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Abstract

In this paper, we present a complete algorithm called COPOMATRIX for
determining the copositivity of an n× n matrix. The core of this algorithm
is decomposition theorem, which is used to deal with simplicial subdivision
of T̂− = {y ∈ ∆m|β

Ty ≤ 0} on standard simplex ∆m, where each component
of the vector βT is either -1 or 0 or 1.
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1. Introduction

QUESTION 1 Let A be a given n× n real symmetric matrix, R+ be
the set of nonnegative real numbers, and

Q(X) = XTAX, X 6= 0

be a quadratic form. What conditions shouldA satisfy for [∀X ∈ R
n
+, Q(X) ≥

0(> 0)]?
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If [∀X ∈ R
n
+, Q(X) ≥ 0(> 0)], the quadratic form Q(X) is called a

(strictly) copositive quadratic form with corresponding matrix A being called
a (strictly) copositive matrix.

Copositive matrices have numerous applications in diverse fields of ap-
plied mathematics, especially in mathematical programming and graph the-
ory(see [3, 5, 7, 11, 13, 15, 16, 25, 26, 29, 39]). Therefore copositivity has
been studying thoroughly since 1950s(see[1, 6, 14, 17, 20, 22, 23, 27, 28, 33,
41, 42, 48, 49]).

Generally, it is an NP-complete problem to determine whether a given
n×n symmetric matrix is not copositive[37, 38]. That means, every algorithm
that solves the problem, in the worst case, will require at least an exponential
number of operations, unless P=NP. For that reason, it is still valuable for
so many incomplete algorithms discussing some special kinds of matrices
(see[3, 4, 10, 12, 18, 21, 24, 30, 38]). For small values of n(≤ 6), some
necessary and sufficient conditions have been constructed(see[1, 14, 30, 49]).
However, it is still a hard problem to construct a complete algorithm for
an arbitrary n. From another viewpoint, QUESTION 1 is a typical real
quantifier elimination problem[2, 8, 9, 32, 35, 40, 44, 45], which can be solved
by standard tools of real quantifier elimination(e.g., using CAD)[2, 8, 9, 46,
47]. Thus, there is a complete algorithm for determining copositive matrices
in theory. Unfortunately, this algorithm is not efficient in practice for real
quantifier elimination algorithm is doubly-exponentially complex (see[2, 8,
9]). In this paper, we will construct a complete algorithm with exponentially
complex.

The standard simplex ∆m(m ≥ 2) is defined as the following set

∆m = {(y1, · · · , ym)
T | y1 + · · ·+ ym = 1, y1 ≥ 0, · · · , ym ≥ 0}.

It is well known that the dimension of ∆m is m − 1. Denote the vertices of
∆m as e1, · · · , em, namely, e1 = (1, 0, · · · , 0)T , · · · , em = (0, 0, · · · , 1)T .

Let A ∈ R
n×n be symmetric and be partitioned as

A = [αij ] =

[
α11 αT

α A2

]
.

Define B = α11A2 − ααT . It is easy to see the following facts(cf.[1])
1. If α1i ≥ 0, i = 2, · · · , n, then
A is(strictly)copositive ⇐⇒ α11 ≥ 0(> 0) and A2 is(strictly)copositive.
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2. If at least one of α1i is negative, then we are going to focus on the
set of points T− = {y ∈ ∆n−1|α

Ty ≤ 0}. It is well known that T− is a
convex polytope on ∆n−1(see[1]). The polytope T− can be subdivided into
the simplices S1, · · · , Sp, that is

T− =

p⋃

i=1

Si, int(Si)
⋂

int(Sj) = ∅, for i 6= j,

where int(Si) denotes the interior of simplex Si. The coordinates of the ver-
tices that span the simplex Si constitute a matrix denoted as Wi. Andersson
et al.([1],p.23) proved the following results.

Lemma 1.1. (a) A is copositive iff α11 ≥ 0 and A2, W
T
1 BW1, · · · , W

T
p BWp

are all copositive.
(b) A is strictly copositive iff α11 > 0 and A2, W T

1 BW1, · · · , W T
p BWp

are all strictly copositive.

In order to formulate the algorithm of Lemma 1.1, we first consider
that how to obtain the simplicial subdivision of the polytope T− = {y ∈
∆n−1|α

Ty ≤ 0}. For small values of n(≤ 6), Andersson et al.[1] and Yang
and Li[49] give the simplicial subdivision of T−. However, all of them are
not able to propose the simplicial subdivision of T− for all values of n, which
will be solved in this paper. We propose a simplicial subdivision of T− for all
values of n, and consequently construct a complete algorithm for determining
the copositivity of an n× n matrix.

We will adopt a flexible approach. Unlike subdividing T− into simplices(of
course our method is also valid for subdividing T− into simplices), we first

transform the matrix A into the following matrix called Â.
Let α = (α12, · · · , α1n)

T and diagonal matrix D = diag(d2, · · · , dn), where

di =

{
1, if α1i = 0;
1/|α1i|, if a1i 6= 0.

Then

Â =

[
1 0
0 D

]
A

[
1 0
0 D

]
=

[
α11 α̂T

α̂ DA1D

]
. (1)

where α̂ = (sign(α12), · · · , sign(α1n))
T with sign denoting symbolic function.
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Obviously, A is (strictly)copositive ⇐⇒Â is (strictly) copositive. Use

Lemma 1.1 for Â. Let

β1 = sign(α12), · · · , βn−1 = sign(α1n).

Thus we just need to subdivide T̂− into simplices, here

T̂− = {y ∈ ∆n−1|(β1, · · · , βn−1)y ≤ 0, βi ∈ {−1, 0, 1}}.

Next we make further simplification: separate -1,0,1 from β1, · · · , βn−1,
namely let

βa1 = · · · = βas = 1, βb1 = · · · = βbt = −1, βc1 = · · · = βcr = 0.
{a1, · · · , as, b1, · · · , bt, c1, · · · , cr} = {1, · · · , n− 1},

r, s, t ≥ 0, t ≥ 1, r + s+ t = n− 1.

In geometry it is easy to see that the convex polytope T̂− is the convex hull
of its surface S− and its vertices ec1 , · · · , ecr , that is,

T̂− = conv{ec1, · · · , ecr , S
−}. (2)

S− = {(y1, · · · , yn−1)
T ∈ ∆n−1|ya1 + · · ·+ yas − yb1 − · · · − ybt ≤ 0,

(ya1 , · · · , yas , yb1, · · · , ybt)
T ∈ ∆s+t}.

(3)

If the simplicial subdivision of S− is known, the simplicial subdivision
of T̂− is directly obtained by (2). So we just need to study the simplicial
subdivision of the polytope S−.

2. Simplicial subdivision algorithm of convex polytope S
−

2.1. Fundamental notations

The notation S− is simple, but it can not reveal the information of convex
polytopes. In order to simplify the descriptions, we will introduce a new
notation, which is fundamental to our study.

Definition 2.1. Suppose that two sequences of positive integers [a1, a2, · · · , as],
[b1, b2, · · · , bt] satisfying

{a1, · · · , as, b1, · · · , bt} ⊆ {1, 2, · · · , m}, s ≥ 0, t ≥ 1, m ≥ s+ t ≥ 2,

where all of s + t elements of {a1, · · · , as, b1, · · · , bt} are different from each
other. Then the notation [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m is defined as the
polytope S−(see(3)).
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For example, let us compare the polytope [[2, 3], [5]]5 and the polytope
[[2, 3], [5]]6. [[2, 3], [5]]5 denotes the polytope

{(y1, · · · , y5)
T ∈ ∆5|y2 + y3 − y5 ≤ 0, (y2, y3, y5)

T ∈ ∆3}.

Here (y2, y3, y5)
T ∈ ∆3 implies that y1 = 0, y4 = 0. [[2, 3], [5]]6 indicates the

polytope

{(y1, · · · , y6)
T ∈ ∆6|y2 + y3 − y5 ≤ 0, (y2, y3, y5)

T ∈ ∆3}.

Here (y2, y3, y5)
T ∈ ∆3 implies that y1 = 0, y4 = 0, y6 = 0. It is clear that

[[2, 3], [5]]5 and [[2, 3], [5]]6 are congruent, although they are set in simplices
of different dimensions.

For 0 ≤ k ≤ m− 1, the polytope L−

k is defined as

L−

k = {(y1, · · · , ym)
T ∈ ∆m|y1 + · · ·+ yk − yk+1 − · · · − ym ≤ 0}.

L−

k is written as [[1, · · · , k], [k + 1, · · · , m]]m by the notation of Definition
2.1. L−

k is a special case of S−, but its properties have generality.
In the following we will study the basic geometric properties of convex

polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m.

2.2. Geometric properties of S−

Let e1, · · · , em be vertices of the standard simplex ∆m, and Mi,j = (ei +
ej)/2 be the midpoint of the line segment eiej.

Lemma 2.1. [1] Given a convex polytope L−

k , then all of its vertices are

V = {ek+1, · · · , em, Mi,j , i = 1, 2, · · · , k, j = k + 1, · · · , m}.

And the number of the vertices is |V | = (k + 1)(m− k).

Proof. Note that the convex polytope L−

k is obtained by cutting the stan-
dard simplex ∆m with the hyperplane

L=0 : y1 + · · ·+ yk − yk+1 − · · · − ym = 0.

Therefore the vertices of the polytope L−

k come from two parts: one part is
vertices of ∆m, that is, {ek+1, · · · , em}; while the other part is the intersection
points of the hyperplane L=0 and the edges of standard simplex ∆m.
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First consider the intersection point of L=0 and the edge ae1+bek+1(a, b ≥
0, a+ b = 1). Substitute ae1 + bek+1 into the following equations,

y1 + · · ·+ yk − yk+1 − · · · − ym = 0, y1 + · · ·+ ym = 1

Therefore, the solutions are a = 1/2, b = 1/2, namely, the intersection point
is M1,k+1.

In the same way, we get all intersection points of L=0 and the edges of
∆m. They are {Mi,j, i = 1, 2, · · · , k, j = k + 1, · · · , m.}.

Hence the number of vertices of L−

k is |V | = m − k + k(m − k) = (k +
1)(m− k).

Likewise, we can prove that

Lemma 2.2. Given a convex polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m, then
all of its vertices are

V = {eb1 , · · · , ebt , Mai,bj , i = 1, 2, · · · , s, j = 1, · · · , t}.

And the number of the vertices is |V | = (s+ 1)t.

We see that the polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m and the polytope
L−

k are similar in many respects, which will be further discussed.

Lemma 2.3. The convex polytope L−

k is simplicial iff k = 0, or k = m− 1.

Proof. When k = 0, L−

0 = ∆m is simplicial.
When k = m− 1, consider convex polytope,

L−

m−1 := {(y1, · · · , ym)
T ∈ ∆m| y1 + · · ·+ ym−1 − ym ≤ 0}.

By Lemma 2.1, we know that all vertices of L−

m−1 are {em, Mi,m, i = 1, 2, · · · ,
m − 1}. Obviously all the vectors of {Mi,m − em, i = 1, 2, · · · , m − 1} are
linearly independent, so L−

m−1 is simplicial.

Conversely, we know that the dimension of the polytope L−

k is m− 1. If
k 6= 0, m−1, then by Lemma 2.1, the number of vertices of L−

k is (k+1)(m−
k) 6= m, so L−

k is not simplicial.

Lemma 2.4. The convex polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m (here the
vertices are obtained by Lemma 2.2) is simplicial iff s = 0, or t = 1.
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Lemma 2.5. The dimension of the polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m
is (s+ t− 1).

If the polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m is not a simplex, we will
subdivide it into simplices.

Lemma 2.6. If the polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m is not a sim-
plex, then there are only two (s + t − 2)-dimensional surfaces that do not
include the vertex Ma1,b1. They are

[[a2, · · · , as], [b1, b2, · · · , bt]]m, [[a1, · · · , as], [b2, · · · , bt]]m.

(obtained by deleting a1, b1 from array [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m respec-
tively)

Proof. All the (s+ t− 2)-dimensional surfaces of the convex polytope
[[a1, a2, · · · , as], [b1, b2, · · · , bt]]m are obviously

[[â1, a2, · · · , as], [b1, b2, · · · , bt]]m,
[[a1, â2, · · · , as], [b1, b2, · · · , bt]]m,
· · · ,
[[a1, a3, · · · , as], [b1, b2, · · · , b̂t]]m

(where the notation [[â1, a2, · · · , as], [b1, b2, · · · , bt]]m is the polytope taken off
a1) and

{(y1, · · · , ym)
T ∈ ∆m|ya1 + · · ·+ yas − yb1 − · · · − ybt = 0, (ya1 , · · · , yas,

yb1 , · · · , ybt)
T ∈ ∆k+t}.

That makes s + t + 1 (s + t − 2)-dimensional surfaces in all. We can verify
that only

[[a2, · · · , as], [b1, b2, · · · , bt]]m, [[a1, · · · , as], [b2, · · · , bt]]m

do not include the vertex Ma1,b1.

Lemma 2.6 leads to the following decomposition theorem.

7



2.3. The decomposition process for polytope S−

Theorem 2.1 (decomposition theorem). If the polytope [[a1, a2, · · · , as],
[b1, b2, · · · , bt]]m is not simplicial, then it can be decomposed into the union
of two convex polytopes(not always simplicial ). The expression is

[[a1, a2, · · · , as], [b1, b2, · · · , bt]]m
= conv{Ma1,b1, [[a2, · · · , as], [b1, b2, · · · , bt]]m}

⋃

conv{Ma1,b1, [[a1, a2, · · · , as], [b2, · · · , bt]]m}.

Here conv{S} denotes the convex hull of the set of points S.

Proof. The proof is immediately completed by Lemma 2.6.

Based on Theorem 2.1, the polytope S− can be easily subdivided into
simplices.

Example 1. Please show the simplicial subdivision of the following convex
polytope

L−

2 := {(y1, · · · , y5)| y1 + y2 − y3 − y4 − y5 ≤ 0, (y1, · · · , y5)
T ∈ ∆5}.

Solution. Denote L−

2 as [[1, 2], [3, 4, 5]]5. We know that [[1, 2], [3, 4, 5]]5 is
not simplicial by Lemma 2.4. Using Theorem 2.1 we have

[[1, 2], [3, 4, 5]]5 = conv{M1,3, [[2], [3, 4, 5]]5}
⋃
conv{M1,3, [[1, 2], [4, 5]]5}.

By Lemma 2.4 we know that both [[2], [3, 4, 5]]5 and [[1, 2], [4, 5]]5 are not
simplicial. Therefore we repeatedly apply Theorem 2.1 to them and have

[[2], [3, 4, 5]]5
= conv{M2,3, [[ ], [3, 4, 5]]5}

⋃
conv{M2,3, [[2], [4, 5]]5}.

= conv{M2,3, [[ ], [3, 4, 5]]5}
⋃
conv{M2,3,M2,4, [[ ], [4, 5]]5}

⋃

conv{M2,3,M2,4, [[2], [5]]5}
= conv{M2,3, e3, e4, e5}

⋃
conv{M2,3,M2,4, e4, e5}

⋃

conv{M2,3,M2,4,M2,5, e5}.

[[1, 2], [4, 5]]5
= conv{M1,4, [[2], [4, 5]]5}

⋃
conv{M1,4, [[1, 2], [5]]5}.

= conv{M1,4,M2,4, [[ ], [4, 5]]5}
⋃
conv{M1,4,M2,4, [[2], [5]]5}

⋃

conv{M1,4, [[1, 2], [5]]5}
= conv{M1,4,M2,4, e4, e5}

⋃
conv{M1,4,M2,4,M2,5, e5}

⋃

conv{M1,4,M1,5,M2,5, e5}.
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Finally we get the expression of simplicial subdivision of [[1, 2], [3, 4, 5]]5,

[[1, 2], [3, 4, 5]]5
= conv{M1,3,M2,3, e3, e4, e5}

⋃
conv{M1,3,M2,3,M2,4, e4, e5}

⋃

conv{M1,3,M2,3,M2,4,M2,5, e5}
⋃
conv{M1,3,M1,4,M2,4, e4, e5}

⋃

conv{M1,3,M1,4,M2,4,M2,5, e5}
⋃
conv{M1,3,M1,4,M1,5,M2,5, e5}.

So [[1, 2], [3, 4, 5]]5 is a union of six 4-dimensional simplices.

We summarize the decomposition process of Example 1 into the following
algorithm.

Algorithm 1 (Vmatrix)

Input: The expression of polytope [[a1, a2, · · · , as], [b1, b2, · · · , bt]]m .
Output: Simplex D1, D2, · · · , Dp(denoted by matrices) such that

[[a1, a2, · · · , as], [b1, b2, · · · , bt]]m =

p⋃

i=1

Di, int(Di)
⋂

int(Dj) = ∅, for i 6= j.

V1: Let F := {[[a1, a2, · · · , as], [b1, b2, · · · , bt]]m}, temp := { }.
V2: When F 6= ∅, repeat the following procedures

V21: If the polytope A ∈ F is simplicial, then temp := temp ∪ {A}.
V22: If the polytope A ∈ F is not simplicial, then by Theorem 2.1

decompose it into two convex polytope B1, B2, and add them into the set F
together with deleting A from F . Go to step V2.

V3: Return temp.

We have written a function in Maple[31] to implement the above algo-
rithm.

Lastly, we will present a formula for computing the number of simplices
given by polytope L−

k subdivision.

Lemma 2.7. According to algorithm Vmatrix, the convex polytope [[1, · · · , k],
[k+1, · · · , m]]m (0 ≤ k ≤ m− 1, m ≥ 2) can be subdivided just into f(k,m)
simplices, here

f(k,m) =

(
m− 1

k

)
=

(m− 1)!

k!(m− 1− k)!
.
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We know that f(k,m) have the same recurrence formula as binomial coef-
ficients by Theorem 2.1. Thus the proof of Lemma 2.7 is easy via mathemat-
ical induction. This formula will be used to estimate the cost of Algorithm
2 in next section.

3. Determining algorithm for copositive matrices

In this section, we will present the complete determining algrorithm of a
copositive matrix.

Given an n× n symmetric matrix

A = [αij ] =

[
α11 αT

α A2

]
,

compute Â (see (1))

Â =

[
α11 α̂T

α̂ DA2D

]
.

Let B = α11DA2D − α̂α̂T , and let

α̂ = (sign(α12), · · · , sign(α1n))
T = (β1, · · · , βn−1)

T .

Define the projection operator Proj of the matrix A as follows,
• If βi ≥ 0, i = 1, · · · , n− 1, then

Proj(A) = {DA2D}.

• If there is at least one -1 in βi, then

Proj(A) = {DA2D, W T
1 BW1, · · · , W T

p BWP}.

Here the matrices W1, · · · ,Wp is fixed by the simplicial subdivision of the

convex polytope T̂−(see (2)).

Algorithm 2 (COPOMATRIX)

Input: Symmetric matrix A ∈ Rn×n(n ≥ 2).
Output: A is copositive, or A is not copositive.
C1: Let F := {A}.

10



C2: Repeat the following steps for the set F .
C21: If the set F is empty, then return “A is copositive”.
C22: Check the (1,1)th entry of every matrix K in set F . If at least

one of them is negative, then return “A is not copositive”.
C23: Compute the projective set P :=

⋃
K∈F Proj(K) of set F .

Delete the nonnegative matrices of P , and let the rest matrices consist F .
Go to step C21.

Note that the above algorithm is also valid for 2 × 2 matrices. Further-
more, for strictly copositive matrices we can also formulate similar algorithm.

The correctness of the algorithm COPOMATRIX is guaranteed by Lemma
1.1, and the algorithm obviously terminate. The cost of the algorithm mainly
depends on the number of simplicial subdivision of the polytope. According
to Lemma 2.7, we can estimate the worst case is at most:

(

(
n− 2[
n−2
2

]
)
+ 1)(

(
n− 3[
n−3
2

]
)
+ 1) · · · (

(
2
1

)
+ 1)

≤ (2n−3)(2n−4) · · · (2)(2)
= 2(n−2)(n−3)/2+1.

The boundO(2(n−2)(n−3)/2+1) has already much lower than doubly-exponential
cost of CAD [2,9]. We have written a function in Maple to implement the al-
gorithm COPOMATRIX. For non-commercial request, we will offer for free.
Please sent e-mail to the address

yaoyong@casit.ac.cn, or,
j.jia.xu@gmail.com.
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