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Abstract
We propose a simple model for dark energy useful for comparison with

observations. This is based on the idea that dark energy and inflation
should be caused by exactly the same physical process. Linde’s simple
chaotic inflation V = 1

2
m2φ2 produces values of ns = 0.967 and r = 0.13

which are consistent with the WMAP 1σv error bars. We therefore propose
V = 1

2
m2

2φ
2
2 +

1
2
m2

1φ
2
1 with m1 ∼ 10−5 and m2 ≤ 10−60. The fine tuning

problem is thus only half as bad as if one wanted dark energy to be
produced by a constant V0 ∼ 10−120. For comparison, neutrino masses
are of order 10−29. The field φ1 drives inflation and has damped by now
(φ1,0 = 0), while φ2 in slow roll produces dark energy with values today
of δw0 ≡ w0 + 1 ≈ 4/(3φ2

2,0 + 2). Our numerical results are well fit by
δw(z) ≈ δw0 (H0/H(z))2 . This should be true in any slow roll inflation.
Our potential can be easily realized in N-flation models with many fields.
This model is easily falsifiable by upcoming experiments—for example,
if Linde’s chaotic inflation is ruled out. But if r values consistent with
Linde’s chaotic inflation are detected then one should take this model
seriously indeed.

1 Introduction
Measuring dark energy is one of the most exciting problems in cosmology today.
There are a number of expensive programs underway to measure w, the ratio
of the pressure to the energy density in dark energy. If dark energy is a pure
cosmological constant, then w = constant = −1. Currently, measurements of w
are compared to a toy model in which w changes linearly with expansion factor
a: w = w0 + wa(1 − a) . Observational programs are judged by a figure of
merit which includes their ability to measure the quantities w0 and wa in this
toy model (Albrecht, et al 2006). If one parameterizes w(a) in terms of the
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above toy model, the current 1σ limits from the 7-year WMAP data combined
with BAO+Ho+SN are w0 = −.93± .13, and wa = −.41± .72 (Komatsu et al.
2010). These values are consistent at the 1σ level with w0 = −1 and wa = 0,
which would be a pure cosmological constant. The Sloan III survey should
measure the Baryon Acoustic Oscillation (BAO) scale to high accuracy using
LRG galaxies, and should lead to a measurement of w0 to an accuracy of 3%.
Using this same dataset, we can use genus topology to measure w0 independently
to an accuracy of 5% (Zunckel, Gott, and Lunnan 2010). Supernova studies can
achieve similar results (c.f. Albrecht et al 2006). The Euclid satellite mission
may be able to achieve an accuracy of 1%. Such observations may continue to
point to w0 = −1 and wa = 0 with higher and higher accuracy, which would be
an important result, but would leave us still in the dark as to the exact nature
of dark energy.

More exciting would be if a detectable difference δw0 between w0 and −1 is
found (i.e. δw0 = w0 + 1). For this reason, it is desirable to consider simple
models, consistent with current data and falsifiable in principle the near future,
in which there is a chance that such a detectable difference may be found. Such
models may be used as a guide for interpreting the observations. We therefore
propose such a simple model, based on the idea that inflation and dark energy
must come from the same physical mechanism. This hypothesis is not present
in most of the standard theories popular today.

Today, the most popular theory for dark energy is that a string landscape
exists with many metastable vacuua with different values of V0. In this picture,
we are currently sitting at the bottom of a potential well whose low point has
a vacuum energy density of V0. Thus, the accelerated expansion we see in the
universe today is attributed to our current static location at a metastable well in
the potential, while in contrast, we have evidence that the accelerated expansion
we see in the early universe is due to slow-roll inflation, where the field is slowly
rolling down a potential hill.

Furthermore, for dark energy today, there is supposed to be a complicated
potential that is a function of many fields φi rather than merely the one field
in slow-roll inflation. The kinetic energy in these φi fields has damped out and
they are no longer changing. A problematic feature of this model is the value
of V0: 10−120 in Planck units, an extraordinarily small number. The common
solution to this problem is to propose that there are of order 10500 vacuum
states with values of −1 < V0 < 1. Then one evokes anthropic effects to argue
that it would be difficult for intelligent life to evolve unless V0 ∼ 10−120. This
is not as satisfying to some physicists as an actual prediction of the amount of
dark energy we observe made directly from the physical model.

A final problem with this model is the appearance of Boltzmann brains (see
discussion in Gott 2008 and references therein). Briefly, in the far future, the
universe comes to a finite Gibbons and Hawking temperature T = 1/(2πr0),
where r0 = (3/V0)1/2, and Boltzmann brains appear. While this problem may
be manageable depending on what measure one uses (c.f. deSimone et al. 2010),
it is still a problem that must be addressed in the popular V0 model.

In contrast to the V0 model, our model is based on the idea that inflation
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and dark energy must be the result of exactly the same physical process. Why?
When inflation was proposed by Guth (1981), one might have asked why we
should believe such an extraordinary thing as that one had a period of accel-
erating expansion in the early universe. After all, Hawking (1967) had proven
that the universe began with a singularity by assuming that gravity in the early
universe was always attractive–so what could push outward against gravity?

However, when the current acceleration of the universe was discovered, we
suddenly had a persuasive reason for believing inflation: we see repulsive expo-
nential expansion starting today. Inflation in the early universe became more
plausible because we are actually observing a low-grade inflation today. Of
course, by now there is other, stronger evidence for inflation: WMAP has shown
that the power spectrum of fluctuations in the microwave background is in rather
exact agreement with the predictions of inflation. Furthermore, the fluctuations
are accurately Gaussian random phase, which the theory of inflation predicts.
And the universe is measured to be flat to within the observable limits, another
implication of inflation. With all of this in mind, it seems the simplest model
of dark energy would be one in which it and the inflation we encounter in the
early universe are essentially identical.

2 Chaotic Inflation
So let us begin with Linde’s (1983) chaotic inflation, arguably the simplest model
of inflation ever proposed. Linde’s potential was of the form:

V (φ) =
1

2
m2φ2 (1)

This is a simple massive scalar field. Its equations of motion are:

φ̈+ 3Hφ̇ = −V ′(φ) = −m2φ (2)

where H is the Hubble constant and 3Hφ̇ is a frictional term due to the
expansion of the universe. Pretty soon, the field φ reaches an approximately
constant velocity so that φ̈ << 3Hφ̇, where H2 >> k/a2, making the universe
effectively flat. Further, φ̇2 << m2φ2, so the equations can be simplified (Linde
2002):

H ≈ mφ/
√

6, φ̇ ≈ −m
√

2/3. (3)

The expansion is approximately exponential: a(t) ≈ exp(Ht). This is slow-
roll inflation.

H =
1

a

da

dt
=
d ln a

dt
. (4)

d ln a = mφ/
√

6dt = −[mφ/
√

6][dφ/(
√

2/3m)] = −1

2
φdφ. (5)

If N is the number of e-folds of inflation then
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N = ln afinal − ln ainitial = −1

2

ˆ
φdφ =

1

4
[φ2
initial − φ2

final]. (6)

Inflation continues in slow-roll approximation until φ2
final = 1 when the

kinetic energy in the field 1
2 φ̇

2 becomes comparable with the potential energy
1
2m

2φ2. At this point, the exponential expansion ends and the kinetic energy
in the field is dumped into the thermal energy of particles. This ushers in the
hot big bang epoch–a radiation dominated, thermal-energy filled universe. The
φ field is damped and settles at φ = 0 during this process. Now V (φ) = 0 and
the vacuum energy density in the massive scalar field becomes zero. (Or the
tiny value of V0 = 10−120 if one adds a tiny constant to the formula such that
V (φ) = V0 + 1

2m
2φ2 to account for dark energy. But we will not be adding this

V0 term.) Fluctuations re-entering the causal horizon now left the causal horizon
approximately N = 60 e-folds prior to the end of inflation, when according to
the above equation the value of φ2 = 4N + 1 = 241. In this case, the value of
the power law primordial tilt evaluated at k0 = .002Mpc−1 should be

ns ≈ 1 + 2(V ′′/V )− 3(V ′/V )2 ≈ 1− 8

φ2
≈ .967 (predicted). (7)

(cf. Easther and McAllister 2006) and the value of r, the ratio of tensor to
scalar modes, should be

r ≈ 8(V ′/V )2 ≈ 32/φ2 ≈ 8/N ≈ .13 (predicted) (8)

(cf. Kim and Liddle 2006). Fitting the amplitude of the observed fluctua-
tions requires

m = 7.8× 10−6 (9)

(cf. Kim and Liddle 2006). Remarkably, the predicted values of ns and r
are consistent with the observed values from WMAP+BAO+Ho (Komatsu et
al. 2010):

ns = .968± .012 (observed) (10)

and the 95% confidence level constraint

r < .24 (observed). (11)

The agreement between the predicted and observed values of ns is especially
impressive considering that potentials of the form V (φ) = (λ/4)φ4 have been
ruled out by predicting unacceptable values of ns = .95 and r = .26 (cf. Ko-
matsu et al. 2010). Given this, the search for the tensor modes (r > 0) is on–for
instance, the Planck satellite hopes to improve the measurement of r. Polariza-
tion studies in the future should if successful offer a smoking-gun proof that the
tensor modes are there. Such modes are not predicted by the Ekpyrotic/Cyclic
scenario and, if found, they would offer a convincing proof of inflation (cf. Linde
2002).
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It is remarkable that a model as simple as Linde’s massive-scalar-field chaotic
inflation is currently consistent with the observational data. Linde’s model
predicts in particular a value of ns noticeably less than 1– a hallmark of slow-
roll inflation that is indeed observed.

While more complicated potentials can produce lower values of r (cf. Kallosh
and Linde 2010), this comes at the expense of adding more free parameters. The
Linde theory, in contrast, is simple enough that it offers the possibility of being
confirmed in a dramatic way if the observed value of r is .13. If that occurs, we
will no doubt conclude that the inflation seen in the early universe is due to a
massive scalar field. In that case, we argue here that we should expect a similar
origin for dark energy as well.

3 Double Inflation
We propose the following simple double-inflation potential for inflation and dark
energy:

V =
1

2
m2

2φ
2
2 +

1

2
m2

1φ
2
1 (12)

with m1 ∼ 10−5 and m2 ≤ 10−60. Double inflation (Silk and Turner 1987)
was introduced (typically with m1 ≈ 5m2) to explain inflation alone. We will be
using it with widely different mass scales to explain inflation and dark energy.
The equations of motion are:

φ̈1 + 3Hφ̇1 +m2φ1 = 0, (13)

φ̈2 + 3Hφ̇2 +m2φ2 = 0. (14)

In the inflationary epoch when the universe is dominated by the vacuum
energy density provided by V :

3H2 = V =
1

2
m2

2φ
2
2 +

1

2
m2

1φ
2
1 (15)

The slow-roll approximation is valid for both fields and the evolution of the
two fields is given by

ln
φ2(t)

φ2,initial
=

(
m2

2

m2
1

)
ln

φ1(t)

φ1,initial
(16)

(cf. Easther & Mcallister 2002). Since m2 << m1, φ2(t) ≈ constant ≈
φ2,initial even though φ1(t)/φ1,initial evolves considerably during inflation. There
have been 60 e-folds of inflation since the perturbations now re-entering the hori-
zon left the causal horizon, but there could have been more e-folds of inflation
before that, so we expect N > 60 and thus 1

4 [φ2
1,initial − φ2

1,final] = N > 60.

Since φ2
1,final = 1 marks the end of inflation, φ2

1,initial > (4 × 60 + 1) = 241.
As inflation ends, the kinetic energy in the φ1 field is converted into thermal
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particles, the motion in φ1 damps and φ1 comes to rest at a value of φ1 = 0.
The dark energy seen today thus derives from the φ2 field, and V = 1

2m
2
2φ

2
2 .

Since we observe a dark energy acceleration today consistent with w ≈ −1 we
expect slow-roll inflation to apply. Given the equation of motion for φ2, if the
universe today is flat, dark energy is the dominant source of energy density, and
the field has reached an approximately constant velocity, the equations can be
simplified using the slow-roll approximation as before:

H ≈ m2φ2/
√

6,
dφ2

dt
≈ −(

2

3
)1/2m2. (17)

Then the value of w is given by:

w =
1
2 φ̇

2
2 − V

1
2 φ̇

2
2 + V

. (18)

We thus have

w =
m2

2/3− 1
2m

2
2φ

2
2

m2
2/3 + 1

2m
2
2φ

2
2

=
−(3φ2

2 − 2)

3φ2
2 + 2

. (19)

The difference between w and −1 is given by

δw = w + 1 =
4

3φ2
2 + 2

. (20)

At present, δw0 = 4/(3φ2
2,0 + 2). Current limits from WMAP suggest δw0 =

.07±.13. Importantly, since in the future we expect φ2 to eventually roll down to
zero, leaving a vacuum energy density of zero (with no V0 term), the Boltzmann
brain problem disappears.

4 N-flation
A potential of the form in equation (12) governed by equations of motion (13)
and (14) can be produced easily by models of N-flation. A possible criticism
of the original Linde chaotic inflation is that it requires φ > 1 in Planck units.
Linde argued that this was okay as long as V < 1. But it was felt that it would
be difficult to produce values of φ > 1 in string theory models. Thus, N-flation
(Dimopoulos et al. 2005) has been proposed (cf. also Easther and McAllister
2006). Supersymmetric string theories allow of order 105 axion fields.

For such axion fields V (ψi) = µ4[1 − cos(ψi/fi)] and for ψi << 1 (i.e. ψi
significantly below the Planck mass–which we would like) we note that the
potential is of the Linde quadratic form with effective mass m = µ2/fi. As we
have already pointed out, string theory allows the number of such fields to be
large (Dimopoulos et al. 2005). Hence we will adopt N = 104. In this model
there are N fields ψi (where i = 1, . . . , N) with approximately equal masses
mi ≈ m. Then the potential is given by V =

∑
1
2m

2
iψ

2
i ≈ V (φ) = 1

2m
2φ2where

by definition φ2 =
∑
ψ2
i . This is so-called assisted inflation.
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Since each mi ≈ m, all the ψi’s evolve together via

ln[ψi(t)/ψi,initial] = m2
i /m

2
j ln[ψj(t)/ψj,initial] ≈ ln[ψj(t)/ψj,initial] (21)

if mi ≈ mj for all i and j. All this requires is for the mass spectrum of the fields
to be strongly peaked and densely packed:

m2
i = m2 exp[(i− 1)/σ), (22)

where σ > 280 for N > 600 (Kim and Liddle 2006). If the fields are strictly
non-interacting the masses could in fact be exactly equal. Thus, in what follows
we will assume that all the fields are essentially equal in mass.

We want double N-flation with a potential

V =
∑ 1

2
m2

2ψ
2
2,i +

∑ 1

2
m2

1ψ
2
1,i =

1

2
m2

2φ
2
2 +

1

2
m2

1φ
2
1 (23)

where there are N = 104 ψ2 fields each of mass m2 ≈ 10−60 and N = 104 ψ1

fields each of mass m1 ≈ 10−5 (in keeping with our hypothesis that inflation and
dark energy should arise from the same process) and by definition φ2

2 =
∑
ψ2

2,i

and analogously for φ2
1. Initially we need φ2

1,initial > 241 to produce enough
inflation (> 60 e-folds) to explain our universe. With 104 fields, that just means
that each ψ2

1,i > .0241 and so all the ψ1,i’s can be sub-Planckian (< 1). This is
good.

Are such low values of m2 ≈ 10−60 plausible from the point of view of string
theory? Interestingly, Kaloper and Sorbo (2005) have independently proposed
just such an N field quiNtessence model for dark energy using ultralight pNGB
[pseudo-Nambu Goldstone bosons] (axions) from string theory. They argue for
potentials of the form V (ψi) = µ4[1−cos(ψi/fi)]. Svrcek (2006) has also argued
for multiple ultra-light axion fields with potentials of this form to explain dark
energy.

We note in each case that for sub-Planckian ψi,initial’s, the potential is of
the desired Linde quadratic form with effective mass m2 = µ2/fi. Svrcek notes
that pseudoscalar axion fields have a shift symmetry and if this symmetry were
exact it would set the potential to zero and the axions would be massless. In
string theory the shift symmetry is broken only by nonperturbative effects. In
string theory axions thus receive potential only from nonperturbative instanton
effects which are exponentially suppressed by the instanton action. Hence, if
the instantons have large actions they can give rise to a potential many orders
of magnitude below the Planck scale.

Svrcek argues that µ4 = M4 exp[−Sinst], where M ∼ 1 and Sinst ∼ 280,
can create a vacuum energy density today comparable with what we observe for
dark energy. Svrcek adds a V0 term as well, which we eliminate as unnecessary.
We would argue that if the axion fields are able to explain the amount of dark
energy we observe today the V0 term can be eliminated. Both Kaloper and Sorbo
(2005) and Svrcek (2006) are explicitly creating quintessence models for dark
energy. Both also note that single field models with sub-Planckian field values
are unacceptable for quintessence and favor models with N = 104−5 fields.
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We are proposing to combine these quintessence models that use N fields
with the N-flation models to explain dark energy and inflation. Independently
Svrcek (2006) also speculates “Hence, it could be that some of the string the-
ory axions have driven inflation while others are currently responsible for [a]
cosmological constant.” We take the point of view here that there are N = 104

equal-mass ultra-light fields ψ2,i that create a slow-roll dark energy and N = 104

equal-mass heavy fields ψ1,i that create slow-roll inflation in the early universe.
If there are in addition singleton fields with intermediate masses, with sub-

Planckian ψi’s also, these would have not inflated but rolled down, as Svrcek
notes, and some of these axion fields could have rolled down and created dark
matter. They do not cause inflation because ψi < 1, so when the other thermal
particles redshift so that the ψi vacuum field energy becomes dominant, 3H2 =
1
2m

2
iψ

2
i . Thus H is not large enough to cause the low velocity (ψ̇i) required for

slow-roll inflation.
However, if there are many fields of essentially the same mass, 3H2 =∑
1
2m

2
iψ

2
i ≈ 1

2m
2φ2, where φ2 > 1. In this case, H is much higher (by a

factor of
√
N) causing ψ̇i to be lower and slow-roll inflation to occur. Thus,

inflation only occurs when many fields congregate at the same mass scale.
In our model, then, we see two epochs of inflation: WMAP allows us to

probe the last 60 e-folds of inflation in the early universe, while dark energy
provides the beginning of a new epoch of inflation. Furthermore, it may allow
us to learn something about the initial conditions on φ1 and φ2 by observing
δw0.

5 Why N-flation is superior
We expect all of the ψ2,i’s and ψ1,i’s to be sub-Planckian. IfN = 104, this means
that φ2

i,initial < 104, which means (using equation 6) that there can be at most
2500 e-folds of inflation in our universe. Hence our universe today is less than
exp[2440] times larger than the visible horizon. In Linde’s original formulation of
chaotic inflation, random quantum fluctuations allowed universes to give birth
to universes with various values of φ1,initial. The ones with larger values of
φ1,initial grew faster until most of the volume of the multiverse was in the fastest
expanding states, with V = 1 = 1

2m
2
1φ

2
1. That would mean φ2

1,initial ≈ 1010 and
the universe today would be exp[1010] times larger than the part we can see.

For our model of dark energy, the simple Linde chaotic double-inflation pic-
ture would lead to eventually most of the volume of the multiverse being in the
fastest expanding states, given by the ellipse

V = 1 =
1

2
m2

2φ
2
2 +

1

2
m2

1φ
2
1 =

φ2
2

2× (1060)
2 +

φ2
1

2× (105)
2 . (24)

This ellipse is very elongated in the φ2 direction, and at random points on
it the φ2 field contributes just as much to the potential and to the inflation as
the φ1 field. Starting values φ2,initial ≈ (m1/m2)φ1,initial would be expected,
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and since φ2 is slower to roll down than φ1, we would not get a sub-dominant
dark energy like we want.

If we use N-flation to realize the potential in equation (12) via equation
(23) this problem does not occur. Since all of the fields are sub-Planckian, the
fastest inflating regions are characterized by starting values of φ2

2 ≈ φ2
1 that are

bounded above by N , and since m2 << m1, the contribution of the φ2 field to
the potential is sub-dominant (< 1

2m
2
2N for the φ2 field versus < 1

2m
2
1N for the

φ1 field).
In this picture we might expect the initial values for φ2

2 and φ2
1 to be com-

parable. What is the smallest φ2
1,initial could be? Well, 241, to explain the at

least 60 e-folds of inflation we see within the visible universe. By the above
argument, we might expect φ2

2,initial to be similar. Because of equation (16),
φ2 does not evolve much during the period of inflation. Its main chance to roll
down is in the current epoch when H is low. But there have not been many
e-folds of inflation during the current epoch, so we might expect φ2

2,0 to be only
a little less than its initial value of about 241. That would give a value today
of δw0 ≈ 4/(3φ2

2,0 + 2) = .55%.
Since we expect the ψ2,i’s and the ψ1,i’s to be uncorrelated, we expect by

the central limit theorem that φ2,initial and φ1,initial are Gaussian. If their
magnitudes are comparable, in keeping with our hypothesis that the physical
processes for inflation and dark energy are identical, we might a priori expect
on average to find < φ2

2,initial >=< φ2
1,initial > .

Consider the probability function P (φ2,initial, φ1,initial)dφ2,initialdφ1,initial.
If both variables are Gaussianly distributed, that distribution has circular prob-
ability contours in the (φ2,initial, φ1,initial) plane, and the probability of find-
ing |φ2,initial| < X|φ1,initial| for X < 1 is simply P = (2/π) arctanX. If
φ2

1,initial > 241, the probability of observing a value of δw0 > Y is

P <
2

π
arctan

[
1√
241

(
4

3Y − 2/3

)1/2
]

(25)

via our approximate formula for δw0. Thus, the probability of observing
δw0 > 1% is P < 40%.

So we should not be surprised to find a small value of δw0. On the assumption
that the same physical processes led to both inflation and dark energy, if there
were at least 60 e-folds of inflation in the early universe, there should be at
least 60 e-folds of inflation due to dark energy ahead in the future, as indicated
in the calculation above. However, the number of galaxies (and observers like
ourselves) produced in our universe is proportional to

exp[3N ] = exp

[
3

4

(
φ2

1,initial − 1
)]
. (26)

So it might not be surprising for us to observe < φ2
2,initial > less than <

φ2
1,initial >, but the details depend on questions of measure which are unsettled.
Suffice it to say, one must find a measure that makes what we observe,

namely φ2
2,initial > 6 (since δw0 = 7%± 13% from WMAP) andφ2

1,initial > 241
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(to produce at least 60 e-folds of inflation), not particularly unlikely. For the
time being, we can take an empirical approach and ask what future observations
can tell us about φ2,initial.

6 Numerical Method
The above back-of-the-envelope calculations make the simplifying assumption
that dark energy dominates the universe today (i.e. ΩDE = 1 today). In fact
ΩDE = .73 and ΩM = .27. We can integrate the equation of motion for φ2 (eq.
14) numerically by solving the Friedmann equation for H(t) given these values.
We can then calculate w directly from equations 12 and 18 assuming φ1 = 0.
Note that, since the universe also has dark matter, H(t) is larger, particularly
in the past, than if we had dark energy alone. This implies even less movement
in φ2 from its initial value than in the back-of-the-envelope calculation above.

For starting conditions at t = 0 we will assume dφ2/dt=0 since H(t) tends
to infinity as t tends to zero. We discuss the starting condition on φ2 itself later.
Since in this section we will consider only the φ2 field with mass m2, for greater
legibility we suppress the subscripts on φ2 and m2. We begin with the equation

φ̈+ 3Hφ̇+m2φ = 0.

where H = 1
a
da
dt is the Hubble constant. Define a new variable for time

τ = t/tH0 = tH0. Transforming φ̈ and φ̇, we have d2φ
dt2 = d2φ

dτ2
dτ2

dt2 = φ′′H2
0 and

dφ
dt = dφ

dτ
dτ
dt = φ′H0, where prime denotes a derivative with respect to the new

time variable τ . We thus have upon substitution

H2
0φ
′′ + 3H(t)H0φ

′ +m2φ = 0.

Dividing through by H2
0 , we obtain

φ′′ + 3
H(t)

H0
φ′ +

m2

H2
0

φ = 0.

Evidently, H is still in terms of t; to change this, we now convert the Fried-
mann equation from time variable t to time variable τ because so doing will
yield H(τ). We begin with the Friedmann equation in terms of t, where to good
approximation w = −1 and the universe is flat:

H2(t) ≡
(

1

a

da

dt

)2

≈ H2
0

(
Ωra

−4 + Ωma
−3 + ΩΛ

)
.

Substituting da
dt = da

dτ
dτ
dt = da

dτH0, we obtain

H2(τ) ≡
(

1

a

da

dτ

)2

≈
(
Ωra

−4 + Ωma
−3 + ΩΛ

)
=
H2(t)

H2
0

.

We thus find the equation for φ
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φ′′ + 3H(τ)φ′ +m2
∗φ = 0,

where we have defined m2
∗ = m2/H2

0 . In principle, we can now solve the
Friedmann equation numerically for H(τ) and using it obtain φ numerically.
Note that we can compute τ0, the value of our new time variable today, from
WMAP-7 values:

τ0 = H0t0 = 71.0 km/s/Mpc× 13.75Gyr = .998.

However, there is a constraint on φ2,0 that we must satisfy as we solve
numerically. The universe is flat with ΩDE + ΩM ≈ 1. Since dark matter is
present, the value of H2

0 is larger than it would be if only dark energy were
present by a factor of Ω−1

DE . WMAP-7 gives ΩDE = .73 (Komatsu et al. 2010).
Thus,

3H2
0 =

1

2ΩDE
m2φ2

0X,

where X = (φ̇0
2

+m2φ2
0)/m2φ2

0.
Using the definitions of w and δw, we find that

m2
∗ =

3ΩDE(2− δw0)

φ2
2,0

.

Hence we are not free to choose bothm∗ and φ2,initial independently because
φ2,initial will determine φ2,0, which must be consistent with m∗. We therefore
require a method of solving the equation of motion where we can set φ2,initial

(and hence φ2,0) after we already have a solution. This motivates us to observe
that the equation can be dynamically rescaled by writing φ′/φ = ζ(τ). It
is evident that φ is always non-zero. Writing φ′ = ζφ, we find that φ′′ =
ζφ′+ ζ ′φ =

(
ζ2 + ζ ′

)
φ. Substituting into the rescaled equation for φ, we obtain(
ζ2 + ζ ′

)
φ+ 3H(τ)ζφ+m2

∗φ = 0,

which leads to

ζ2 + ζ ′ + 3H(τ)ζ +m2
∗ = 0.

We choose m∗ and numerically solve this equation beginning at τ = 0, where
we have ζ = 0 because of our earlier comment on φ̇2,initial. This gives us δw0,
and using it, we can determine φ2,0 by inverting the formula for m2

∗.
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7 Numerical Results

Figure 1: Plot comparing the slow-roll, dark energy-only approximate formula
δw0 = 4/(3φ2

2,0 + 2) with the numerical results from solving the full Friedmann
equation, using it to solve the equation of motion for ζ, and finally computing
φ2,0 as outlined in Section 6. As we expect, δw0 is smaller for the numerical
than the approximate results because ΩDE < 1 makes H higher, although the
agreement is fairly good nonetheless. It should particularly be noted that the
approximate formula was derived on the assumption δw << 1, and the plot
shows that the better this assumption is satisfied, the better the agreement
between approximate and numerical results.
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Figure 2: Plot of δw as a function of redshift for different values of φ2,0. The
values of φ2,0 are listed in the order that the curves go bottom to top (φ2,0 = 15
is the blue curve, φ2,0 = 11.6 is the red curve, etc.) These values respectively
correspond to φ2,initial = 15.05, 11.64, 6.62, and 5.12. Notice that, in accord
with our back-of-the-envelope calculation, larger values of φ2,0 lead to smaller
values of δw. Note also that as the curves are rather steep functions of redshift,
if our model is correct it will be more challenging to observe deviations from
w = −1 than if we assumed that δw was constant. We chose φ2,0 = 15 on the
assumption that φ2,0 ' φ2,initial ' φ1,initial and φ1,initial '15 because that is
the minimum value that can provide approximately 60 e-folds of inflation. The
other values of φ2,0 were chosen because the approximate formula (see Section
3) implies that they should lead to δw0 ∼ 1%, 3%, and 5%, respectively. As is
evident from the z = 0 intercepts here, as well as from the previous plot (Figure
1), these estimates are somewhat over-generous.
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Figure 3: Plot of dw/dz as a function of redshift. The values of φ2,0 are listed
in the order that the curves go top to bottom (φ2,0 = 15 is the blue curve,
φ2,0 = 11.6 is the red curve, etc), and chosen to be the same as those in the
previous plot (Figure 2). Since in our model w = −1 + δw, this is equivalent
to a plot of dδw/dz, and therefore upon comparison to the previous plot of δw
vs. z (Figure 2), it is hardly surprising that dw/dz is only significantly non-zero
close to the present day. The most important result this plot shows is that
dw/dz ∼ −δw.
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Figure 4: Plot of a lower bound on the probability that δw0 is less than a given
value. We obtained this by assuming that φ2,initial and φ1,initial are Gaussian
random variables with zero means and standard deviations < φ2

1,initial >
1/2

= < φ2
2,initial >

1/2 and that φ2,0 ' φ2,initial. It can then be shown that the
distribution of their ratio is Cauchy, and from this we compute the probability
that φ2 is larger than a certain multiple of φ1, which corresponds to δw less
than a certain value δw′. This is a lower bound on the cumulative distribution
function because in fact φ1,initial could be much greater than 15 (chosen to
provide approximately 60 e-folds of inflation), leading to larger values of φ2.
However, the plot is moderately encouraging: there is still a nearly 10% chance
that δw0 could be as large as 2%, which would likely be detectable.
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Figure 5: Here, we compare our model’s predictions for w as a function of
redshift to those of the popular toy model w = w0 + wa(1 − a), where w0 and
wa are constants and a is the scale factor appearing in the Friedmann equation.
The toy model is the shallower, upper curve. We choose the parameters w0 and
wa so that the toy model agrees with ours at a = 1 and at a = 0 (today and at
the Big Bang). This leads to w0 = −1 + δw0 and wa = −δw0. The comparison
shows that it will be harder to observe deviations from w = −1 in the past if
our model is correct than if the toy model is correct. The value of φ2,0 we have
chosen corresponds to a predicted δw0 of 3% (approximate formula) and 1.5%
(numerical).
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Figure 6: Here, we show our numerical results for δw as a function of redshift
and also the slow-roll formula (dashed) δw = δw0H

−2(τ(z)). Notice that it
is a better approximation for smaller δw, which makes sense because this is
where slow roll is most valid. φ2,0 = 11.6 corresponds to the lower solid curve,
φ2,0 = 5.1 to the upper solid curve.
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As Figure 6 notes, our numerical results are fit well by the approximate

formula δw(z) ≈ δw0

(
H0

H(z)

)2

. This should be true in any slow roll inflation

model, because if φ̈ is small then 3Hφ̇ ' −m2φ. Thus, if m2φ doesn’t vary
much, φ̇ ∝ H−1. For small δw, δw ∝ φ̇2 ∝ H−2. Slow roll inflation is the best
chance to observe a detectable value of δw0. Knowing the functional form of
w(z) may be useful to observational programs.
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