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We present an efficient and exact Monte Carlo algorithm takite reversible aggregation of particles with
dedicated binding sites. This method introduces a novel skaticture of dynamic bond tree to record clusters
and sequences of bond formations. The algorithm achievasstant time cost for processing cluster association
and a cost betweef (log M) andO(M) for processing bond dissociation in clusters withbonds. we apply
the method to simulate a trivalent ligand and a bivalentprreclustering system and obtain an average scaling
of O(M°*%) for processing bond dissociation in acyclic aggregatimmpared to a linear scaling with the
cluster size in standard methods.

PACS numbers: 05.10.Ln, 87.16.dr, 87.10.Rt

Reversible aggregation (or self-assembly) of particldb wi always relabel sites in the smaller cluster using the label a
multiple interactive sites is of fundamental importancelto  signed to the larger cluster to minimize the cost. However,
verse processes in physical and living systems including cahis weighted relabeling does not work for cluster dissocia
agulation of colloidal particles, protein aggregation [dyn-  tion because the sizes of the two subclusters are not kiaown
thesis of supramolecules in polymer science [2], and selfpriori. Cluster relabeling can only be carried out by a graph
assembly of patchy particles such as nanoparticles [3,d] antraversal on one arbitrary subcluster. The average time com
synthetic biomolecules |[5] in material sciences|[6, 7]. Re-plexity of a cluster traversal i©(N + M), scaled by the total
versible aggregation was traditionally studied using the-g number of particlegv and bondsV/ in the cluster, which be-
eralized Smoluchowski equation [8, 9] that requires onesto d comes prohibitive for simulating high density systems with
velop kernel functions for cluster aggregation and fragt@en large connectivity graphs.

tion to obtain the cluster size distribution. Proper kefoat- Here, we present an efficient Monte Carlo algorithm that
tions can be analytically characterized often under reste amalgamates two clusters (1) time and splits a cluster in
assumptions for particle interactions. For acyclic aggten  time betweer0(log M) andO(M). Unlike site-based meth-

of multisite particles, the combination of Wertheim's ther- s, the main idea behind our algorithm is based on the obser-
dynamic perturbation theory [10] and Flory-Stockmayer the yation that explicit cluster graphs are usually not require

ory [11] can predict equilibrium properties for simple /5. 3 simulation. We use a more efficient data structure, namely
No analytical theory exists to treat cyclic aggregationeémg  dynamic bond tre€DBT), to track bonds and clusters without
eral. Therefore, Monte Carlo simulations are indisperestbl  ypdating the actual connections between particle sitee Th
provide new insights into the kinetics of aggregation peses  |gorithm is numerically exact in generating observablargu
with arbitrary complexity. tities such as the cluster size distribution, average etustze

Reversible aggregation involves two principa| types ofand the number of clusters. The algorithm is Straightfod’yﬂr
events, bond formation and breaking. In a site-based algg@Pplicable to simulate aggregations that allow formatién o
rithm, clusters are stored as graphs representing the connecyclic clusters. If topologies of clusters are of interestn-
tivity between particle sites (see F[g. 1). Upon each eventhections among sites can be recorded in parallel duringa sim
an importance sampling is applied to determine a site pair t&/lation, or alternatively, ensembles of cluster topolegian
form a bond, or to determine a bond to break. To resolve inforb® mapped out stochastically from the corresponding DBTs
mation such as composition and topology of a cluster, grapRY Postprocessing.
traversals by depth-first (or breadth-first) search aremelyt We consider a system with a homogeneous population of
applied. For irreversible aggregation, a highly efficielgoa  particles, each of which is decorated with several symmet-
rithm using weighted union-find with path compression [12]ric surface patches (binding sites). The algorithm can be ex
can be applied to identify cluster membership of bindingssit tended to a system with a heterogeneous population of parti-
and amalgamate two clusters in near constant time [13], asles decorated with non-identical sites which can bind to-co
demonstrated in simulating percolation models [14]. Un-plementary sites on other particles. We assume that a single
fortunately, this strategy cannot be readily adopted tausim site can only sustain at most one bond. Each cluster of parti-
late reversible aggregation because bond dissociatiairesy cles is represented as a DBT and identified by the root node.
time-consuming reorganization of tree-based data strestu A leaf node in a DBT represents a single particle in the clus-
involved in the algorithm. Instead, one can label each inditer, whereas a non-leaf node records a site-site bond. Each
vidual site on cluster connectivity graphs to track its tdus non-leaf node has either one or two child nodes. A node with
membership. Site relabeling is thus required to proceds eadwo children indicates that the bond was formed by an asso-
event. To process a bond formation between two clusters, beiation between a pair of sites that reside on two previously
cause cluster sizes are known by simple bookkeeping, one caeparate clusters represented by the two child nodes, adere
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Clusterl, Il (cyclic) DBTI . from one subcluster. Therefore, constructing a DBT matsfes
) igan: eceptor . . . .
@/o | P | } the hierarchical nature of cluster aggregation. Unlikestia@-
@ | % é | Splitl4‘(gb dard method, this procedure of merging two clusters require
@\oe | R o 4 ;‘ neither cluster membership checking of trial binding sites
o/.E (X ® P I R @.1 systematical site relabeling, and thus merely takés) time.
.@_ - _@_. 1 \. R : 4 \0 We point out that locating two clusters with matching sites d
(s | £6), / mands searching over the entire array of clusters, which has
Cluster LIV (cycli) D2 24 ! | R a cost that scales linearly with the number of clusters. We
_@_ ! 4@\; Lo will show in an example below that this cost is in most cases
@/a 6\ : @ : SP"‘"’;\E)\'\ modest if not ignorable.
(] o @ £, R\A 1(5): To process a bond dissociation, one first samples a bond
@\ D 2 /A ® 5, ! @), according to its probability to dissociate. The selecteddo
.6’ L \. l .@ locates to a non-leaf nodein a DBT identified by its root

nodez. The removal of node will split z into two sepa-

FIG. 1. Aggregation of trivalent ligands and bivalent recep. Left ~ 'ate DBTS. I happens to be, its two child nodes] and
panel: cluster connectivity graphs. Clusters | (brancheithout 7> SImply become root nodes of the two separate DBTs. Oth-
bond 6), Il (linear, without bond 6), Il and IV (cyclic, withond  erwise, the final two DBTs are probabilistically determined
6) has same number of ligands and receptors but differenidop ~ Since the subcluster identified bycontributes a site to form
gies (not drawn to reflect the actual structure of a clustbtiddle  the bond at the parent node efp, with the other child op,
panel: clusters | and Il represented by either DBT | or lleleing  after ; dissociates we need to decide which of the two sub-
on their sequences of bond formation. Sequences of bondafamm clusters, represented by nodeandr, provides the site and

are numbered (with filled and unfilled circles) in clustergirs.and h il d hild node. Wk
in corresponding DBTs. The DBT IIl appends bond 6 to DBT Il thus will connect to nodg as a child node. We may assume

corresponding to cluster Il or IV, Right panel: cluster disation  that the probability of choosing eithéror r is proportional
(with or without bond 6) after breaking bond 3 (in DBT Il or)il  to a function of the number of free sites contained in the sub-
The number of free ligand sites (left) and the number of femeptor  cluster. For instance, the number of free sites in subaluste
sites are shown as weights for subclusters representediivydinal lis s; — 1. The probability of choosing to connect tgp is
DBT nodes. g(si —1)/(g(s;1 — 1) + g(s, — 1)). If L is selected, as a result
r dissociates from cluster. We therefore need to adjust the

) ) o number of free sites ip: s, < s, — (s, — 1) and recalculate
a node with a single child indicates that the bond was formeghe weight ofp. Now we want to further decide which of
by an association between a pair of sites that reside on a sargg the updated connects to the parent nodesgfand so on.
cluster represented by the child node. Therefore, a clister This procedure iterates up to the root nadend then obtains
cyclicif and only if the corresponding DBT contains at least tyq separate DBTs. Obviously, the total number of iteration
one non-leaf node that has a single child. Otherwise, aaalust gquals the height of the DBT from nodeto the root node.

is acyclic Below, we use acyclic aggregation as an examplerhis procedure to break a bond in a cluster is very efficient,
to describe how to process bond formation and breaking using

DBT structures. Processing cyclic aggregation only resguir
slight adaptation. W ‘ —

: : [ & acyclic, total depth
To process a bond formation, two clusters are first sam- "5 acyclic depth searched

pled according to their joint probability of contributingniol- o cyclic, total depth

ing sites. The probability for a clusteto contribute a binding £ 10°} © cyelic, depth searched E

site may be related to its number of free sitgsby a system- o

specific functiong(s.), which is assigned to each cluster as [

a weight i i Q10 3
ght. [For example, consider that a cluster of a sphlerica alad:

volume hass, free binding sites. Due to the effect of steric

hindrance, one may assume that only free sites near the clus- )
ter surface can form a bond with a site on another cluster. In 10/ T
this model, assuming free sites are homogeneously digtdbu 0 Nur%%)g? of ég‘ﬁgs +3r?3?%ber4g?08a?t?g(l)gs
within the cIuQs/gelr volume and on the. surface, one c.an.show

thatg(s.) ~ sc" is agood approximation.] After two binding FIG. 2. Size of a cluster + M) vs. the depth of the corresponding
clusters are chosen, a new nade then created as a root node pgt (total or searched), for acyclic or cyclic aggregatio@imu-

of the DBT that will store the resulting cluster. The rooteed |ations usel5000 receptors and0000 ligands, with fixed rate con-

x andy, of the DBTSs of the two binding clusters become two stantsk; = 6.67 x 10°s~* andk,, = 100k,. The dissociation
children nodes (subclusters) of A weightg(s.) is assigned rate constank.s was varied for simulations to generate clusters of
to z, wheres., = s, + s, — 2 and the adjustment by2 is due differer_u sizgs._ CIl_Jster sizes and t_he DBT depths were mbdaby

to the fact that two sites are consumed to form bendach ~ 2veraging within bins at an equal size of 100.
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which has a cost betwe&n(log M) when a DBT is well bal-  formation because geometric constraints may prohibit-inte
anced and)(M) when a DBT forms a linear cascade due toactions between certain intracluster site pairs [16]. Care ¢
sequential attachment of single particles. The latter@gen use a parametef € [0, 1] to characterize the average proba-
is pathological and unlikely to persist because dynamiabon bility of a given pair of intracluster sites to form bond. Upo
association and dissociation prevent formation of stab&&al  each association event, a trial intracluster ligand-rewegite
DBTs for any cluster such that on average DBTs are more opair is accepted to form a bond with a probabilityHere by
less flattened during a simulation. settingy = 1, we intend to present a worst-case scenario for
As we will show, this algorithm provides a substantial cyclic aggregations in terms of the DBT depth for clusters an
speedup for processing bond dissociations in high densitgxpect that the performance of simulating any cyclic agareg
clusters. For cyclic aggregation, the procedure is larggdy  tion model of the TLBR system will lie between this extreme
same as described above, except that whenever an inteaclustodel and the acyclic aggregatiaf € 0).
site pair forms a bond, a node is created with only one subtree Simulation results verified that our algorithm is statislig
that corresponds to the same cluster contributing bothihgnd identical to the method using graph traversals in obtaittieg
sites (see Fid.]1). Figufé 1 illustrates how to process etust average cluster size and the number of clusters (seElFig. 3(a
aggregation using DBTs for an example system of trivalenffo simulate a system with high density clusters by the acycli
ligands binding to bivalent receptors (TLBR). Especialiy
note that an equivalent class of DBTs exists for each clus-
ter with a distinct connectivity, and vice versa. For ins&n

Fig.[ shows that cluster | may be represented as DBT | or Il 10°} (a) average cluster size
depending on the sequence of bond formation. The stochas- number of clusters
ticity in breaking a bond in a cluster can also result in déeer 10°
fragmentation of the cluster. o traversal
To demonstrate our algorithm, we specialize to the TLBR ,| ¥ DBT

system that is representative to aggregation of a mixture of 1o

heterogeneous particles with multiple complementary bind
ing sites. In this system, extracellular ligands binding to 10"
cell-surface receptors and subsequent receptor crosglibi
receptor-bound ligands on the cell surface can induce recep
tor aggregation. We consider the system well mixed and ap- 10
ply the law of mass action to account for the rates of bond 107 :
association and dissociation. Here, we simply assumehbat t S| (b)
probability for a cluster to contribute a receptor (liganit is 10
proportional to the number of free receptor (ligand) sitethe )
cluster, i.e.g(s.) = s.. A bond can be formed only between

a ligand site and a receptor site. Each bond has an equal prob-
ability to break. The system involves three rate procegd¢s:
free ligands precipitating to bind cell surface receptoith &

rate constant_., (2) receptor crosslinking by ligands already rejection, DBT
bound to receptors with a rate constant, and (3) ligand- rejection free, DBT
receptor bond dissociation with a rate constant. At the S 1(‘)-5 1(‘)-4 1(‘)_3 10‘-2 1(‘)-1 160 161 10°
start of a simulation, all ligand and receptor sites are \vitle k . (1/s)

no bond formed. For each iteration, one first determines the off

v_vamng time for the next_ event, then selects one prqcests th‘i":le. 3. (a) Average cluster size and the number of clusteys, b
fires the next event and finally updates the configurationef th ethods using DBTS (cross) or graph traversals (circlee dlbs-
system|[15]. ter size is measured by the number of receptors in a clustér (n
Figure[2 shows that the DBT depth in acyclic aggregatiorincluding free receptors). The average cluster size isngig:
has a very slow growth with the increase in the cluster sizerf'1 n*z,/(Nr — Fr), wherez, is the number of clusters of

which fit to a monomial function of\/°4>. Cyclic aggre-  Sizen, Nr is the total number of receptors aihg is the number of
étee receptors. The results were obtained by averaging $80@les
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gation exhibits a steeper growth of the DBT depth agains each sample was separated by 100 events) at the equilibiiojn
the cluster size because_mtracluster bonds increase tAe D erformance of four schemes for simulating acyclic aggienzof
depth on top of ap acyclic aggregate with the same numb%e TLBR system: rejection or rejection-free sampling vathwith-

of receptors and ligands. The depth of the deepest DBTS 0yt employing DBTs. Inset: rejection ratio [the ratio of thember
average is only one-tenth of the cluster size (about 4,000 vsf effective events to the number of all events] in differghiase
50,000). For cyclic aggregation, we assume each site pairegimes. The mean CPU time per event was obtained by averagin
has an equal probability to form a bond. Note that this asafter a system equilibrated. Parameters are identicaktortles indi-
sumption overestimates the probability of intraclustendo Cated in FiglP. All simulations were run on a same platform.
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3 peaks that are shifted toward higher cluster sizes, indigat
an earlier onset of phase separation at a highe(i.e., lower
ligand-receptor affinity), compared to that in the acyclic a

] gregation (see Fifl] 4(a)).

4 In conclusion, we presented an efficient kinetic Monte
] Carlo algorithm for simulating reversible aggregationsoi-

Kot ]
%05 1 tisite particles, especially for systems with a large numbe
v ot 3 of particles that nucleate into high density clusters. The a
pOTYIE gorithm records clusters and processes bond formation and

15000 breaking using dynamic bond trees, which avoids costly-oper
% ations on connectivity graphs. As a result, the substagdisl

in computation enables fast simulation of aggregationlinvo

ing large number of particles. The algorithm is quite gehera

E and provides a fast mean to evaluate aggregation of patchy
4 particles as well as basic physical models such as reversibl
] site or bond percolation under various conditions.
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FIG. 4. Cluster size distributions of (a) acyclic and (b)layaggre-
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