
ar
X

iv
:1

01
0.

03
39

v1
  [

q-
bi

o.
Q

M
]  

2 
O

ct
 2

01
0

Efficient Monte Carlo Algorithm for Simulating Reversible A ggregation of Multisite Particles
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We present an efficient and exact Monte Carlo algorithm to simulate reversible aggregation of particles with
dedicated binding sites. This method introduces a novel data structure of dynamic bond tree to record clusters
and sequences of bond formations. The algorithm achieves a constant time cost for processing cluster association
and a cost betweenO(logM) andO(M) for processing bond dissociation in clusters withM bonds. we apply
the method to simulate a trivalent ligand and a bivalent receptor clustering system and obtain an average scaling
of O(M0.45) for processing bond dissociation in acyclic aggregation, compared to a linear scaling with the
cluster size in standard methods.

PACS numbers: 05.10.Ln, 87.16.dr, 87.10.Rt

Reversible aggregation (or self-assembly) of particles with
multiple interactive sites is of fundamental importance todi-
verse processes in physical and living systems including co-
agulation of colloidal particles, protein aggregation [1], syn-
thesis of supramolecules in polymer science [2], and self-
assembly of patchy particles such as nanoparticles [3, 4] and
synthetic biomolecules [5] in material sciences [6, 7]. Re-
versible aggregation was traditionally studied using the gen-
eralized Smoluchowski equation [8, 9] that requires one to de-
velop kernel functions for cluster aggregation and fragmenta-
tion to obtain the cluster size distribution. Proper kernelfunc-
tions can be analytically characterized often under restrictive
assumptions for particle interactions. For acyclic aggregation
of multisite particles, the combination of Wertheim’s thermo-
dynamic perturbation theory [10] and Flory-Stockmayer the-
ory [11] can predict equilibrium properties for simple systems.
No analytical theory exists to treat cyclic aggregation in gen-
eral. Therefore, Monte Carlo simulations are indispensable to
provide new insights into the kinetics of aggregation processes
with arbitrary complexity.

Reversible aggregation involves two principal types of
events, bond formation and breaking. In a site-based algo-
rithm, clusters are stored as graphs representing the connec-
tivity between particle sites (see Fig. 1). Upon each event,
an importance sampling is applied to determine a site pair to
form a bond, or to determine a bond to break. To resolve infor-
mation such as composition and topology of a cluster, graph
traversals by depth-first (or breadth-first) search are routinely
applied. For irreversible aggregation, a highly efficient algo-
rithm using weighted union-find with path compression [12]
can be applied to identify cluster membership of binding sites
and amalgamate two clusters in near constant time [13], as
demonstrated in simulating percolation models [14]. Un-
fortunately, this strategy cannot be readily adopted to simu-
late reversible aggregation because bond dissociation requires
time-consuming reorganization of tree-based data structures
involved in the algorithm. Instead, one can label each indi-
vidual site on cluster connectivity graphs to track its cluster
membership. Site relabeling is thus required to process each
event. To process a bond formation between two clusters, be-
cause cluster sizes are known by simple bookkeeping, one can

always relabel sites in the smaller cluster using the label as-
signed to the larger cluster to minimize the cost. However,
this weighted relabeling does not work for cluster dissocia-
tion because the sizes of the two subclusters are not knowna
priori . Cluster relabeling can only be carried out by a graph
traversal on one arbitrary subcluster. The average time com-
plexity of a cluster traversal isO(N +M), scaled by the total
number of particlesN and bondsM in the cluster, which be-
comes prohibitive for simulating high density systems with
large connectivity graphs.

Here, we present an efficient Monte Carlo algorithm that
amalgamates two clusters inO(1) time and splits a cluster in
time betweenO(logM) andO(M). Unlike site-based meth-
ods, the main idea behind our algorithm is based on the obser-
vation that explicit cluster graphs are usually not required in
a simulation. We use a more efficient data structure, namely
dynamic bond tree(DBT), to track bonds and clusters without
updating the actual connections between particle sites. The
algorithm is numerically exact in generating observable quan-
tities such as the cluster size distribution, average cluster size
and the number of clusters. The algorithm is straightforwardly
applicable to simulate aggregations that allow formation of
cyclic clusters. If topologies of clusters are of interest,con-
nections among sites can be recorded in parallel during a sim-
ulation, or alternatively, ensembles of cluster topologies can
be mapped out stochastically from the corresponding DBTs
by postprocessing.

We consider a system with a homogeneous population of
particles, each of which is decorated with several symmet-
ric surface patches (binding sites). The algorithm can be ex-
tended to a system with a heterogeneous population of parti-
cles decorated with non-identical sites which can bind to com-
plementary sites on other particles. We assume that a single
site can only sustain at most one bond. Each cluster of parti-
cles is represented as a DBT and identified by the root node.
A leaf node in a DBT represents a single particle in the clus-
ter, whereas a non-leaf node records a site-site bond. Each
non-leaf node has either one or two child nodes. A node with
two children indicates that the bond was formed by an asso-
ciation between a pair of sites that reside on two previously
separate clusters represented by the two child nodes, whereas
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FIG. 1. Aggregation of trivalent ligands and bivalent receptors. Left
panel: cluster connectivity graphs. Clusters I (branched,without
bond 6), III (linear, without bond 6), II and IV (cyclic, withbond
6) has same number of ligands and receptors but different topolo-
gies (not drawn to reflect the actual structure of a cluster).Middle
panel: clusters I and III represented by either DBT I or II depending
on their sequences of bond formation. Sequences of bond formation
are numbered (with filled and unfilled circles) in cluster graphs and
in corresponding DBTs. The DBT III appends bond 6 to DBT II
corresponding to cluster II or IV. Right panel: cluster dissociation
(with or without bond 6) after breaking bond 3 (in DBT II or III).
The number of free ligand sites (left) and the number of free receptor
sites are shown as weights for subclusters represented by individual
DBT nodes.

a node with a single child indicates that the bond was formed
by an association between a pair of sites that reside on a same
cluster represented by the child node. Therefore, a clusteris
cyclic if and only if the corresponding DBT contains at least
one non-leaf node that has a single child. Otherwise, a cluster
is acyclic. Below, we use acyclic aggregation as an example
to describe how to process bond formation and breaking using
DBT structures. Processing cyclic aggregation only requires
slight adaptation.

To process a bond formation, two clusters are first sam-
pled according to their joint probability of contributing bind-
ing sites. The probability for a clusterc to contribute a binding
site may be related to its number of free sitessc, by a system-
specific functiong(sc), which is assigned to each cluster as
a weight. [For example, consider that a cluster of a spherical
volume hassc free binding sites. Due to the effect of steric
hindrance, one may assume that only free sites near the clus-
ter surface can form a bond with a site on another cluster. In
this model, assuming free sites are homogeneously distributed
within the cluster volume and on the surface, one can show
thatg(sc) ∼ s

2/3
c is a good approximation.] After two binding

clusters are chosen, a new nodez is then created as a root node
of the DBT that will store the resulting cluster. The root nodes,
x andy, of the DBTs of the two binding clusters become two
children nodes (subclusters) ofz. A weightg(sz) is assigned
to z, wheresz = sx+ sy− 2 and the adjustment by−2 is due
to the fact that two sites are consumed to form bondz, each

from one subcluster. Therefore, constructing a DBT manifests
the hierarchical nature of cluster aggregation. Unlike thestan-
dard method, this procedure of merging two clusters requires
neither cluster membership checking of trial binding sitesnor
systematical site relabeling, and thus merely takesO(1) time.
We point out that locating two clusters with matching sites de-
mands searching over the entire array of clusters, which has
a cost that scales linearly with the number of clusters. We
will show in an example below that this cost is in most cases
modest if not ignorable.

To process a bond dissociation, one first samples a bond
according to its probability to dissociate. The selected bond
locates to a non-leaf nodex in a DBT identified by its root
nodez. The removal of nodex will split z into two sepa-
rate DBTs. Ifx happens to bez, its two child nodes,l and
r, simply become root nodes of the two separate DBTs. Oth-
erwise, the final two DBTs are probabilistically determined.
Since the subcluster identified byx contributes a site to form
the bond at the parent node ofx, p, with the other child ofp,
afterx dissociates we need to decide which of the two sub-
clusters, represented by nodesl andr, provides the site and
thus will connect to nodep as a child node. We may assume
that the probability of choosing eitherl or r is proportional
to a function of the number of free sites contained in the sub-
cluster. For instance, the number of free sites in subcluster
l is sl − 1. The probability of choosingl to connect top is
g(sl − 1)/(g(sl − 1) + g(sr − 1)). If l is selected, as a result
r dissociates from clusterp. We therefore need to adjust the
number of free sites inp: sp ← sp − (sr − 1) and recalculate
the weight ofp. Now we want to further decide which ofr
and the updatedp connects to the parent node ofp, and so on.
This procedure iterates up to the root nodez and then obtains
two separate DBTs. Obviously, the total number of iterations
equals the height of the DBT from nodex to the root node.
This procedure to break a bond in a cluster is very efficient,
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FIG. 2. Size of a cluster (N +M ) vs. the depth of the corresponding
DBT (total or searched), for acyclic or cyclic aggregations. Simu-
lations use15000 receptors and10000 ligands, with fixed rate con-
stantsk+ = 6.67 × 107s−1 andk++ = 100k+. The dissociation
rate constantkoff was varied for simulations to generate clusters of
different sizes. Cluster sizes and the DBT depths were obtained by
averaging within bins at an equal size of 100.
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which has a cost betweenO(logM) when a DBT is well bal-
anced andO(M) when a DBT forms a linear cascade due to
sequential attachment of single particles. The latter scenario
is pathological and unlikely to persist because dynamic bond
association and dissociation prevent formation of stable linear
DBTs for any cluster such that on average DBTs are more or
less flattened during a simulation.

As we will show, this algorithm provides a substantial
speedup for processing bond dissociations in high density
clusters. For cyclic aggregation, the procedure is largelythe
same as described above, except that whenever an intracluster
site pair forms a bond, a node is created with only one subtree
that corresponds to the same cluster contributing both binding
sites (see Fig. 1). Figure 1 illustrates how to process cluster
aggregation using DBTs for an example system of trivalent
ligands binding to bivalent receptors (TLBR). Especially,we
note that an equivalent class of DBTs exists for each clus-
ter with a distinct connectivity, and vice versa. For instance,
Fig. 1 shows that cluster I may be represented as DBT I or II
depending on the sequence of bond formation. The stochas-
ticity in breaking a bond in a cluster can also result in diverse
fragmentation of the cluster.

To demonstrate our algorithm, we specialize to the TLBR
system that is representative to aggregation of a mixture of
heterogeneous particles with multiple complementary bind-
ing sites. In this system, extracellular ligands binding to
cell-surface receptors and subsequent receptor crosslinking by
receptor-bound ligands on the cell surface can induce recep-
tor aggregation. We consider the system well mixed and ap-
ply the law of mass action to account for the rates of bond
association and dissociation. Here, we simply assume that the
probability for a cluster to contribute a receptor (ligand)site is
proportional to the number of free receptor (ligand) sites in the
cluster, i.e.,g(sc) ≡ sc. A bond can be formed only between
a ligand site and a receptor site. Each bond has an equal prob-
ability to break. The system involves three rate processes:(1)
free ligands precipitating to bind cell surface receptors with a
rate constantk+, (2) receptor crosslinking by ligands already
bound to receptors with a rate constantk++ and (3) ligand-
receptor bond dissociation with a rate constantkoff . At the
start of a simulation, all ligand and receptor sites are freewith
no bond formed. For each iteration, one first determines the
waiting time for the next event, then selects one process that
fires the next event and finally updates the configuration of the
system [15].

Figure 2 shows that the DBT depth in acyclic aggregation
has a very slow growth with the increase in the cluster size,
which fit to a monomial function ofM0.45. Cyclic aggre-
gation exhibits a steeper growth of the DBT depth against
the cluster size because intracluster bonds increase the DBT
depth on top of an acyclic aggregate with the same number
of receptors and ligands. The depth of the deepest DBTs on
average is only one-tenth of the cluster size (about 4,000 vs.
50,000). For cyclic aggregation, we assume each site pairs
has an equal probability to form a bond. Note that this as-
sumption overestimates the probability of intracluster bond

formation because geometric constraints may prohibit inter-
actions between certain intracluster site pairs [16]. One can
use a parameterφ ∈ [0, 1] to characterize the average proba-
bility of a given pair of intracluster sites to form bond. Upon
each association event, a trial intracluster ligand-receptor site
pair is accepted to form a bond with a probabilityφ. Here by
settingφ = 1, we intend to present a worst-case scenario for
cyclic aggregations in terms of the DBT depth for clusters and
expect that the performance of simulating any cyclic aggrega-
tion model of the TLBR system will lie between this extreme
model and the acyclic aggregation (φ = 0).

Simulation results verified that our algorithm is statistically
identical to the method using graph traversals in obtainingthe
average cluster size and the number of clusters (see Fig. 3(a)).
To simulate a system with high density clusters by the acyclic
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FIG. 3. (a) Average cluster size and the number of clusters, by
methods using DBTs (cross) or graph traversals (circle). The clus-
ter size is measured by the number of receptors in a cluster (not
including free receptors). The average cluster size is given by:∑

NR

n=1
n2xn/(NR − FR), wherexn is the number of clusters of

sizen, NR is the total number of receptors andFR is the number of
free receptors. The results were obtained by averaging 5000samples
(each sample was separated by 100 events) at the equilibrium. (b)
Performance of four schemes for simulating acyclic aggregation of
the TLBR system: rejection or rejection-free sampling withor with-
out employing DBTs. Inset: rejection ratio [the ratio of thenumber
of effective events to the number of all events] in differentphase
regimes. The mean CPU time per event was obtained by averaging
after a system equilibrated. Parameters are identical to the ones indi-
cated in Fig. 2. All simulations were run on a same platform.
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FIG. 4. Cluster size distributions of (a) acyclic and (b) cyclic aggre-
gations under variedkoff . Other parameters used in simulations are
identical to the ones indicated in Fig. 2. Density is calculated as the
probability to find a receptor in a cluster of a given size and averaged
within bins of size 100. The system was sampled100, 000 times af-
ter the system equilibrated. Each data point was separated by 100
events to eliminate the correlation in time.

aggregation, a rejection-free sampling [17] of binding sites is
often required to further overcome the bottleneck caused by
high rejection ratio in the rejection sampling that excludes in-
tracluster site pairs from binding. Fig. 3(b) shows the perfor-
mance comparison between different methods that use graph
traversals or DBTs with or without rejection-free sampling.
The combination of DBTs and the rejection-free sampling
has a superior performance over other approaches, especially
when rejected samples become dominant in the rejection sam-
pling (the rejection ratio> 0.9). Except only for the method
using rejection sampling with graph traversals, a hump (about
koff = 0.4s−1) in each curve in Fig. 3(b) reflected a small per-
formance penalty due to sampling over a maximal number of
clusters for binding clusters near the phase transition bound-
ary. Such effect disappears for high density systems, because
the number of clusters drops drastically when the system is
at high-density regime as the average cluster size reaches the
maximum (see Fig. 3(a)).

The equilibrium model by Goldstein and Perelson [18] and
recent Monte Carlo simulations [19] showed that the branched
(acyclic) TLBR system exhibits phase separation of sol and
sol-gel phases. Here, we use our algorithm to explore the
effect of cyclic aggregation on the cluster size distribution.
Fig. 4 shows that below the phase transition (koff > 0.01s−1)
the equilibrium cluster size distributions of cyclic aggrega-
tion (see Fig. 4(b)) are more segregated with narrowed right

peaks that are shifted toward higher cluster sizes, indicating
an earlier onset of phase separation at a higherkoff (i.e., lower
ligand-receptor affinity), compared to that in the acyclic ag-
gregation (see Fig. 4(a)).

In conclusion, we presented an efficient kinetic Monte
Carlo algorithm for simulating reversible aggregations ofmul-
tisite particles, especially for systems with a large number
of particles that nucleate into high density clusters. The al-
gorithm records clusters and processes bond formation and
breaking using dynamic bond trees, which avoids costly oper-
ations on connectivity graphs. As a result, the substantialgain
in computation enables fast simulation of aggregation involv-
ing large number of particles. The algorithm is quite general
and provides a fast mean to evaluate aggregation of patchy
particles as well as basic physical models such as reversible
site or bond percolation under various conditions.
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Foundation of China through grant 30870477 (JY).
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Álvarez, Phys. Rev. E,65, 31405 (2002).

[10] M. S. Wertheim, J. Stat. Phys.,35, 19 (1984); 35, 35 (1984);
42, 459 (1986);42, 477 (1986).

[11] P. J. Flory,Principles of polymer chemistry(Cornell University
Press, 1953).

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, 2nd ed. (The MIT Press, 2001).

[13] R. E. Tarjan, ACM,22, 215 (1975).
[14] M. E. J. Newman and R. M. Ziff, Phys. Rev. Lett.,85, 4104

(2000).
[15] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys.,

17, 10 (1975).
[16] M. I. Monine, R. G. Posner, P. B. Savage, J. R. Faeder, and

W. S. Hlavacek, Biophys. J.,98, 48 (2010).
[17] J. Yang and W. S. Hlavacek, Arxiv preprint: 0812.4619 (2008).
[18] B. Goldstein and A. S. Perelson, Biophys. J.,45, 1109 (1984).
[19] J. Yang, M. I. Monine, J. R. Faeder, and W. S. Hlavacek, Phys.

Rev. E,78, 31910 (2008).

mailto:jinyang2004@gmail.com

