∑

λ′∈Λ
h(λ)<h(λ′)<h(λ′′)

fλ′,λ′′fλ,λ′ = 0.

It guarantees that the multi-cone determines a ‘total complex’ (A,d) in Ch(A), whose

chain ‘modules’ are direct sums of chain ‘modules’ of Aλ and differentials are the sums of

morphisms fλ,λ′ : A =
⊕

λ∈Λ Aλ, d =
∑

λ,λ′∈Λ fλ,λ′ . If a complex (A,d) of Ch(A) is presented

as a total complex of a multi-cone, then we say that (A,d) has a multi-cone structure and

we refer to Aλ as constituent complexes.
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The following easy proposition explains why the multi-cone structure helps to simplify a

complex within its homotopy equivalence class.

Proposition 8.1. For a homotopy equivalent family of complexes A′
λ ∼ Aλ with the same

index set Λ there exist morphisms f ′λ,λ′ such that the resulting multi-cone is homotopy equiv-

alent to the original one:
Ä

⊕

λ∈Λ Ai,
∑

λ,λ′∈Λ fλ,λ′

ä

∼
Ä

⊕

λ∈Λ A
′
λ,

∑

λ,λ′∈Λ f
′
λ,λ′

ä

.

In this paper multi-cone structures emerge when categorification complexes of tangle com-

positions are considered. For example, consider a composition 〈〈τ〉〉 ◦ A of two complexes

in TLn, the first object being a categorification complex of a (n, n)-tangle τ . Constituent

complexes of 〈〈τ〉〉 ◦ A are formed by the compositions 〈〈τ〉〉 ◦ 〈〈λ〉〉 = 〈〈τ ◦ λ〉〉, where λ are

constituent tangles ofA. Now we can use Reidemeister moves in order to simplify the tangles

τ ◦ λ, knowing that the morphisms of the multi-cone can be adjusted accordingly, so that

the modified total complex will be homotopy equivalent to the original complex 〈〈τ〉〉 ◦A.

8.2. A cup sliding trick. In this section we will prove Theorem 6.6 by induction over m.

In proving it for m = 1 and in deducing the case of m+ 1 from the case of m we will use a

special trick.

Let γi, i = 1, 2, . . . be a sequence of (i, i′)-tangles (in our applications i′ = i or i′ = i+ 2)

such that any cup-tangle can slide through them:

γi ◦
I

i ≈
Ĩ

i′ ◦ γi−2d, (8.2)

where d is the number of cup arcs in
I

n . Suppose that all tangles γi have special categori-

fication complexes 〈〈γi〉〉
♯ and we have to construct a special categorification complex for the

composition τ ′ = γn ◦ τ , where τ is a (m,n)-tangle with a special categorification complex

〈〈τ〉〉♯.

First, we represent 〈〈τ ′〉〉 by the tangle-composition of complexes 〈〈γn〉〉 ◦ 〈〈τ〉〉
♯ (the choice

of 〈〈γn〉〉 does not matter). We view this composition as a multi-cone constructed by replac-

ing every constituent object 〈〈λ〉〉 of 〈〈τ〉〉♯ with the composition 〈〈γn〉〉 ◦ 〈〈λ〉〉. In order to

transform the multi-cone 〈〈γn〉〉 ◦ 〈〈τ〉〉
♯ homotopically into the special complex 〈〈τ ′〉〉♯, we use

the presentation (2.4) for λ and isotopy (8.2) in order to replace this composition with a

homotopy equivalent one

¨̈
Ĩ

n′

∂∂

◦ 〈〈γtλ〉〉
♯ ◦
¨̈

J

m
∂∂

, (8.3)

where tλ is a through degree of λ. The homotopy equivalence transformation of complexes

〈〈γn〉〉◦〈〈λ〉〉 into the complexes (8.3) may change the morphisms of the multi-cone in a rather

non-trivial way, but this does not matter, since in this section we are interested mostly in the
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position of a constituent object within the complex 〈〈τ ′〉〉♯. This position is determined by

the position of the original object 〈〈λ〉〉 within 〈〈τ〉〉♯ and the structure of the special complex

〈〈γtλ〉〉
♯:

Proposition 8.2. If an object 〈〈λ′〉〉 appears in a position 〈〈λ′〉〉 [i, j] in the complex 〈〈γtλ〉〉
♯,

then the corresponding object in the composition (8.3) appears in the same position
¨̈

Ĩ

n′ ◦

λ′ ◦
J

m
∂∂

[i, j].

Proof. The homological degree degh is additive with respect to the tangle composition. The

q-degree degq is not additive because of eq. (4.13) required to remove disjoint circles, but

the tangle composition
Ĩ

n′ ◦ λ′ ◦
J

m does not contain disjoint circles, hence degq is also

additive in (8.3). Now the claim of the proposition follows from the fact that the degrees

degh and degq of cap and cup tangles in (8.3) are zero. �

8.3. A special categorification complex of a single twist torus braid. Recall the

definitions (6.5)–(6.7) of the set A∠ and its shifts. We also use an abbreviated notation

A∠(t, n) = A∠(t, n; 1) = A∠

î

1
2
t2, 1

2
(t2 + t + n)

ó

.

Theorem 8.3. For a torus braid
...
1

n there exists a special categorification complex
¨̈ ...

1

n
∂∂♯

with the following property:

mλ
−i,j,µ > 0, only if (i, j) ∈ A∠(tλ, n).

The proof of this theorem is based on two lemmas.

Define the following tangle notations:

�
�

n·· = � �· · ·

· · ·
1 2 nn−1

,
�
�n ·· = � �· · ·

· · ·

1 2 nn−1

, (8.4)

�
� �
� n·· =

�
�n ·· ◦ �

�
n·· =

� �
� �

· · ·

· · ·
1 2 nn−1

. (8.5)

and a ray shape: Aր = {(i, i) | i ∈ Z, i ≥ 0}.

Lemma 8.4. The tangle �
� �
� n·· has a special categorification complex

¨̈

�
� �
� n··

∂∂♯
with two

properties:



A CATEGORIFICATION OF THE STABLE SU(2) WRT INVARIANT OF LINKS IN S2
× S1 49

(1)
¨̈

�
� �
� n··

∂∂♯
has a ray shape Aր [2− n]h,q;

(2) the object
¨̈ ... n

∂∂

does not appear in
¨̈

�
� �
� n··

∂∂♯
.

Proof. Let
¨̈

�
�

n··
∂∂♯

denote the standard categorification complex of �
�

n·· . Since Kauffman

splicing of crossings in the diagram of this tangle does not produce disjoint circles, it follows

from eq.(4.4) that
¨̈

�
�

n··
∂∂♯

has the shape Aր

î

2−n
2

ó

h,q
By the same argument, the standard

categorification complex
¨̈

�
�n ··
∂∂♯

has the same shape.

Now we use the trick of subsection 8.2, where γi =
�
�i ·· , τ = �

�
n·· and τ ′ = �

� �
� n·· .

After the sliding of cups, a constituent object of
¨̈

�
�

n··
∂∂♯

corresponding to a TL tangle

λ =
I

n−2 ◦
J

n turns into the complex

¨̈

Ĩ

n
∂∂

◦
¨̈

�
�tλ+2 ··
∂∂♯

◦
¨̈

J

n
∂∂

, (8.6)

where tλ is a through degree of λ. The first claim of the lemma follows from the fact the

middle complex of the composition (8.6) has the shape Aր

î

− tλ
2

ó

h,q
. The second claim of

the lemma follows from the fact that the middle tangle in the composition (8.6) is of type

(tλ, tλ + 2): since tλ ≤ n − 2, only the tangle with through degree up to n − 2 can form in

the composition.

�

Lemma 8.5. The tangle �
� �
� n·· has a special categorification complex

¨̈ �
� �
� n··
∂∂♯

with the fol-

lowing properties:

•
¨̈ �

� �
� n··
∂∂♯

has an angle shape A∠ [−n + 1,−n] if n ≥ 2;

• the object
¨̈ ... n

∂∂

appears in
¨̈ �

� �
�◦

2

2n··
∂∂♯

only in the position
¨̈ ... n

∂∂

[−1, 1]n−1 and

its multiplicity there is 1.

Proof. We prove the lemma by induction over n. When n = 1 the claim is obvious.
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Consider now a general value of n. The tangle �
� �
� n·· can be presented as a composition of

three tangles

�

�@
@@

�
	@

@@
�

	

�

�

...
...

...

1

2

n−1

n

(8.7)

We use the categorification complex for the middle tangle which is based on the following

categorification complex of the double-crossing (2, 2)-tangle:
¨̈ ∂∂

=
Å

¨̈ ∂∂

[−1, 1] −→
¨̈ ∂∂

−→
¨̈ ∂∂

[1,−2]
ã

.

The special complex
¨̈ �

� �
� n··
∂∂♯

is constructed by tangle-composing the objects of this complex

with the first and third tangles of the decomposition (8.7) and using their special categori-

fication complexes. As a result,
¨̈ �

� �
� n··
∂∂♯

is a ‘double-cone’ composed out of the following

three complexes

¨̈ �
� �
� n−1··

∂∂♯
[−1, 1] ,

¨̈

�
� �
� n··

∂∂♯
,
¨̈

�
� �
� n··

∂∂♯
[1,−2] ,

where the first tangle �
� �
� n−1·· is the tangle �

� �
� n−1·· together with an extra straight strand

on top. Now the claims of the lemma follow from the induction assumption applied to the

first complex and Lemma 8.4 applied to the second and third complexes. �

Proof of Theorem 8.3. We prove the theorem by induction over n. When n = 1, its claim is

obvious.

In order to construct a special complex for the torus braid
...
1

n, we present it as a

composition of two braids:

...
1

n ≈ �
� �
�◦

1

n·· ◦
...
1

n−1 , (8.8)

where the braid
...
1

n−1 is constructed by adding an extra straight strand to the braid

...
1

n−1. For a (k, l)-tangle τ , let τ denote a (k + 1, l + 1)-tangle constructed by adding an

extra straight line at the bottom of τ . We construct the special complex
¨̈ ...

1

n−1
∂∂♯

by
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replacing every constituent object 〈〈λ〉〉 of the special complex
¨̈ ...

1

n−1
∂∂♯

, which exists by

the assumption of induction, with the object 〈〈λ〉〉. Then we use the trick of subsection 8.2

with τ =
...
1

n−1 , γi = �
� �
�◦

1

i·· and τ ′ =
...
1

n with a slight modification: the cup-tangles

that slide through γi must be of the form
I

n−1 , but these are exactly the cup-tangles that

appear in the decomposition of constituent tangles λ of the complex
¨̈ ...

1

n−1
∂∂

. In other

words, if λ =
I

n−1 ◦
J

n−1 is a constituent tangle of the special complex
¨̈ ...

1

n−1
∂∂♯

,

then the sliding isotopy is

�
� �
�◦

1

n·· ◦
I

n−1 ◦
J

n−1 ≈
I

n−1 ◦ �
� �
�◦

1

tλ+1·· ◦
J

n−1

and we choose the special categorification complex

¨̈ �
� �
�◦

1

n·· ◦ λ
∂∂♯

=
¨̈

I

n−1
∂∂

◦
¨̈ �

� �
�◦

1

tλ+1··
∂∂♯

◦
¨̈

J

n−1
∂∂

. (8.9)

By the assumption of induction, the object 〈〈λ〉〉 of the complex
¨̈ ...

1

n−1
∂∂♯

lies within

the shape A∠(tλ, n − 1). According to Lemma 8.5 and Proposition 8.2, the complex (8.9)

that λ yields, has the shape A∠

î

1
2
− tλ

ó

h,q
. Combining these two shapes together, we find

that the ultimate contribution of λ to
¨̈ ...

1

n
∂∂♯

lies within the shape A∠(tλ − 1, n), which

corresponds to (n, n)-tangle of through degree tλ − 1. The complex (8.9) contains only the

tangles of through degree t ≤ tλ + 1 and parity opposite to that of tλ. Since A∠(t, n) ⊂

A∠(t
′, n) for t ≥ t′, the tangles with through degree t ≤ tλ−1 satisfy the claim of Theorem 8.3.

The tangles with through degree t = tλ + 1 originate from the object
¨̈ ... tλ+1

∂∂

within the

complex
¨̈ �

� �
�◦

1

tλ+1··
∂∂♯

. According to the second claim of Lemma 8.5, it has a special degree

shift relative to the vertex of A∠

î

1
2
− tλ

ó

h,q
. Because of this shift, the tangles with through

degree t = tλ + 1 fall within the shape A∠(tλ + 1, n), hence they also satisfy the claim of

Theorem 8.3. �

8.4. A categorification complex of a torus braid as an approximation to the uni-

versal resolution of Hn.

Proof of Theorem 6.6. We define the complexes
¨̈ ...

m

2n
∂∂♯

recursively and prove the theo-

rem by induction over m. Theorem 8.3 establishes the first property for m = 1. Suppose
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that the theorem holds for m. We construct the special complex
¨̈ ...

m+1

2n
∂∂♯

by presenting

the braid
...

m+1

2n as a composition

...
m+1

2n =
...
1

2n ◦
...
m

2n.

Next, we split the special complex
¨̈ ...

m

2n
∂∂♯

into two pieces by homological degree:

¨̈ ...
m

2n
∂∂♯

= Cone
Å

t−≥2m

¨̈ ...
m

2n
∂∂♯

[1] −→ t−≤2m−1

¨̈ ...
m

2n
∂∂♯
ã

, (8.10)

and tangle-compose these pieces individually with
¨̈ ...

1

2n
∂∂

. By the assumption of induc-

tion, the complex t−≤2m−1

¨̈ ...
m

2n
∂∂♯

is split, so according to eq.(7.20), there is a homotopy

equivalence

¨̈ ...
1

2n
∂∂

◦ t−≤2m−1

¨̈ ...
m

2n
∂∂♯

∼ t−≤2m−1

¨̈ ...
m

2n
∂∂♯

.

Thus it remains to construct a special categorification complex
Å

¨̈ ...
1

2n
∂∂

◦ t−≥2m

¨̈ ...
m

2n
∂∂♯
ã♯

(8.11)

and substitute it for the first term in the cone (8.10). We build this complex thought the

trick of subsection 8.2: we slide the cups of a constituent tangle λ =
I

2n ◦
J

2n of the

truncated special complex t−≥2m

¨̈ ...
m

2n
∂∂♯

. through
...
1

2n:

...
1

2n ◦
I

2n ◦
J

2n ≈
I

2n ◦
...
1

tλ ◦
J

2n,

(note the cancelation of framing twists), thus constructing a special complex for the compo-

sition
...
1

2n ◦ λ:

¨̈ ...
1

2n ◦ λ
∂∂♯

=
¨̈

I

2n
∂∂

◦
¨̈ ...

1

tλ

∂∂♯
◦
¨̈

J

2n
∂∂

. (8.12)

The special complex (8.11) consisting of complexes (8.12) satisfies the first property of

Theorem 6.6. Indeed, a constituent object 〈〈λ′〉〉 of the complex (8.12) satisfies the property

tλ′ ≤ tλ and by Theorem 8.3 it lies within the shape A∠(tλ′, 2n). At the same time, by the as-

sumption of induction, the object 〈〈λ〉〉 of t−≥2m

¨̈ ...
m

2n
∂∂♯

lies within the shapeA∠(tλ, 2n;m).

Now it is easy to check that the place of the object 〈〈λ′〉〉 in the complex (8.11) will be within

the shape A∠(tλ′, 2n;m).

Finally, it is obvious that the cone

¨̈ ...
m+1

2n
∂∂♯

= Cone
ÅÅ

¨̈ ...
1

2n
∂∂

◦ t−≥2m

¨̈ ...
m

2n
∂∂♯
ã♯

[1] −→ t−≤2m−1

¨̈ ...
m

2n
∂∂♯
ã
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satisfies the second property of Theorem 6.6. �

Proof of Theorem 6.7. Isomorphisms (6.9) imply the existence of a special complex C♯
n ∈

TL
spl,−
2n such that

t−≤2m−1

¨̈ ...
m

2n
∂∂♯ ∼= t−≤2m−1C

♯
n. (8.13)

The property (6.8) implies that truncated complexes t−≤2m−1

¨̈ ...
m

2n
∂∂♯

are angle-shaped

and split, hence C♯
n is angle-shaped and split.

It remains to show that C♯
n satisfies the defining property of the complex Pn: FK(C

♯
n) ≃

Hn. The homotopy equivalence (7.11) implies the quasi-isomorphism
¨̈ ...

1

2n
∂∂

D
≃ Hn.

Since the map 〈〈−〉〉
D
: T2n,2n → Db(He

n) converts the tangle composition into the tensor

product, this relation implies
¨̈ ...

m

2n
∂∂

D
≃ Hn, which means that the homology of the

complex
¨̈ ...

m

2n
∂∂

K
is zero in all degrees except at degree zero where it is isomorphic to

Hn:

Hi

Å

¨̈ ...
m

2n
∂∂

K

ã

=











0 if i < 0,

Hn if i = 0 .

In view of the isomorphisms (8.13), FH(C
♯
n) has the same property:

Hi

Å

FK(C
♯
n)
ã

=











0 if i < 0,

Hn if i = 0 .
(8.14)

Since C♯
n is split, its image FK(C

♯
n) is projective, so eq. (8.14) means that FK(C

♯
n) is a

projective resolution of Hn and we set P♯
n = C♯

n. �

Proof of Theorem 6.8. The isomorphism 6.4 and the use of special complexes for Pn and
¨̈ ...

m

2n
∂∂

allows us to rewrite eq.(6.11) as the isomorphism between homologies

Hi

Å

〈〈τ〉〉 ◦P♯
n; S

3
ã

= Hi

Å

〈〈τ〉〉 ◦
¨̈ ...

m

2n
∂∂♯

; S3
ã

.

According to eq. (6.10), the chain ‘modules’ in both complexes are canonically isomorphic

in homological degrees up to | 〈〈τ〉〉 |+h − 2m + 1, hence their homologies are isomorphic in

degrees up to | 〈〈τ〉〉 |+h − 2m+ 2. �
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Appendix A. Jones-Wenzl projectors and WRT polynomial

A.1. Jones-Wenzl projectors. The most famous Jones-Wenzl projector Pn is the idem-

potent element of the Temperley-Lieb algebra QTLn generated by TL (n, n)-tangles over the

field Q(q) of rational functions of q and defined by the property that for any TL (n, n)-tangle

λ,

Pn ◦ 〈λ〉 = 〈λ〉 ◦ Pn =







































Pn, if λ =
... n,

0, if λ 6=
... n.

(A.1)

To define the other Jones-Wenzl projectors of QTLn, recall that as a Z-module, QTLn

is freely generated by TL tangles, and each TL tangle has a presentation (2.4). Since this

presentation plays a central role in our calculations, we will use a special notation

λIJ|m =
I

n ◦
J

n, I,J ∈ In,m, 0 ≤ m ≤ n, n−m ∈ 2Z. (A.2)

Now we define a ‘projected tangle’ 〈λ〉pr by inserting the Jones-Wenzl projector Ptλ between

the cup and cap parts of λIJ|m:

¨

λIJ|m

∂

pr
=
¨

I

n
∂

◦ Pm ◦
¨

J

n
∂

. (A.3)

Since Pn−
¨ ... n

∂

can be presented as a linear combination of TL tangles with through degree

less than n, the relation between the QTLn generators 〈λ〉 and the projected tangles 〈λ〉pr
is upper-triangular: 〈λ〉pr − 〈λ〉 is a linear combination of TL tangles with through degree

less than tλ. Hence projected tangles 〈λ〉pr also form a set of free generators of QTLn. For

m such that m < n and n−m is even, let QTLn |m ⊂ QTLn be a submodule generated by

all 〈λ〉pr such that tλ = m. Since 〈λ〉pr generate QTLn, the latter is a direct sum

QTLn =
⊕

m

QTLn |m.

We will see shortly that QTLn |m ⊂ QTLn are, in fact, two-sided ideals.

For I,J ∈ In,m the composition
J

n ◦
I

n is a (m,m)-tangle. Let k denote the number

of disjoint circles in it, then

¨

J

n ◦
I

n
∂

= (−q − q−1)k 〈λ〉, (A.4)
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where λ is the TL (m,m)-tangle, which corresponds to the ‘connected’ part of the compo-

sition. Define the Z[q, q−1]-valued coefficients (BIJ)I,J∈In,m
of a symmetric matrix B by the

formula

BIJ =























(−q − q−1)k, if λ =
... m,

0 otherwise.

where · · · stands for a linear combination of TL (m,m)-tangles whose through degree is less

than m.

Proposition A.1. Projected tangles satisfy a simple composition formula:
¨

λIJ|m

∂

pr
◦
¨

λI′J′|m′

∂

pr
= δmm′

¨

λIJ′|m

∂

pr
, (A.5)

where δmm′ is the Kronecker symbol.

Proof. We use the formula eq.(A.4) for the composition of cup and cap tangles:

¨

J

n ◦
I′

n
∂

= (−q − q−1)k 〈λ′′〉

Then the composition in the r.h.s. of (A.5) takes the form

¨

λIJ|m

∂

pr
◦
¨

λI′J′|m′

∂

pr
= (−q − q−1)k

¨

I

n
∂

◦ Pm ◦ 〈λ′′〉 ◦ Pm′ ◦
¨

J
′

n
∂

.

The property (A.1) of Jones-Wenzl projectors indicates that this expression is equal to zero,

unless m = m′ and λ′′ =
... m, in which case (−q − q−1)k = BI′J and we obtain the r.h.s. of

eq.(A.5). 2

Corollary A.2. Submodules QTLn |m ⊂ QTLn are two-sided ideals.

Define the special elements of QTLn |m

Pn,m =
∑

I,J∈In,m

B−1
IJ

¨

λIJ|m

∂

pr
=

∑

I,J∈In,m

B−1
IJ

¨

I

n
∂

◦ Pm ◦
¨

J

n
∂

, (A.6)

where B−1 is the inverse matrix of B.

Proposition A.3. An element Pn,m satisfies the following property:

Pn,m ◦ 〈λ〉pr = 〈λ〉pr ◦ Pn,m =











〈λ〉pr , if tλ = m,

0, if tλ 6= m

Proof. Present 〈λ〉pr in the form (A.3) and use the formula (A.5). 2
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Corollary A.4. The element Pn,m is an idempotent projecting QTLn onto QTLn |m and

∑

0≤m≤n
n−m∈2Z

Pn,m =
¨̈ ... n

∂∂

. (A.7)

Hence Pn,m are Jones-Wenzl projectors mentioned in subsection 3.2.

Consider a left TLn-module TLpr
m,n = TLm,n ◦ Pm. An element x ∈ QTLn determines a

multiplication endomorphism TLpr
m,n

mx−→ TLpr
m,n, mx(y) = x ◦ y.

Proposition A.5. The S3 closure of the composition x ◦Pn,m is proportional to the trace of

mx over TLpr
m,n:

Ä

Pn,m ◦ x; S3
ä

=
Ä

Pm; S
3
ä

TrTLpr
m,n

mx. (A.8)

Proof. If x ∈ QTLn |m′ and m′ 6= m, then both sides of this equation are equal to zero,

hence we may assume that x ∈ QTLn |m. Moreover, since QTLn |m is generated by the

elements (A.3), we may assume that x =
¨

λIJ|m

∂

pr
. The the l.h.s. of eq. (A.8) can be

calculated:

Ä

Pn,m ◦ λIJ|m; S
3
ä

=
Ä

λIJ|m; S
3
ä

=
Å

¨

I

n
∂

◦ Pm ◦
¨

J

n
∂

ã

=
Å

Pm ◦
¨

J

n
∂

◦
¨

I

n
∂

ã

= BIJ

Ä

Pm; S
3
ä

. (A.9)

The module TLpr
m,n is generated freely by the elements

¨

I′

n
∂

◦ Pm, I′ ∈ In,m. (A.10)

The matrix elements (mx)I′J′ of the endomorphism mx with respect to this basis are easy to

evaluate:

mx

Ä¨

I
′

n
∂

◦ Pm

ä

=
¨

λIJ|m

∂

◦
¨

I
′

n
∂

◦ Pm

=
¨

I

n
∂

◦ Pm ◦
¨

J

n
∂

◦
¨

I′

n
∂

◦ Pm = BI′J

¨

I

n
∂

◦ Pm,

hence (mx)I′J′ = δIJ′ BI′J and

TrTLpr
m,n

mx =
∑

I′∈In,m

(mx)I′I′ = BIJ. (A.11)

This equation together with eq.(A.9) prove the proposition. 2

Corollary A.6. If x ∈ TLn, then
Ä

Pn,m ◦ x; S3
ä

∈ Z[q, q−1].

In other words, although the expression for the Jones-Wenzl projector Pn,m involves ra-

tional functions of q, the closure
Ä

Pn,m ◦ x; S3
ä

is purely polynomial.
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Proof of Corollary A.6. We are going to use eq.(A.8). First of all, note that

Ä

Pm; S
3
ä

= (−1)m
qm+1 − q−m−1

q − q−1
∈ Z[q, q−1],

hence we just have to prove TrTLpr
m,n

mx ∈ Z[q, q−1]. We will show that the matrix elements

(mx)I′,J′ with respect to the basis (A.10) belong to Z[q, q−1]. It is sufficient to verify this

claim for x = λIJ|m, and we leave the details to the reader. �

Proof of Theorem 3.5. This theorem is a particular case (m = 0) of Corollary A.6. �

A.2. The WRT invariant of links in S2 × S1. Let us introduce another (n, n)-tangle

notation:

�
� �
� n·· =

�
�
�

�
· · ·

· · ·
1 n

We refer to the circle in this picture as meridian. Let
¨ �

� �
� n··

k

∂

denote the element of QTLn

constructed by replacing the meridian of �
� �
� n·· with a k-cable on which the Jones-Wenzl

projector Pk is placed.

The dependence of the Temperley-Lieb algebra element
¨ �

� �
� n··

k

∂

on the value of k can be

made more explicit, if we multiply it by the l.h.s. of eq. (A.7), slide the cups of eq. (A.6)

through the meridian and use the well-known formula

Pm ◦
¨ �

� �
� m··
k

∂

= (−1)k(m+1) q
(k+1)(m+1) − q−(k+1)(m+1)

qm+1 − q−(m+1)
Pm.

Then we obtain the following formula for
¨ �

� �
� n··

k

∂

:

¨ �
� �
� n··

k

∂

=
Å

∑

0≤m≤n
n−m∈2Z

Pn,m

ã

◦
¨ �

� �
� n··

k

∂

=
∑

m

∑

I,J∈In,m

B−1
IJ

¨

I

n
∂

◦ Pm ◦
¨ �

� �
� m··

k

∂

◦
¨

J

n
∂

=
∑

0≤m≤n
n−m∈2Z

(−1)k(m+1) q
(k+1)(m+1) − q−(k+1)(m+1)

qm+1 − q−(m+1)
Pn,m.

(A.12)

Proof of Theorem 3.6. The closure (τ ; S2 × S1) of a (n, n)-tangle τ in S2 × S1 can be con-

structed by a surgery on a meridian of the link
Å

τ ◦ �
� �
� n·· ; S3

ã

. Hence, the WRT invariant
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of (τ ; S2 × S1) is expressed by the Reshetikhin-Turaev surgery formula:

Zr(τ, S
2 × S1) = −

q − q−1

2r

r−2
∑

k=0

(−1)k (qk+1 − q−k−1)
Å

〈τ〉 ◦
¨ �

� �
� n··
k

∂

; S3
ã
∣

∣

∣

∣

q=exp(πi/r)
.

If we replace
¨ �

� �
� n··
k

∂

by the formula (A.12) and use the formula

r−2
∑

k=0

(−1)km
Ä

q(k+1)(m+1) − q−(k+1)(m+1)
äÄ

qk+1 − q−k−1
ä

∣

∣

∣

q=exp(πi/r)

=























−2r, if m = 2rl, l ∈ Z,

2r, if m = 2rl − 2, l ∈ Z,

0 otherwise,

then we find that Zr(τ, S
2 × S1) = 0 when n is odd and obtain the formula

Zr(τ, S
2 × S1) =

Ñ

∑

0≤l≤n
r

Ä

P2n,2lr ◦ 〈τ〉; S
3
ä

+
∑

1≤l≤n+1

r

Ä

P2n,2lr−1 ◦ 〈τ〉; S
3
ä

é
∣

∣

∣

∣

∣

∣

q=exp(πi/r)

when n is even. If r ≥ n + 2 then only one term survives in the sums of the r.h.s. of this

equation, and we get eq.(3.24). �

A.3. Torus braids and the Jones-Wenzl projector P2n,0. Define the q+ order of an

element

x =
∑

λ∈TTL

∑

j∈Z

aλ,j(τ) q
j 〈λ〉 ∈ TL+ (A.13)

as | x |q = inf {j : ∃λ : aλ,j(τ) 6= 0}.

Definition A.7. A sequence of elements x1, x2, . . . ∈ TL+ has a limit limi→∞ xi = x if

limi→∞ |x− xi |q = +∞.

In other words, the limit limi→∞ xi = x means that the coefficients at lower powers of q

in the presentations (A.13) of the elements xi stabilize progressively as i grows, and x is the

Laurent series in q formed by the stable coefficients.

The following is obvious:

Proposition A.8. If the limit limi→∞ xi exists, then it is unique.

Theorem A.9. The Temperley-Lieb algebra elements corresponding to torus braids with high

twist converge to the Jones-Wenzl projector P2n,0:

lim
m→∞

¨ ...
m

2n
∂

= P2n,0. (A.14)
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Proof. We multiply
¨ ...

m

2n
∂

by the identity element (A.7) and use the well-known formula

¨ ...
1

n
∂

◦ Pn = (−1)nq
1
2
n(n+2)Pn

in order to express
¨ ...

m

n
∂

as a sum of projectors with growing powers of q:

¨ ...
m

2n
∂

=
¨ ...

m

2n
∂

◦
2n
∑

m=0

P2n,2m =
2n
∑

m=0

q2mn(n+1)P2n,2m.

Obviously, all terms in the sum in the r.h.s. tend to zero except the term with m = 0, which

carries the zeroth power of q. 2
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